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Geometry Formulas

Area of rectangle A4 = /w
circle. A =ar
triangle A = 1bh
- Surface Area of sphere A = 47r?
cylinder A = 2arh
Volume of box V= lwh
sphere V
cylinder V = wr?h
vV

cone = { (area of base) X (height)

Trigonometric Identities

Pythagorean

cos? + sin’d = 1, 1 + tan% = sec¥, cot®d + 1 = cscf
Parity

sin(—~#)= —sind, cos(—0#) =cosh, tan(—f) = —tané

csc(—8) = —csch, sec(—0) =sech, cot( — ) = —coth
Co-relations

cosf = sin(% —0), csch = sec(% —0), cotf = tan(% —0)
Addition formulas

sin(f + ¢) = sinf cos ¢ + cos b sin ¢

sin(# — ¢) = sinf cos ¢ — cosf sin ¢

cos(# + ¢) = cosfcosp — sinfsin ¢

cos{# — ¢) = cosf cos¢ + sinf sin ¢

(tan @ + tan ¢)
(1 —tanf tan ¢)

tan(f + ¢) =

tan(8 — ¢) = (tan @ — tan ¢)
(1 + tan 8 tan ¢)
Double-angle formulas

sin 28 = 2sin f cos

c0826 = cos®¥ — sin®d =2cos?d — 1 =1 — 2sin%d

tan 28 = _2?&
(1 - tanzﬂ)
Half-angle formulas

.28 _ 1 —cos8 29 1 —cos28
sin 5= 5 — or sin‘d —

20 _ 1+ cosd 1+ cos28
cos > = 73— or cos’d = s

[ sin § 1 —cosf 1 —cos28
tan — = = = 2 s el
an 2 1+ cosél sin or tan§ sin 24

Product formulas

sin # sin ¢ = l [cos(8 — ¢) — cos(8 + ¢)]

cosfcosdp = = [cos(ﬂ + ) + cos(f ~ ¢)]
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11.

12.

13.

14.

15.

16.

17.

18.

d(au) N a@
dx dx
d(u+v—w) _du  dv _dw
dx de dx dx
d(uv) dv du
ax Vdx Ui
d(u/v)  o(du/dx) — u(dv/dx)
dx )
d(u™) w1 du
dx e dx
d(uv) o—1 du » dv
el A +u (lnu)a
e _ udu
dx dx

d(e™) _  du

dx dx
da* _ du
W =a (lna)ﬁ
d(Inu) _1du
dx u dx
d(log, u) _ 1 du
dx u(lna) dx
dsinu _ du
T
deosu _ _ . du
Tax M
dtanu _ o du
i —secudx
dcotu _ _ 2 ﬂ
I cscudx
dsecu _ du
I —tanusecudx
descu _ du
e (cotu)(csc u) o
dsin"'u _ 1 du
dx m dx

Derivatives

19.

20.

21.

22.

23.
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25.

26.
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30.

31.
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deos"'u _ -1 du
o &
dtan”'w _ 1  du
dx 1+ 32 dx
dcot™'u —_—1 du
dx 1+ 42 dx
dsec'u _ 1 du
dx u\/uT—_l dx
desc™u _ —1  du
dx um dx
dsinh u =coshuﬂ
dx X
dcoshu _ . du
-—-—dx— = smhuzj;
dtanhu _ 2 du
— sech ua
dcothu

= _ 2\ du
o (csch™u) o

dsechuy _ du
= (sech u)(tanh u) I

deschu _ du
- (csch u)(coth u) e
dsinh™lu - 1 du

dx m dx
dcosh™ 'y _ 1 du

dx m dx
dtanh ™' _ 1  du

dx 1 — 42 dx
deoth™' _ 1 du

dx 1 — 2 dx
dsech™'u _ -1  du

i ime &
desch™lu -1 du
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Continued on overleaf.
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A Brief Table of Integrals

(An arbitrary constant may be added to each integral.)

n — 1 n+1 _
l.fx dx T v(n# 1)

2. j% dx = In|x|

3. fexdx=ex

4. faxdx= 1?1);
.fsinxdx = —COS8X

. fcosxdx =sinx

5
6
7. ftanxdx = —In|cos x|
8. fcotxdx = In|sin x|

9

. fsecxdx = In|sec x + tan x|

tan(%x + lw)’

=In 7]

10. fcscxdx = In|csc x — cot x|

=ln’tan%x‘
11.fsin*1§dx=xsin*'§ +Va?=x2  (a>0)
—ya*— x? (a>0)

- %ln(az +x3)  (a>0)

-1 X -
12. fcos P2 dx = xcos™!
a

QxR

13. ftan’l X dx = xtan™!
a

1
2m

15. fcoszmx dx = ﬁ (mx + sin mx cos mx)

14. f sin’mx dx = (mx — sin mx cos mx)

16. fseczx dx =tanx
17. fcsczx dx = —cotx

s —1

18. fsin”xdx = - S

X COS X n—1 ©n—
+ fsm" 2 dx
n n

X sin x n—1 _
+ fcos" 2x dx
n n

1
X _ n—2
T ftan x dx (n#1)

ne g cot" Ix ne2 '
21. fcot x dx = T fcot x dx (n==1)

n—1

19. fcos"x dx = 98

20. ftan"x dx = L
n—

" _ tanxsec” %x n—2 n—2
22.fsecxdx— P— +n_1fsec x dx (ns=1)

23. fcsc”x dx = — cot)’;c_sc;'_zx + : :% fCSC"_ZX dx (n#1)
24. fsinhx dx = coshx

25. fcoshxdx = sinh x

26. ftanhxdx = In|cosh x|

27. fcothx dx = In|sinh x|

28. fsechxdx = tan ™~ !(sinh x)

This table is continued on the endpapers at the back.
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Preface

The goal of this text is to help students learn to use calculus intelligently for
solving a wide variety of mathematical and physical problems.

This book is an outgrowth of our teaching of calculus at Berkeley, and
the present edition incorporates many improvements based on our use of the
first edition. We list below some of the key features of the book.

Examples and Exercises

The exercise sets have been carefully constructed to be of maximum use to the
students. With few exceptions we adhere to the following policies.

® The section exercises are graded into three consecutive groups:

(a) The first exercises are routine, modelled almost exactly on the exam-
ples; these are intended to give students confidence.

(b) Next come exercises that are still based directly on the examples and
text but which may have variations of wording or which combine
different ideas; these are intended to train students to think for
themselves.

(c) The last exercises in each set are difficult. These are marked with a
star (%) and some will challenge even the best students. Difficult does
not necessarily mean theoretical; often a starred problem is an
interesting application that requires insight into what calculus is really
about. '

® The exercises come in groups of two and often four similar ones.

® Answers to odd-numbered exercises are available in the back of the

book, and every other odd exercise (that is, Exercise 1, 5, 9, 13, . . . )
has a complete solution in the student guide. Answers to even-
numbered exercises are not available to the student.

Placement of Topics

Teachers of calculus have their own pet arrangement of topics and teaching
devices. After trying various permutations, we have arrived at the present
arrangement. Some highlights are the following.

® Integration occurs early in Chapter 4; antidifferentiation and the |
notation with motivation already appear in Chapter 2.
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Preface

® Trigonometric functions appear in the first semester in Chapter 5.

® The chain rule occurs early in Chapter 2. We have chosen to use
rate-of-change problems, square roots, and algebraic functions in con-
junction with the chain rule. Some instructors prefer to introduce sin x
and cosx early to use with the chain rule, but this has the penalty of
fragmenting the study of the trigonometric functions. We find the
present arrangement to be smoother and easier for the students.

® Limits are presented in Chapter 1 along with the derivative. However,
while we do not try to hide the difficulties, technicalities involving
epsilonics are deferred until Chapter 11. (Better or curious students can
read this concurrently with Chapter 2.) Our view is that it is very
important to teach students to differentiate, integrate, and solve calcu-
lus problems as quickly as possible, without getting delayed by the
intricacies of limits. After some calculus is learned, the details about
limits are best appreciated in the context of I"'Hdpital’s rule and infinite
series.

® Differential equations are presented in Chapter 8 and again in Sections
12.7, 12.8, and 18.3. Blending differential equations with calculus
allows for more interesting applications early and meets the needs of
physics and engineering.

Prerequisites and Preliminaries

A historical introduction to calculus is designed to orient students before the
technical material begins.

Prerequisite material from algebra, trigonometry, and analytic geometry
appears in Chapters R, 5, and 14. These topics are treated completely: in fact,
analytic geometry and trigonometry are treated in enough detail to serve as a
first introduction to the subjects. However, high school algebra is only lightly
reviewed, and knowledge of some plane geometry, such as the study of similar
triangles, is assumed.

Several orientation quizzes with answers and a review section (Chapter R)
contribute to bridging the gap between previous training and this book.
Students are advised to assess themselves and to take a pre-calculus course if
they lack the necessary background.

Chapter and Section Structure

The book is intended for a three-semester sequence with six chapters covered
per semester. (Four semesters are required if pre-calculus material is included.)

The length of chapter sections is guided by the following typical course
plan: If six chapters are covered per semester (this typically means four or five
student contact hours per week) then approximately two sections must be
covered each week. Of course this schedule must be adjusted to students’
background and individual course requirements, but it gives an idea of the
pace of the text.

Proofs and Rigor

Proofs are given for the most important theorems, with the customary omis-
sion of proofs of the intermediate value theorem and other consequences of
the completeness axiom. Our treatment of integration enables us to give
particularly simple proofs of some of the main results in that area, such as the
fundamental theorem of calculus. We de-emphasize the theory of limits,
leaving a detailed study to Chapter 11, after students have mastered the
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Preface ix

fundamentals of calculus—differentiation and integration. Our book Calculus
Unlimited (Benjamin/Cummings) contains all the proofs omitted in this text
and additional ideas suitable for supplementary topics for good students.
Other references for the theory are Spivak’s Calculus (Benjamin /Cummings &
Publish or Perish), Ross’ Elementary Analysis: The Theory of Calculus
(Springer) and Marsden’s Elementary Classical Analysis (Freeman).

Calculators

Calculator applications are used for motivation (such as for functions and
composition on pages 40 and 112) and to illustrate the numerical content of
calculus (see, for instance, p. 405 and Section 11.5). Special calculator discus-
sions tell how to use a calculator and recognize its advantages and shortcom-
ings.

Applications

Calculus students should not be treated as if they are already the engineers,
physicists, biologists, mathematicians, physicians, or business executives they
may be preparing to become. Nevertheless calculus is a subject intimately tied
to the physical world, and we feel that it is misieading to teach it any other
way. Simple examples related to distance and velocity are used throughout the
text. Somewhat more special applications occur in examples and exercises,
some of which may be skipped at the instructor’s discretion. Additional
connections between calculus and applications occur in various section sup-
plements throughout the text. For example, the use of calculus in the determi-
nation of the length of a day occurs at the end of Chapters 5, 9, and 14.

Visualization

The ability to visualize basic graphs and to interpret them mentally is very
important in calculus and in subsequent mathematics courses. We have tried
to help students gain facility in forming and using visual images by including
plenty of carefully chosen artwork. This facility should also be encouraged in
the solving of exercises.

Computer-Generated Graphics

Computer-generated graphics are becoming increasingly important as a tool
for the study of calculus. High-resolution plotters were used to plot the graphs
of curves and surfaces which arose in the study of Taylor polynomial
approximation, maxima and minima for several variables, and three-
dimensional surface geometry. Many of the computer drawn figures were
kindly supplied by Jerry Kazdan.

Supplements

Student Guide Contains

® Goals and guides for the student
® Solutions to every other odd-numbered exercise
® Sample exams

Instructor's Guide Contains

® Suggestions for the instructor, section by section
® Sample exams
® Supplementary answers
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Preface

Misprints

Misprints are a plague to authors (and readers) of mathematical textbooks.
We have made a special effort to weed them out, and we will be grateful to the
readers who help us eliminate any that remain.

Acknowledgments

We thank our students, readers, numerous reviewers and assistants for their
help with the first and current edition. For this edition we are especially
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her accurate typing. Several people who helped us with the first edition
deserve our continued thanks. These include Roger Apodaca, Grant Gustaf-
son, Mike Hoffman, Dana Kwong, Teresa Ling, Tudor Ratiu, and Tony
Tromba.

Jerry Marsden
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How toUse this Book:
A Note to the Student

Begin by orienting yourself. Get a rough feel for what we are trying to
accomplish in calculus by rapidly reading the Introduction and the Preface
and by looking at some of the chapter headings.

Next, make a preliminary assessment of your own preparation for calcu-
lus by taking the quizzes on pages 13 and 14. If you need to, study Chapter R
in detail and begin reviewing trigonometry (Section 5.1) as soon as possible.

You can learn a little bit about calculus by reading this book, but you
can learn to use calculus only by practicing it yourself. You should do many
more exercises than are assigned to you as homework. The answers at the
back of the book and solutions in the student guide will help you monitor
your own progress. There are a lot of examples with complete solutions to help
you with the exercises. The end of each example is marked with the symbol
A.

Remember that even an experienced mathematician often cannot “see”
the entire solution to a problem at once; in many cases it helps to begin
systematically, and then the solution will fall into place.

Instructors vary in their expectations of students as far as the degree to
which answers should be simplified and the extent to which the theory should
be mastered. In the book we have arranged the theory so that only the proofs
of the most important theorems are given in the text; the ends of proofs are
marked with the symbol B. Often, technical points are treated in the starred
exercises.

In order to prepare for examinations, try reworking the examples in the
text and the sample examinations in the Student Guide without looking at the
solutions. Be sure that you can do all of the assigned homework problems.

When writing solutions to homework or exam problems, you should use
the English language liberally and correctly. A page of disconnected formulas
with no explanatory words is incomprehensible.

We have written the book with your needs in mind. Please inform us of
shortcomings you have found so we can correct them for future students. We
wish you luck in the course and hope that you find the study of calculus
stimulating, enjoyable, and useful.

Jerry Marsden
Alan Weinstein
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Chapter 13

13.1

Vectors

Vectors are arrows which have a definite magnitude and direction.

Many interesting mathematical and physical quantities depend upon more
than one independent variable. The length z of the hypotenuse of a right
triangle, for instance, depends upon the lengths x and y of the two other sides;
the dependence is given by the Pythagorean formula z =/x* + y? . Similarly,
the growth rate of a plant may depend upon the amounts of sunlight, water,
and fertilizer it receives; such a dependence relation may be determined
experimentally or predicted by a theory.

The calculus of functions of a single variable, which we have been
studying since the beginning of this book, is not enough for the study of
functions which depend upon several variables—what we require is the
calculus of functions of several variables. In the final six chapters, we present
this general calculus.

In this chapter and the next, we set out the algebraic and geometric
preliminaries for the calculus of several variables. This material is thus
analogous to Chapter R, but not so elementary. Chapters 15 and 16 are
devoted to the differential calculus, and Chapters 17 and 18 to the integral
calculus, of functions of several variables.

Vectors in the Plane

The components of vectors in the plane are ordered pairs.

An ordered pair (x, y) of real numbers has been considered up to now as a
point in the plane—that is, as a geometric object. We begin this section by
giving the number pairs an algebraic structure.! Next we introduce the notion
of a vector. In Section 13.2, we discuss the representation of poeints in space by
triples (x, y,z) of real numbers, and we extend the vector concept to three
dimensions. In Section 13.3, we apply the algebra of vectors to the solution of
geometric problems.

The authors of this book, and probably many of its readers, were brought
up mathematically on the precept that “you cannot add apples to oranges.” If
we have x apples and y oranges, the number x + y represents the number of

! The reader who has studied Section 12.6 on complex numbers will have seen some of this
algebraic structure already.
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646

Chapter 13 Vecto}s

Example 1

Solution

pieces of fruit but confounds the apples with the oranges. By using the ordered
pair (x, y) instead of the sum x + y, we can keep track of both our apples and
our oranges without losing any information in the process. Furthermore, if
someone adds to our fruit basket X apples and Y oranges, which we might
denote by (X, Y), our total accumulation is now (x + X, y + Y)—that is,
x + X apples and y + Y oranges. This addition of items kept in separate
categories is useful in many contexts.

Addition of Ordered Pairs

If (x,, y,) and (x,, y,) are ordered pairs of real numbers, the ordered
pair (x; + x,, y; + y,) is called their sum and is denoted by (x,, y;) +

(X35 y2)- Thus, (x1, p1) + (X3, yy) = (x; + x5, y; + yo).

(a) Calculate (—3,2) + (4,6).
(b) Calculate (1,4) + (1,4) + (1,4).
(c) Given pairs (a,b) and (c,d), find (x, y) such that (a,b) + (x, y) = (c,d).

(@) (—3,2)+4,6)=(—3+4,2+6)=(1,8).

(b) We have not yet defined the sum of three ordered pairs, so we take the
problem to mean [(1,4) + (1,4)] + (1,4), which is (2,8) + (1,4) = (3, 12). No-
tice that thisis (1+ 1+ 1,4+ 4 +4),0or (3-1,3-4).

(c) The equation (a,b) + (x, y) = (c,d) means (a + x,b + y) = (¢,d). Since
two ordered pairs are equal only when their corresponding components are
equal, the last equation is equivalent to the two numerical equations

a+x=c and b+y=d.

Solving these equations for x and y gives x=c—a and y=d— b, or
(x,y)=(c—a,d—D). A

Following Example 1(b), we may observe that the sum (x, y)+ (x, p)
+ - - - +(x, y), with # terms, is equal to (nx,ny). Thinking of the sum as “n
times (x, y),” we denote it by n(x, y), so we have the equation

n(x, y) = (nx, ny).

Noting that the right-hand side of this equation makes sense when # is any
real number, not just a positive integer, we take this as a definition.

Multiplication of Ordered Pairs by Numbers

If (x, y) is an ordered pair and r is a real number, the ordered pair
(rx,ry) is called the product of r and (x, y) and is denoted by r(x, y).
Thus, r(x, y) = (rx,ry).

To distinguish ordinary numbers from ordered pairs, we sometimes call
numbers scalars. The operation just defined is called scalar multiplication.
Notice that we have not defined the product of two ordered pairs—we will do
so in Section 13.4.
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13.1 Vectors in the Plane 647

Example 2 (a) Calculate 42, —3) + 4(3, 5). (b) Calculate 4[(2, —3) + (3, 5)].

Solution (a) 4(2, —3) + 4(3,5) = (8, — 12) + (12, 20) = (20, 8).
(b) 42, -3)+ (3,9)] = 4(5,2) = (20,8). A
It is sometimes a useful shorthand to denote an ordered pair by a single letter
such as 4 = (x, y). This makes the algebra of ordered pairs look more like the
algebra of ordinary numbers. The results in Example 2 illustrate the following
general rule.

Example 3 Show that if @ is a number and 4, and A4, are ordered pairs, then a(4, + 4.)
=ad; + aA,.
Solution We write 4, = (x;, y;) and 4, = (x,, y,). Then 4, + 4, = (x; + x5, y, + y,),
and so

a(A, + Ay) = (a(x, + x3),a(y, + ) = (ax, + ax,,ay, + ay,)

= (ax, »ayy) + (ax, ,ay,) = a(xy, yy)+ a(x,, y2)
=aAd, + ad,,

as required. A

All the usual algebraic identities which make sense for numbers and ordered
pairs are true, and they can be used in computations with ordered pairs (see
Exercises 17-22).

Example 4 (a) Find real numbers a;,a,,a; such that a,(3,1) + a,(6,2) + as(—1,1) =
5, 6).
(b) Is the solution in part (a) unique?
(c) Can you find a solution in which a,, a,, and a, are integers?

Solution  (a) a,(3,1) + ay(6,2) + ay(—1,1) = (3a, + 6a, — a;,a, + 2a, + a,); for this to
equal (5, 6), we must solve the equations

3a, + 6a, —ay, =5,
a,+2a,+a;=6.

A solution of these equations is a, =0, a, =1, a; =13, (Part (b) explains
where this solution came from.)
(b) We can rewrite the equations as

6a, — a; =5 —3aq,
2a,+ a;=6-aq,.

We may choose a,; at will, obtaining a pair of linear equations in a, and a,
which always have a solution, since the lines in the (a,,a;) plane which they
represent have different slopes. The choice a; =0 led us to the equations
6a, —a; =35 and 2a, + a; =6, with the solution as given in part (a). The
choice a; =6, for instance, leads to the new solution a; =6, a,= — 1,
a; =1, so the solution is not unique.

(c) We notice that the sums 3+ 1=4, 6+2=8, and —1+1=0 of the
components in each of the ordered pairs are even. Thus the sum 4a, + 8a, of
the components of a,(3,1) + a,(6,2) + a;(—1,1) is even if a,, a,, and a, are
integers; but 5+ 6 =11 is odd, so there is no solution with a,, a,, and 4,
being integers. A
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Example 5
Solution
y
P
{
] S ——
X

Figure 13.1.1. The point P
has coordinates (x, y)
relative to the given axes.

e
e

Figure 13.1.2. A vector v is
an arrow with definite
length and direction. The
same vector is represented

by the two arrows in this
figure.

%

Figure 13.1.3. The vector
from P to Q is denoted PQ.

Figure 13.1.4. The
components of v are x
and y.

Interpret the chemical equation 2NH, + H, = 2NH, as a relation in the
algebra of ordered pairs. ‘

We think of the molecule NxHy (x atoms of nitrogen, y atoms of hydrogen) as
represented by the ordered pair (x, y). Then the chemical equation given is
equivalent to 2(1,2) + (0,2) = 2(1, 3). Indeed, both sides are equal to (2,6). A

We know from Section R.4 how to represent points P in the plane by ordered
pairs by selecting an origin O and two perpendicular lines throught it. Relative
to these axes, P is assigned the coordinates (x, y), as in Fig. 13.1.1. If the axes
are changed, the coordinates of P change as well. (In Section 14.2, we will
study how coordinates change when the axes are rotated.) When a definite
coordinate system is understood, we refer to “the point (x, y)” when x and y
are the coordinates in that system.

We turn now from the algebra of ordered pairs to the related geometric
concept of a vector.

Vectors in the Plane

A vector in the plane is a directed line segment in the plane and is drawn
as an arrow.

Vectors are denoted by boldface symbols such as v. Two directed
line segments will be said to be equal when they have the same length
and direction (as in Fig. 13.1.2).2

The vector represented by the arrow from a point P to a point Q is
denoted PQ. (Figure 13.1.3). If the arrows from P, to Q, and P, to Q,
represent the same vector, we write P, @, =P, O».

Ordered pairs are related to vectors in the following way. We first choose
a set of x and y axes. Given a vector v, we drop perpendiculars from its head
and tail to the x and y axes, as shown in Fig. 13.1.4, producing two signed
numbers x and y equaling the directed lengths of the vector in the x and y
directions. These numbers are called the components of the vector. Notice that
once the x and y axes are chosen, the components do not depend on where
the arrow representing the vector v is placed; they depend only on the
magnitude and direction of v. Thus, for any vector v, we get an ordered pair
(x, y). Conversely, given an ordered pair (x, y), we can construct a vector with
these components; for example, the vector from the origin to the point with
coordinates (x, y). The arrow representing this vector can be relocated as long
as its magnitude and direction are preserved.

Operations of vector addition and scalar multiplication are defined in the
following box. These geometric definitions wiil be seen later to be related to
the algebraic ones we studied earlier.

2 Strictly speaking, this definition does not make sense. The two directed line segments in Fig.
13.1.2 are clearly nor equal—that is, they are not identical. However, it is very convenient to have
the set of all directed line segments with the same magnitude and direction represent a single
geometric entity—a vector. A convenient way to do this is to regard two such segments as equal.
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uty (b)

Figure 13.1.5. The
geometric construction of
u-+v.

Figure 13.1.6. The product
ra.

Example 6

Figure 13.1.7. Find u +v,
3u, and —v.

Solution

Figure 13.1.8. To find 3u,
draw a vector in the same
direction as u, three times
as long; —v is a vector
having the same length as v,
pointing in the opposite
direction.

Example 7

Figure 13.1.9. Findu+v
and —2u.

13.1 Vectors in the Plane 649

Vector Addition and Scalar Multiplication

Addition. Let w and v be vectors. Their sum is the vector represented by
the arrow from the tail of u to the tip of v when the tail of v is placed at
the tip of u (Fig. 13.1.5).

Scalar Multiplication. Let u be a vector and r a number. The vector ru is
an arrow with length |7| times the length of u. It has the same direction
as wif r > 0 and the opposite direction if » < 0 (Fig. 13.1.6).

/
/A
%

In Fig. 13.1.7, which vector is (a) u + v2, (b) 3u?, (¢c) — v?

¥
Pt
———————-

w

Toh— V

N,

=

(a) To construct u + v, we represent u and v by directed line segments so that
the head of the first coincides with the tail of the second. We fill in the
third side of the triangle to obtain u + v (see Fig. 13.1.5(b)). Comparing
Fig. 13.1.5(b) with Fig. 13.1.7, we find that u + v = w.

(b) 3u=q (see Fig. 13.1.8).

(¢) —v=(—1)v=r(see Fig. 13.1.8). A

X

y -
3

Ju

Let u and v be the vectors shown in Fig. 13.1.9. Draw u + v and — 2u. What
are their components?

W——————
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Solution

Figure 13.1.10. Computing
u+vand —2u

Figure 13.1.11. The
geometry which relates
vector algebra to the
algebra of ordered pairs.

Figure 13.1.12. IHustrating
the identityu+v=v+mu
and the parallelogram law
of addition.

We place the tail of v at the tip of u to obtain the vector shown in Fig. 13.1.10.

The vector —2u, also shown, has length twice that of u and points in the
opposite direction. From the figure, we see that u + v has components (5,2)
and —2u has components (—6, —4). A

The results in Example 7 are illustrations of the following general rules which
relate the geometric operations on vectors to the algebra of ordered pairs.

Vectors and Ordered Pairs

Addition. If u has components (x,, y;) and v has components (x,, y,),
then u -+ v has components (x; + x,, y, + y,).

Scalar Multipliéation. If u has components (x, y), then ru has compo-
nents (rx, ry).

The statements in this box may be proved by plane geometry. For example,
the addition rule follows by an examination of Fig. 13.1.11(a), and the one for
scalar multiplication follows from the similarity of the triangles in Fig.
13.1.11(b).

¥

. u uty
Y
X

e — ~—— -
Ry X
ASt Y ryx

(a) ()]

ru

u

We can use the correspondence between ordered pairs and vectors to
transfer to vectors the identities we know for ordered pairs, such as u+v
= v + u. This identity can also be seen geometrically, as in Fig. 13.1.12, which
illustrates another geometrlc_lnterpretatlon of vector addition. To add u and v,
we choose representatives PQ and P PR having their tails at the same point P. If
we complete the figure to a parallelogram PQSR, then the diagonal PS
represents u + v. For this reason, physical quantities which combine by vector
addition are sometimes said to “obey the parallelogram law.”

If v and w are vectors, their difference v —w is the vector such that
(v—w)+w=v. It follows from the “triangle” construction of vector sums
that if we draw v and w with a common tail, v — w is represented by the
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Figure 13.1.13. Geometric
interpretation of vector
subtraction.

Figure 13.1.14.
PO=0Q~0P.

Example 8

Solution

13.1 Vectors in the Plane 651

directed line segment from the head of w to the head of v. (See Fig. 13.1.13.)
The components of v —w are obtained by subtracting the corresponding
ordered pairs. Since PQ =O0Q — OP (Fig. 13.1.14), we obtain the following.

Vectors and Directed Line Segments

If the point P has coordinates (x,, y;) and Q has coordinates (x,, y,),
then the vector PQ has components (x, — x;, y, — ¥1).

(a) Find the components of the vector from (3,5) to (4, 7).

(b) Add the vector v from (—1,0) to (2, —3) and the vector w from (2,0) to
1,1.

(c) Multiply the vector v in (b) by 8. If this vector is represented by the
directed line segment from (5, 6) to Q, what is Q?

(a) By the preceding box, we subtract the ordered pairs (4,7) — (3,5) = (1,2).

Thus the required components are (1,2).

(b) The vector v has components (2, —3) —(—1,0)=(3, —3) and w has

components (1,1) — (2,0) = (=1, 1). Therefore, the vector v + w has compo-

nents 3, =3)+ (-1, 1) =2, -2).

(c) The vector 8v has components 8(3, —3) = (24, —24). If this vector is

represented by the directed line segment from (5,6) to Q, and Q has coordi-

nates (x, y), then (x, y) —(5,6)=(24, —24), so (x,y)=(5,6)+ (24, —24)

= (29, -18). A

Exercises for Section 13.1

Complete the computations in Exercises 1-4. In Exercises 17-22, A, B, and C denote ordered pairs;

1. (L2)Y+@3, D=
3.3[(1L, D —2(3,00] =

O is the pair (0,0); if 4 =(xy,y;), then —4 =

2.(=2,6)-6(2, —10) = (=x;, —y)); and a and b are numbers. Show the fol-

4. 2[(8,6) — 42, - )] =

lowing,
Solve for the unknown quantities, if possible, in Exer- 17. A+ 0=4
cises 5-16. 18. A+(—-4)=0
19.(A+B)+C=A4+(B+C)
5. (LY+O, =13 20.A+B=B+ A4
6. r(7,3)=(14,6) 21. a(bd) = (ab)A4
7. a2, -1)=(6, —7) 22. (a+ B)A = ad + b4
8. (1,2)+ (x, y) = (3, 10)

ALY+ (8,4 =(3,4)

. Ba,b) + (b,a)=(1,1)
.a@Ba, )+ a(l,-1)=(1,0) = mSO, as an equation in ordered pairs.

23. Describe geometrically the set of all points with

C(6,2) + (=3)(x, y) =(—2x,1) coordinates of the form m(0, 1) + n(l, 1), where
. 03,a)=(3,a) m and n are integers. (A sketch will do.)

. 6(1,0) + (0, 1) = (6,2) 24. Describe geometrically the set of all points with
ca(l, D+ b1, -1 =(3,5) coordinates of the form m(0, 1) + r(1, 1), where
. (a, D)= (2,b)=(0,0) m is an integer and r is a real number.

25. (a) Write the chemical equation £SO;+ /S,
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26.

27.
28.

29.

30.

6—.—
54
44
34

14+

Chapter 13 Vectors

(b) Write the equation in part (a) as a pair of
simultaneous equations in k, /, and m.

(c) Solve the equation in part (b) for the smalil-
est positive integer values of k, /, and m.
Tlustrate the solution of Exercise 25 by a vector
diagram in the plane, with SO, S,, and SO,

represented as vectors.

In Fig. 13.1.15, which vector is (a) a — b?, (b) a?
In Fig. 13.1.15, find the number r such that
c—a=rb.

Trace Fig. 13.1.15 and draw the vectors (a) ¢ + d,
(b) —2e + a. What are their components?

Trace Fig. 13.1.15 and draw the vectors (a)
3(e — d), (b) — 3¢c. What are their components?

™~

e

a
— f -
1234567891011«

——
}
T

d

lb
I S L
— T T 7
5

Figure 13.1.15. Compute
with these vectors in
Exercises 27-30.

In Exercises 31-36, let u have components (2,1) and v
have components (1,2). Draw each of the indicated

vectors.
3l.u+v 32.u—v
33. 2u 34, —dv
35. 2u—4v 36. —u+2v
37. Let P =(2,1), @ =(3,3), and R = (4, 1) be points

38.

in the xy plane.

(a) Draw (on the same diagram) these vectors: v
joining P to Q; w joining Q to R; u joining
R to P.

(b) What are the components of v, w, and u?

(¢) Whatis v+ w+u?

Answer the questions in Exercise 37 for P =

(=2,-1),0=(—3,-3),and R=(—1, —4).

13.2 Vectors in Space

39. (a) Draw the vector v joining (1,0) to (1, 1).

(b) What are the components of v,?

(¢) Draw v, joining (1,0) to (1,3) and find the
components of v,.

(d) Draw the vector v, joining (1,0) to (1, —2).

(¢) What are the coordinates of an arbitrary
point on the vertical (that is, parallel to the y
axis) line through (1,0)?

(f) What are the components of the vector v
joining (1,0) to such a point?

. (a) Draw a vector v joining (—1, 1) to (1, 1).

(b) What are the components of v?

(c) Sketch the vectors v, = (—1,1)+ ¢v when
t=0,4% 1,3 and L.

(d) Describe, geometrically, the set of vectors
v, =(—1, 1) + tv, where ¢ takes on all values
between 0 and 1. (Assume that all the vec-
tors have their tails at the origin.)

. We say that v and w are linearly dependent if

there are numbers r and s, not both zero, such

that rv + sw = 0. Otherwise v and w are called

linearly independent.

(a) Are (0,0) and (1, 1) linearly dependent?

(b) Show that two non-zero vectors are linearly
dependent if and only if they are parallel.

(c) Letvand w be vectors in the plane given by

= (a,b) and w = (¢, d). Show that v and w
are linearly dependent if and only if ad
= bc. [Hint: For one implication, you might
use three cases: b0, d#0, and b=4d
=0.]

(d) Suppose that v and w are vectors in the
plane which are linearly independent. Show
that for any vector u in the plane there are
numbers x and y such that xv+ yw=u.

. Let P=(a,b) and Q =(c,d) be points in the

plane. (You may assume that 0 < a <c¢ and
b>d >0 to make the picture unambiguous.)
Compute the area of the parallelogram with ver-
tices at O, P, O, and P + Q. Comment on the
relationship between this and Exercise 41(d).

A vector in space has three components.

The plane is two-dimensional, but space is three-dimensional—that is, it
requires three numbers to specify the position of the point in space. For
instance, the location of a bird is specified not only by the two coordinates of
the point on the ground directly below it, but also by its height. Accordingly,
our algebraic model for space will be the set of triples (x, y,z) rather than

pairs of real numbers.

If one starts with abstract “space” as studied in elementary solid geome-
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z try, the first step in the introduction of coordinates is the choice of an origin O
and three directed lines, each perpendicular to the other two, called the x, y,
and z axes. We will usually draw figures in space with the axes oriented as in

o Fig. 13.2.1.

Think of the x axis as pointing toward you, out of the paper. Notice that
if you wrap the fingers of your right hand around the z axis, with your fingers
curling in the usual (counterclockwise) direction of rotation in the xy plane,

N\

x then your thumb points toward the positive z axis. For this reason, we say that
Figure 13.2.1. Coordinate the choice of axes obeys the right-hand rule. For example, the coordinate axes
axes in space. (a) and (d) in Fig. 13.2.2 obey the right-hand rule, but (b) and (c) do not.

(Think of all horizontal and vertical arrows as being in the plane of the paper,
while slanted arrows point out toward you.)

Figure 13.2.2. Which axes
obey the right-hand rule?

(b) ©)

Given a point P in space, drop a perpendicular from P to each of the
axes. By measuring the (directed) distance from the origin to the foot of each
of these perpendiculars, we obtain numbers (x, y,z) which we call the coordi-
nates of P (see Fig. 13.2.3).

If you cannot see the lines through P in Fig. 13.2.3 as being perpendicular
to the axis it may help to draw in some additional lines parallel to the axes,
using the convention that lines which are parallel to one another in space are
drawn parallel. This simple convention, sometimes called the rule of paralilel
projection, does not conform to ordinary rules of perspective (think of railroad
tracks “converging at infinity”), but it is reasonably accurate if your distance
from an object is great compared to the size of the object.

Now look at Fig. 13.2.4. Observe that the point Q, obtained by dropping
a perpendicular from P to the xy plane, has coordinates (x, y,0). Similarly,
the points R and S, obtained by dropping perpendiculars from P to the yz and
xz planes, have coordinates (0, y,z) and (x,0, z), respectively. The coordinates
of T, U, and V are (x,0,0), (0, y,0), and (0,0, z).

X
Figure 13.2.3. We obtain T
the coordinates of the point
P by dropping perpendicu-
lars to the x, y, and z axes. Figure 13.2.4. Lines which

are parallel in space are
drawn parallel.
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Example 1

Solution

Figure 13.2.5. Plotting the
point (1,2, —3).

Warning

Example 2

Solution

As in the plane, we can find the unique point which has a given ordered
triple (x, y,z) as its coordinates. To do so, we begin by finding the point
Q = (x, »,0) in the xy plane. By drawing a line through Q and parallel to the z
axis, we can locate the point P at a (directed) distance of z units from Q along
this line. The process just described can be carried out graphically, as in the
following example.

Plot the point (1,2, —3).

We begin by plotting (1,2,0) in the xy plane (Fig. 13.2.5(a)). Then we draw
the line through this point parallel to the z axis and measure 3 units
downward (Fig. 13.2.5(b)). A

24 Z{

T T T T 1

|
T

H
o
.
[39)
=
A
Ll
]
(3]
[=
=

(a) (b)

If you are given a picture consisting simply of three axes (with units of
measure) and a point, it is not possible to determine the coordinates of the
point from these data alone, since some information must be lost in making a
two-dimensional picture of the three-dimensional space. (See Review Exercise
86.)

Addition and scalar multiplication are defined for ordered triples just as for
pairs.

The Algebra of Ordered Triples

1. If (x,, y;,2,) and (x5, y,,2,) are ordered triples of real numbers, the
ordered triple (x, + Xy, yy + ¥,,z, + z,) is called their sum and is
denoted by (x, y;,2)) + (X3, 2,2y

2. If (x, y,z) is an ordered triple and r is a real number, the triple
(rx,ry,rz) is called the product of r and (x, y,z) and is denoted by

r(x, y,z).

Find 3,2, —2) + (=1, =2, — 1) and (=6)2, — 1, 1).

We have (3,2, —2)+(=1,-2,—1)=(3—1,2—2,-2- 1)=(2,0,—3) and
(=6)2,—-1,1)=(—12,6,-6). A
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Figure 13.2.6. The vector v
has components (x, y, z).

Example 3

Solution

Figure 13.2.7. Multiplying
(-1,1,2) by —2.

13.2 Vectors in Space 655

Now we look at vectors in space, the geometric objects which correspond to
ordered triples.

Vectors in Space

A vector in space is a directed line segment in space and is drawn as an
arrow. Two directed line segments will be regarded as equal when they
have the same length and direction.

Vectors are denoted by boldface symbols. The vector represented
by the arrow from a point P to a point Q is denoted P—Q’ If the arrows
from P, to Q, and P, to Q, represent the same vectors, we write

P1Q1=P2Q2-

Vectors in space are related to ordered triples as follows. We choose x, y, and
z axes and drop perpendiculars to the three axes. The directed distances
obtained are called the components of the vector (see Fig. 13.2.6).

z4

__________ A
/
/
z
\4
————— =
2 y
- Al
i/

Vector addition and scalar multiplication for vectors in space are defined
Just as in the plane. The student should reread the corresponding development
in Section 13.1, replacing the plane by space.

Vectors and Ordered Triples

1. The algebra of vectors corresponds to the algebra of ordered triples.
2. If P has coordin_at»es (x1, y1,2;) and Q has coordinates (x,, y,,z,),
then the vector PQ has components (x, — x,, y, — y;,2, — z,).

(a) Sketch —2v, where v has components (— 1, 1,2): (b) If v and w are any two
vectors, show that v — 1w and 3v — w are parallel.

(a) The vector —2v is twice as long as v but points in the opposite direction
(see Fig. 13.2.7). (b) v~ 1w = 1(3v — w); vectors which are multiples of one
another are parallel. A
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Example 4 Let v be the vector with components (3,2, —2) and let w be the vector from
the point (2, 1, 3) to the point (— 1,0, — 1). Find v + w. Illustrate with a sketch.

Solution Since w has components (—1,0, —1) — (2,1,3) = (=3, — 1, —4), we find that
v + w has components (3,2, —2) + (=3, — 1, —4) = (0, 1, —6), as illustrated in
Fig. 13.2.8. A

Figure 13.2.8. Adding
v=(3,2, —2) tow, the
vector from (2, 1,3) to
(__1’07_1). (0,1,-6)

To describe vectors in space, it is convenient to introduce three special vectors
along the x, y, and z axes.

i: the vector with components (1,0, 0);
j: the vector with components (0, 1,0);
k: the vector with components (0,0, 1).

These standard basis vectors are illustrated in Fig. 13.2.9. In the plane one has,
analogously, i and j with components (1,0) and (0, 1).

z

:(0,0,1)

(1,0,0) i

Figure 13.2.9. The standard
basis vectors. x

Now, let v be any vector, and let (a, b, ¢) be its components. Then
v=ai+ bj + ck,

since the right-hand side is given in components by
a(1,0,0) + 5(0,1,0) + ¢(0,0,1) = (a,0,0) + (0,5,0) + (0,0,¢) = (a,b,¢).

Thus we can express every vector as a sum of scalar multiples of i, j, and k.

The Standard Basis Vectors

1. The vectors i, j, and k are unit vectors along the three coordinate
axes, as shown in Fig. 13.2.9.
2. If v has components (a, b, ¢), then

v =ai+ bj+ ck.
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Example 5 (a) Express the.vector whose components are (e,7, —y3) in the standard
basis. (b) Express the vector v joining (2,0,1) to (3,m, —1) by using the
standard basis.

Solution (a) v=¢i + 7j — 3 k. (b) The vector v has components (3,7, —1) = (2,0,1)
=(—3,7 —=2),s0v=—li+7j—2k A

Now we turn to some physical applications of vectors.> A simple example of a
physical quantity represented by a vector is a displacement. Suppose that, on
a part of the earth’s surface small enough to be considered flat, we introduce
coordinates so that the x axis points east, the y axis points north, and the unit
of length is the kilometer. If we are at a point P and wish to get to a point 0,
the displacement vector u joining P to Q tells us the direction and distance we
have to travel. If x and y are the components of this vector, the displacement
of Q from P is “x kilometers east, y kilometers north.”

Example 6 Suppose that two navigators, who cannot see one another but can communi-
cate by radio, wish to determine the relative position of their ships. Explain
how they can do this if they can each determine their displacement vector to
the same lighthouse.

Solution Let P, and P, be the positions of the ships and Q be the position of the
lighthouse. The displacement of the lighthouse from the ith ship is the vector
u, joining P; to Q. The displacement of the second ship from the first is the
vector v joining P; to P,. We have v + u, = u; (Fig. 13.2.10), so v=1u, — u,.

"///
u

1
Do

Q

Figure 13.2.10. Vector

2
methods can be used to é\_

locate objects. — =

That is, the displacement from one ship to the other is the difference of the
displacements from the ships to the lighthouse. A

P w We can also represent the velocity of a moving object as a vector. For the
moment, we will consider only objects moving at uniform speed along straight

I

I

i 10 lines—the general case is discussed in Section 14.6. Suppose, for example, that

{ V2 a boat is steaming across a lake at 10 kilometers per hour in the northeast
Initial 0 - direction. After 1 hour of travel, the displacement is (10/y2 ,10/2) ~
position V2 ~(7.07,7.07) (see Fig. 13.2.11). The vector whose components are (10/42,
Figure 13.2.11. If an object 10 / V2 ) is called the velocity vector of the boat. In general, if an object is
moves northeast at 10 moving uniformly along a straight line, its velocity vector is the displacement
kilometers per hour, its vector from the position at any moment to the position 1 unit of time later. If a

velocity vector has

components (10/‘/2—’ 10/ \/7) " 3 Historical note: Many scientists resisted the use of vectors in favor of the more complicated
theory of quaternions until around 1900. The book which popularized vector methods was Vector
Analysis, by E. B. Wilson (reprinted by Dover in 1960), based on lectures of J. W. Gibbs at Yale
in 1899-1900. Wilson was reluctant to take Gibbs® course since he had just completed a full-year
course in quaternions at Harvard under J. M. Pierce, a champion of quaternionic methods, but
was forced by a dean to add the course to his program. (For more details, see M. J. Crowe, 4
History of Vector Analysis, University of Notre Dame Press, 1967.)
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Displacement
due to current

Displacement
due te
engine

Total
displacement

Figure 13.2.12. The total
displacement is the sum of
the displacements due to
the engine and the current.

Figure 13.2.13. The velocity
w of the wind can be
estimated by comparing the
“wingflap” velocity v with
the actual velocity v + w.

Figure 13.2.14. The
magnitude and direction of
electrical flow in the heart
are indicated by the cardiac
vector.

Example 7

Solution

Chapter 13 Vectors

current appears on the lake, moving due eastward at 2 kilometers per hour,
and the boat continues to point in the same direction with its engine running
at the same rate, its displacement after 1 hour will have components given by
(10/42 +2,10/y2). (See Fig. 13.2.12.) The new velocity vector, therefore, has
components (10/ V2 +2,10 / Y2). We note that this is the sum of the original
velocity vector (10/ V2,10 / y2) of the boat and the velocity vector (2,0) of the
current.

Similarly, consider a seagull which flies in calm air with velocity vector v.
If a wind comes up with velocity w and the seagull continues flying “the same
way,” its actual velocity will be v+ w. One can “see” the direction of the
vector v because it points along the “axis” of the seagull; by comparing the
direction of actual motion with the direction of v, you can get an idea of the
wind direction (see Fig. 13.2.13).

L

Another example comes from medicine. An electrocardiograph detects
the flow of electricity in the heart. Both the magnitude and the direction of the
net flow are of importance. This information can be summarized at every
instant by means of a vector called the cardiac vector. The motion of this
vector (see Fig. 13.2.14) gives physicians useful information about the heart’s
function.?

Tip of
cardiac vector
moving in space

‘ardiac
vector
at one moment

A bird is flying in a straight line with velocity vector 10i + 6j +k (in
kilometers per hour). Suppose that (x, y) are coordinates on the ground and z
is the height above the ground.

(a) If the bird is at position (1,2,3) at a certain moment, where is it 1 minute
later?
(b) How many seconds does it take the bird to climb 10 meters?

(a) The displacement vector from (1,2,3) is £5(10i,6j,k) = ¢i + {5j + &k, so
the new position is (1,2,3) + (1,4 &) =(11,24%,3)-

(b) After ¢ seconds (= #/3600 hours), the displacement vector from (1,2,3) is
(¢/3600)(10i + 6j + k) = (¢/360)i + (1/600)j + (¢/3600)k. The increase in al-
titude is the z component ¢/3600. This will equal 10 meters (= 5 kilometer)
when ¢/3600 = 1/100—that is, when ¢ = 36 seconds. A

4.See M. J. Goldman, Principles of Clinical Electrocardiography, 8th edition, Lange, 1973,
Chapters 14 and 19.
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Physical forces have magnitude and direction and may thus be represented by

vectors. If several forces act at once on an object, the resultant force is
represented by the sum of the individual force vectors. Suppose that forces
i+k and j+ k are acting on a body. What third force must we impose to
counteract these two—that is, to make the total force equal to zero?

Solution

The force v should be chosen so that (i + k) + (j + k) + v =0; that is v=

—({+k)— (+k)=—i—j— 2k. (Here 0 is the zero vector, the vector whose

components are all zero.) A

Exercises for Section 13.2

Plot the points in Exercises 1-4.

1. (1,0,0)
3.3, —1,5)

2. (0,2,4)
4.2, —1,9)

Complete the computations in Exercises 5-8.

5.

(6,0,5)+ (5,0,6) =

6. (0,0,0) + (0,0,0) =

0

N=4

1L

12.

(L35 +4(-1,-3,-5=
. (2,03 1)_ 8(3’ _%’%) =

. Sketch v, 2v, and —v, where v has components

(1,-1,—1).

. Sketch v, 3v, and — }v, where v has components

2,-10.

Let v have components (0, 1, 1) and w have com-
ponents (1,1,0). Find v + w and sketch.

Let v have components (2, —1,1) and w have
components (1, — 1, —1). Find v + w and sketch.

In Exercises 13-20, express the given vector in terms of
the standard basis.

13.
14.
15.
16.
17.
18.
19.
20.

21.

22.

The vector with components (— 1,2, 3).
The vector with components (0, 2, 2).
The vector with components (7,2, 3).
The vector with components (— 1,2, 7).
The vector from (0, 1,2) to (1,1, 1).
The vector from (3,0, 5) to (2,7, 6).
The vector from (1,0,0) to (2, — 1, 1).
The vector from (1,0,0) to (3, —2,2).

A ship at position (1,0) on a nautical chart (with
north in the positive y direction) sights a rock at
position (2,4). What is the vector joining the ship
to the rock? What angle does this vector make
with due north? This is called the bearing of the
rock from the ship.
Suppose that the ship in Exercise 21 is pointing
due north and travelling at a speed of 4 knots
relative to the water. There is a current flowing
due east at 1 knot. (The units on the chart are
nautical miles; 1 knot=1 nautical mile per
hour.)
(a) If there were no current, what vector u
would represent the velocity of the ship rela-
tive to the sea bottom?

23.

24.

25.

26.

(b) If the ship were just drifting with the cur-
rent, what vector v would represent its veloc-
ity relative to the sea bottom?

(¢) What vector w represents the total velocity
of the ship?

(d) Where would the ship be after 1 hour?

(e) Should the captain change course?

(f) What if the rock were an iceberg?

An airplane is located at position (3, 4, 5) at noon

and travelling with velocity 400i + 500§ — k kilo-

meters per hour. The pilot spots an airport at

position (23,29, 0).

(a) At what time will the plane pass directly
over the airport? (Assume that the earth is
flat and that the vector k points straight up.)

(b) How high above the airport will the plane
be when it passes?

The wind velocity v, is 40 miles per hour from

east to west while an airplane travels with air

speed v, of 100 miles per hour due north. The
speed of the airplane relative to the earth is the

vector sum v, + v,.

(a) Find v; +v,.

(b) Draw a figure to scale.

A force of 50 Ibs is directed 50° above horizon-

tal, pointing to the right. Determine its horizontal

and vertical components. Display all results in a

figure.

Two persons pull horizontally on ropes attached

to a post, the angle between the ropes being 60°.

A pulls with a force of 150 Ibs, while B pulls with

a force of 110 lbs.

(a) The resultant force is the vector sum of the
two forces in a conveniently chosen coordi-
nate system. Draw a figure to scale which
graphically represents the three forces.

(b) Using trigonometry, determine formulas for
the vector components of the two forces in a
conveniently chosen coordinate system. Per-
form the algebraic addition, and. find the
angle the resultant force makes with A.

27. What restrictions must be placed on x, y, and z

so that the triple (x, y,z) will represent a point
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on the y axis? On the z axis? In the xp plane? In
the xz plane?
28. Plot on one set of axes the eight points of the
form (a, b, c), where a, b, and ¢ are each equal to
1 or —1. Of what geometric figure are these the
vertices?
29. Let u= 2i + 3j + k. Sketch the vectors u, 2u, and
—3u on the same set of axes.
In Exercises 30-34, consider the vectors v = 3i + 4j +
5k and w=1i— j+ k. Express the given vector in terms

of i, j and k.
30 v+ w 31. 3y
32. 2w 33. 6v + 8w

34. the vector u from the tip of w to the tip of v.
(Assume that the tails of w and v are at the same
point.)

In Exercises 35-37, let v=1i+j and w= —i+ j. Find
numbers a and b such that av + bw is the given vector.

35. i 36. j 37. 3i+7j

38. Let u=i+j+k, v=i+j and w=1i Given
numbers r, 5, and ¢, find a, b, and ¢ such that
au+ by + cw = ri+ sj+ tk.

39. A 1-kilogram mass located at the origin is sus-
pended by ropes attached to the points (1,1, 1)
and (—1, —1,1). If the force of gravity is point-
ing in the direction of the vector —k, what is the
vector describing the force along each rope?
[Hint: Use the symmetry of the problem. A
I-kilogram mass weighs 9.8 newtons.]

40. Write the chemical equation CO + H,0 = H, +
CO, as an equation in ordered triples, and illus-
trate it by a vector diagram in space.

41. (a) Write the chemical equation pC;H,O; +

q0, = rCO, + sH,O as an equation in or-
dered triples with unknown coefficients 7 q,
r, and s.

13.3 Lines and Distance

(b) Find the smallest integer solution for p, q, r,
and s.

(c) Ilustrate the solution by a vector diagram in
space.

42. Suppose that the cardiac vector is given by

costi + sinzj + k at time .

(@) Draw the cardiac vector for t =0, 7 /4,7 /2,
3n/4,7,57 /4,37 /2,77 /4, 27.

(b) Describe the motion of the tip of the cardiac
vector in space if the tail is fixed at the
origin.

*43. Let P, =(1,0,0)+ ¢(2,1,1), where ¢ is a real
number.

(a) Compute the coordinates of P, for t = —1,
0, 1, and 2.

(b) Sketch these four points on the same set of
axes.

(¢) Try to describe geometrically the set of all
the P,.

*44. The z coordinate of the point P in Fig. 13.2.15 is

3. What are the x and y coordinates?

z

[ ¥

* T
Figure 13.2.15. Let
P =(x, y,3). What are x
and y?

Algebraic operations on vectors can be used to solve geometric problems.

In this section we apply the algebra of vectors to the description of lines and
planes in space and to the solution of other geometric problems.

The invention of analytic geometry made it possible to solve geometric
problems in the plane or space by reducing them to algebraic problems
involving number pairs or triples. Vector methods also convert geometric
problems to algebraic ones; moreover, the vector calculations are often
simpler than those from analytic geometry, since we do not need to write

down all the components.

Example 1
other.

Solution

Use vector methods to prove that the diagonals of a parallelogram bisect each

Let PORS be the parallelogram, w the vector PQ and v the vector PS (see Fig.
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Figure 13.3.1. The
diagonals of a parallelo-
gram bisect each other.

Example 2

Solution

Figure 13.3.2. The point U
is one-third of the way from
O to the midpoint of the
face PSQT.

Example 3

Solution

Figure 13.3.3. The figure
obtained by joining the
midpoints of successive
sides of PQRS is the
parallelogram JKLM.

13.3 Lines and Distance 661

13.3.1). Since PQRS is a parallelogram, v + w is the vector PR.

The vector joining P to the midpoint M, of the diagonal PR is thus
3(v + w). On the other hand, the vector Q8 is v — w, so the vector joining Q
to the midpoint M, of the diagonal QS is 1 (v — w).

To show that the diagonals bisect each other, it is enough to show that
the midpoints M, and M, are the same. The vector PM, is the sum

wtiv—w)=w+iv—lw=w—-1lw+ly

=iw+iv=4(v+w)

which is the same as the vector PM|. It follows that M, and M, are the same
point. A

Consider the cube in space with vertices at (0,0,0), (1,0,0), (1,1,0), (0,1,0),
0,0,1), (1,0, 1), (1,1, 1), and (0, 1, 1). Use vector methods to locate the point
one-third of the way from the origin to the middle of the face whose verfices
are (0,1,0), (0,1,1), (1,1,1), and (1, 1,0).

Refer to Fig. 13.3.2. The vector OPis j» and vector O_Q>is i + j + k. The vector

z

X

P_Q'is the difference i + j + k — j = i + k; the vector joining P to the midpoint
R of PQ (and hence of the face PSQT) is one-half of this, that is, 1(i + k); the
vector OR is then j+ 13 +Kk), and the vector joining O to the point U
one-third of the way from O to R is {[j+i({i+Kk)]=1j+1li+ k=
li+ 1j+ Lk It follows that the coordinates of U are (£,3,5). A

Prove that the figure obtained by joining the midpoints of successive sides of
any quadrilateral is a parallelogram.

—

Refer to Fig. 13.3.3. Let PQRS be the quadrilateral, v =ﬁ9: w =:S’7(>, t=PQ,

and u =@€ The vector a from the midpoint J of PS to the midpoint K of SR
satisfies 1v+a=v+ jw; solving for a gives a=iv+1w=1(v+w). Simi-
larly, the vector b from the midpoint M of PQ to the midpoint L of QR
satisfies jt+b=t+ lu,sob=1t+lu=1(t+u).
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Figure 13.3.4. Since P, Q,
and R lie on a line, the
vector w — u is a multiple of
V-

Example 4

Solution

Figure 13.3.5. If the line
through P and R has the
direction of the vector d,
then the vector from P to R
is a multiple of d.

To show that JKLM is a parallelogram, it suffices to show that the
vectors a and b are equal, but v + w =t + u, since both sides are equal to the
vector from Pto R,soa=1(v+w)=1(t+u)=b. A

In Section R4 we discussed the equations of lines in the plane. These
equations can be conveniently described in terms of vectors, and this descrip-
tion is equally applicable whether the line is the plane or in space. We will
now find such equations in parametric form (see Section 10.4 for a discussion
of parametric curves).

Suppose that we wish to find the equation of the line / passing thrth>
the two points P and Q. Let O be the origin and let u and v be the vectors OP
and 0Q as in Fig. 13.3.4. Let R be an arbitrarHoint on / and let w be the
vector OR. Since R is on /, the vector w — u = PR is a multiple of the vector
v—u =?_Q’—that is, w — u = t(v — u) for some number ¢. This gives w=u+
tv—u)=(1 - Hu+ tv.

The coordinates of the points P, @, and R are the same as the compo-
nents of the vectors u, v, and w, so we obtain the parametric equation
R=(1—-1)P + tQ for the line /.

Parametric Equation of a Line:
Point-Point Form

The equation of the line / through the points P =(x,, y;,2z,) and
Q = (X3, y,2)) s

R=(1-1)P+1Q.
In coordinate form, one has the three equations

x=(1-0Hx; +tx,,

y=({-n+t,,

z=(1—1)z + tz,,

where R = (x, y,z) is the typical point of /, and the parameter ¢ takes on
all real values.

Find the equation of the line through (2,1, —3) and (6, — 1, —5).
We have P=(2,1,—3) and Q = (6, — 1, —5), so
(%, ,2)=R=(1—-0HP+1tQ=(1—-1)21,-3)+ (6, — 1, =5)
=(2-2t,1—-1t,-3+36)+ (6t,— t, —5¢)
=(2+41,1-2t,-3-2)
or, since corresponding entries of equal ordered triples are equal,
x=2+4, y=1-2t, z=-3-2LA
We can also ask for the equation of the line which passes through a given
point P in the direction of a given vector d. A point R lies on the line (see Fig.
13.3.5) if and only if the vector PR is a multiple of d. Thus we can describe ali
points R on the line by PR = td for some numﬂ t. As t varies, R moves on
the line; when ¢ = 0, R coincides with P. Since PR =ﬁ'—'(—)7”, we can rewrite

the equation as OR =0P + td. This reasoning leads to the following conclu-
sion.
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Example 5

Solution

Example 6

Solution

13.3 Lines and Distance 663

Parametric Equation of a Line:
Point-Direction Form

The equation of the line through the point P = (x,, yo,2o) and pointing
in the direction of the vector d = ai + bj + ck is PR =1d or equiva-
lently OR =0P + 1.

In coordinate form, the equations are

X = xo+ at,
y=y,+ bt,
z=2zp+

where R = (x, y,z) is the typical point on / and the parameter 7 takes on
all real values.

For lines in the xy plane, the z component is not present; otherwise, the results
are the same.

(a) Find the equations of the line in space through the point (3, — 1,2) in the
direction 2i — 3j + 4k.
(b) Find the equation of the line in the plane through the point (1, —6) in the
direction of 5i — 7j.
(c) In what direction does the line x = —3r+2, y=-2(t—1), z=8t+2
point?
(a) Here P = (3, —1,2) = (X, Y- Zo) and d = 2i — 3j + 4k, soa=2,b = -3, and
¢ = 4. Thus the equations are
x=3+2t, y=—1-=-3¢ z=2+4t.
(b) Here P = (1, —6) and d = 5i — 7j, so the line is
R=(1,-6)+ (5t,—mt)=(1+51, -6 — =)
or
x=14+51 y=-6-a1
(c) Using the preceding box, we construct the direction d = ai + bj + ck from
the coefficients of f: a= —3, b= —2, ¢ = 8. Thus the line points in the
direction of d= —3i — 2j + 8k. A

(a) Do the lines R, = (¢, —6¢ + 1,2t — 8) and R, = (31 + 1,21,0) intersect?
(b) Find the “equation” of the line segment between (1,1,1) and (2, 1,2).

(a) If the lines intersect, there must be numbers ¢, and #, such that the
corresponding points are equal: (¢,, —67, + 1,21, — 8) = (31, + 1,21,,0); that
is,

t=3t+1,
—6t,+1=21,,
2, —8=0.

From the third equation we have ¢, = 4. The first equation then becomes
4 =31+ 1 or t, = 1. We must check whether these values satisfy the middle
equation:

? .
61,4+ 1=21,, ie,

Copyright 1985 Springer-Verlag. All rights reserved



664 Chapter 13 Vectors

Figure 13.3.6.

[OP| =va®+ b? + 2.

Example 7

Solution

Figure 13.3.7. The law of
cosines applied to vectors.

—6-4+1=2-1, ie,
—24+122.

The answer is no; the lines do not intersect.

(b) The line through (1,1,1) and (2,1,2) is described in parametric form by
R=(1-0(1,1,1)+1¢2,1,2)=(1+t,1,1 + t), as ¢ takes on all real values.
The point R lies between (1,1, 1) and (2, 1,2) only when 0 < ¢ < 1, so the line
segment is described by R=(1+1,1,1+1),0<t< 1. &

Since all the line segments representing a given vector v = ai + bj + ck have
the same length, we may define the length of v to be the length of any of tlﬁﬂ:
segments. To calculate the length of v, it is convenient to use the segment OP,
where P = (a,b,c), so that the length of v is just the distance from (0, 0,0) to
(a,b,c). We apply the Pythagorean theorem twice to calculate this distance.
(See Fig. 13.3.6.) Let Q =(a,b,0) and R =(a,0,0). Then |OR|=|a| and
|RQ| = |b|, so |0Q|=Ya*+ b*>. Now | QP|=|c|, so applying Pythagoras’
theorem again, this time to the right triangle OQP, we obtain |OP|=
Va® + b* + ¢>. We denote the length of a vector v by ||v||; it is sometimes
called the magnitude of v as well.

Z 4

P=(a,b,c)

R =(a,0,0) Y

/» 0=1(a,b,0)

X

Length of a Vector

The length ||v|| of a vector v is the square root of the sum of the squares
of the components of v:

||ai + bj + ck|| =Va® + b% + 2 .

(a) Find the length of v=2i— 6j+ 7k. (b) Find the values of ¢ for which
IH+j+ ck|| =4.

(@) [[v] =22+ (= 6)2+ T2 =/4+36 + 49 =89 ~9.434.

(b) We have [li+ j+ ck|| =y1 + 1+ ¢ =y2 + ¢2. This equals 4 when 2 + ¢?
=16, or c= +y14. A

Some basic properties of length may be deduced from the law of cosines (see
Section 5.1 for its proof). In terms of vectors, the law of cosines states that

1w = VI = [VII* + [wil* = 2]vil[|w]/cos,

where 6 is the angle between the vectors v and w, 0 < 8 < 7. (See Fig. 13.3.7)
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Solution

Figure 13.3.8. Illustrating
the inequality
flu = vi| < jju—wij+{w—v].

13.3 Lines and Distance 665

In particular, since cosf < 1, we get
[[w = vII> = ([w]]* + {]vi]* = 2[|v]j[|w]|cos 8
> {Iwil? + [IvI> = 2[villiwl]

= (Iwll = IIvIly*

Takihg square roots and remembering that \,/x_2 = |x|, we get
W —vI| > [Iwll = [Ivl]]-
Hence
= (lw = Il < [Iwll = [Ivl] < [[w = V]|
In particular, from the right-hand inequality, we get
(Wil < flw = vI| + [|v]|.
That is, the length of one side of a triangle is less than or equal to the sum of

the lengths of the other sides. If we write u=w — v, then w=u+v, and the
inequality above takes the useful form

[+ v < [lul] + [Iv]i,

which is called the triangle inequality.
The relation between length and scalar multiplication is given by

([l = [l [}v]]
since, if v = ai + bj + ck, then

lrv]| = \/(ra)2 + (rb)’ + (rc2 =\ @ + b2 + & = |r|Iv].

Properties of Length

If u, v, and w are any vectors and r is any number:

(1) v > 05
(2) ||uj| = 0 if and only if u = 0;
3 lirufl = |r[|luli;

@) [Ja+vi| < luf +{lv];
@) |lw— vl > [[Iw]| = [Ivil]-

} Triangle inequality

(a) Verify the triangle inequality (4) foru=1i+jand v=2i+j+k.
(b) Prove that |ju— v|| < |ju—w|} + ||w — v|| for any vectors u,v,w. Illustrate
with a figure in which u, v, and w are drawn with the same base point, that is,

the same “tail.”

(a) Wehaveu+v=3i+2j+k so [u+v|=y9+4+1 =/14. On the other
hand, |jul| =v2 and ||v|| =6, so the triangle inequality asserts that 14 <
V2 +4/6 . This is indeed true, since 14 ~3.74, while 2 + /6 ~ 1.41 + 2.45 =
3.86.

(b) We find that u— v =(u—w)+ (w—v), so the result follows from the
triangle inequality with u replaced by u — w and v replaced by w — v. Geomet-
rically, we are considering the shaded triangle in Fig. 13.3.8. A

The length of a vector can have interpretations other than the geometric one
given above. For example, suppose that an object is moving uniformly along a
straight line. What physical quantity is represented by the length of its velocity
vector? To answer this, let v be the velocity vector. The displacement vector
from its position P at any time to its position Q, ¢ units of time later, is fv. The
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Example 9

Solution

w

Figure 13.3.9. The vectors
u, v, and w are represented
by the sides of an
equilateral traingle.

Example 10

Solution

distance between P and Q is then |f|||v||, so the length ||v|| of the velocity
vector represents the ratio of distance travelled to elapsed time—it is called the
speed.

A vector u is called a unit vector if its length is equal to 1. If v is any
nonzero vector, ||v|| s 0 then we can obtain a unit vector pointing in the
direction of v by taking u = (1/|jv||)v. In fact,

=L =
v [[vil = 1.

We call u the normalization of v.

[ufl =

1
—V
IM ‘

(a) Normalize v = 2i + 3j — 1k. (b) Find unit vectors u, v, and w in the plane
such that u + v=w.

(a) We have |v|| =22+ 3%+ 1/2% = (1/2)y/53, so the normalization of v is
=1 4 6 - Lk
V53 © 53

V= i+
MY &

(b) A triangle whose sides represent u, v, and w must be equilateral as in Fig.
13.3.9. Knowing this, we may take w =1, u=1i+ (3 /2)j, v= 1i— (3 /2)j.
Check that |ju] = ||v|| = |w|| =l and thatu + v =w. A

Finally, we can use the formula for the length of vectors to obtain a formula
for the distance between any two points in space. If P, =(x,, y,,z,) and

P, =(x3, y;,2,), then the distance between P, and P, is the length of the
vector from P, to Py; that is,

| PP, = l(x1 = x)i+ (yy = y2)i + (21 — )k

=i = X+ (=) + (2 - 2

Distance Formuia

If P, has coordinates (x,, y,,z,) and P, has coordinates (x,, y,,z,), then
the distance between P, and P, is

V= %)+ (= 72) + (21— 22

(a) Find the distance between (2, 1,0) and (3, —2, 6).
(b) Let P, = ¢(1,1,1).
(i) What is the distance from P, to (3,0,0)?
(ii)) For what value of ¢ is the distance shortest?
(iii) What is the shortest distance?

(a) The distance is

\/(2—3)2+[1 — (=) + -6y =\/(—1)2+32+(—6)2
=VT+9+36 =46 .

(b) (i) By the distance formula, the distance is
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13.3 Lines and Distance 667

\/(t 3+ (t - 0)* + (‘t -0y’

=V —61+9+ 12+ 2 =37 —61+9 .
(i) The distance is shortest when 3¢% — 6¢ + 9 is least-—that is, when
(d/dNBt? ~6t+9)=61—6=0,0rt=1.
(iii) For 7 =1, the distance in (i) is V6 . A

Exercises for Section 13.3

Use vector methods in Exercises 1-6.

1.

10.
Write

Show that the line segment joining the midpoints
of two sides of a triangle is parallel to and has
half of the length of the third side.

. Prove that the medians of the triangle intersect in

a point two-thirds of the way along any median
from a vertex to the midpoint of the opposite
side.

. Prove that if POR is a triangle in space and

b >0 is a number, then there is a triangle with
sides parallel to those of POR and side lengths b
times those of PQOR.

. Prove that if the corresponding sides of two

triangles are parallel, then the lengths of corre-
sponding sides have a common ratio. (Assume
that the triangles are not degenerated into lines.)

. Find the point in the plane two-thirds of the way

from the origin to the midpoint of the line seg-
ment between (1, 1} and (2, —2).

. Let P=(3,5,2) and Q = (2,5, 3). Find the point

R such that Q is the midpoint of the line seg-
ment PR.
equations for the lines in Exercises 7-10.

. The line through (1,1, 0) and (0,0, 1).
. The line through (2,0,0) and (0, 1, 0).
. The line through (0,0,0) and (1,1, 1).

The line through (—1, —1,0) and (1,8, —4).
parametric equations for the lines in Exercises

11-14.

11.

12.
13.

14.

15.

16.

17.

i8.

The line through the point (1, 1,0) in the direc-
tion of vector —i — j + k.

The line through (0, 1,0) in the direction j.

The line in the plane through (—1, ~2) and in
direction 3i — 2j.

The line in the plane through (2, —1) and in
direction —i —j.

At what point does the line through (0, 1,2) with
direction i + j + k cross the xy plane?

Where does the line through (3,4, 5) and (6,7, 8)
meet the yz plane?

Do the lines given by R, =(¢,3¢—1,4¢) and
Ry =(31,5,1 — 1) intersect?

Find the unique value of ¢ for which the lines
Ry=(t, =61+ c,2t—8) and R, =31+ 1,24,0)
intersect. :

Compute the length of the vectors in Exercises 19-24,

19.
2L
23.

25.
26.
27.
28.
29.
30.

31

32.

33
34

i+j+k 20. 2i+j
itk 22. 3i+4j
2i + 2k 24.i—-j—3k
For what a is ||ai — 3j + k|| = 16?

For what b is ||i — bj + 2k]| = 37

Verify the triangle inequality for the vectors in
Exercises 19 and 21.

Verify the triangle inequality for the vectors in
Exercises 20 and 22.

Find unit vectors u, v, and w in the plane such
thatu+2v+ w=0.

Find unit vectors u, v, w, and z in the plane such
thatu+v+w+z=0.

Show that (0,0,1) (0,1,0), and (1,0,0) are the
vertices of an equilateral triangle. How long is
each side?

Find an equilateral triangle in space which
shares just one side with the one in Exercise 31.
Normalize the vectors in Exercises 19 and 21.
Normalize the vectors in Exercises 20 and 22.

Find the distance between the pairs of points in Exer-
cises 35--38.

35.
37.

39.

40.

41.

42.

%43,

(1,1,3) and (2,2,2)

(1,1,2) and (1,2,3)

Let P, =1(3,2,1).
(i) What is the distance from P, to (2,0, 0)?

(i) For what value of ¢ is the distance shortest?

(iii) What is that shortest distance?

Draw a figure, similar to Fig. 13.3.6, to illustrate

the distance formula on p. 666.

A boat whose top speed in still water is 12 knots

points north and steams at full power. If there is

an eastward current of 5 knots, what is the speed

of the boat?

A ship starting at (0, 0) proceeds at a speed of 10

knots directly toward a buoy located at (3,4).

(The chart is measured in nautical miles; a knot

equals 1 nautical mile per hour.)

(a) What is the ship’s point of closest approach

to a rock located at (2,2)?

(b) After how long does it reach this point?

(c) How far is this point from the rock?

Derive the point-point form of the equation of a

line obtained in Section R.4 from the parametric

36. (2,0,0) and (2, 1,2)
38. (1,2,3) and (3,2, 1)
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Chapter 13 Vectors

form obtained in this section. Comment on the
case in which x, = x,.

Derive the point-direction form for the paramet-
eric equation of a line from the point-point form.
[Hint: If a line through P is to have direction d,
what other point must lie on the line?]

When does equality hold in the triangle inequal-
ity? (You might try using the law of cosines as
was done in the text.) Test your conclusion on
the vectors in Exercises 21 and 23.

The potential ¥ produced at (x, y,z) by charges
g, and ¢, of opposite sign placed at distances x,
and x, from the origin along the x axis is given
by

13.4 The Dot Product

q1 92
= + .
dmegllr —1y||  Amegl|r — 1|

In this formula, r is the vector from the origin to

the point (x, y,z). The vectors r; and r, are

vectors from the origin to the respective charges

q, and q,. . .

(a) Express the formula for ¥ entirely in terms
of the scalar quantities x, y,z,x;,%;3,4,
q2,€p-

(b) Show that the locus of points (x, y,z) for
which V=0 is a plane or a sphere whose
radius is |q;92(x; — x2)/(¢q1 — ¢3)| and
whose center is on the x axis or is a plane.

The dot product of two unit vectors is the cosine of the angle between them.

To introduce the dot product, we will calculate the angle # between two
vectors in terms of the components of the vectors.
If v, and v, are two vectors, we have seen (Fig. 13.3.7) that

llv, — V1”2 = ||V1“2 + HV2”2 = 2| [}¥,]|cos b,

where @ is the angle between v, and v2; 0 < 8 < 7. Therefore,

20wl Ivallcos 8 = [fvyI* + [|vali® — [va — v,1” )

If vi=ai+ bjj+ ck and v, = a,i + byj + c,k, then the right-hand side of

equation (1) is

(a12 + b7 + cf) + (a§ + b3 + c%) - [(a1 — @)’ + (by — b))’ + (¢ — cz)z]

=2(aja, + b\b, + c|cy).

Thus we have proved that

(V1] {|v,llcos @ = aya, + b,by + cyc, . (2)

This very convenient formula enables us to compute cos# and hence #; thus
the quantity on the right-hand side deserves a special name. If v, = a,i +
bj+ ck and v, = a,i + b,j + ¢,k are two vectors, the number a,a, + b,b, +
c\c, is called their dof product and is denoted by v, - v,. The dot product in the
plane is defined analogously; just think of ¢, and ¢, as being zero.

Notice that the dot product of two vectors is a number, not a vector. It is
sometimes called the scalar product (do not confuse this with scalar multiplica-

tion) or the inner product.

Example 1

(@ v, =3i+j—2kandv,=1i—-j+Kk, calculate v, - v,.

(b) Calculate (2i + j — k) - (3k — 2j).

Solution (a)v, v,=3-14+1-(=1)+(=2)-1=3-1-2=0.
M) Qi+j-k-Ck—2)=Qi+j-k - -0i—2j+3k)=2-0—-1-2—1-3

- -5 A

Combining formula (2) with the definition of the dot product gives

Vil vallcos = vy - vy,

&)

where 8 is the angle between v, and v,.
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Example 2

Solution

13.4 The Dot Product 669

We may solve (3) for cos# to obtain the formula
ViV,

cosf=—=_ -
vyl fivall

.v2

ie., 0=cos_‘(—L)if v;#0 and v,#0.
_ v all [Iv2l

(a) Find the angle between the vectors i + j + k and i+ j—k. (b) Find the
angle between 3i+j— 2k and i — j + k.

(@) Let vy=i+j+k and v,=i+j—k Then |lv,| =3, |v,]=/3, and
Vi*va=1-1+1-1-1-1=1. Hence cosf=1, so §=cos™!(1)~1.23
radians (70°32").
(b) From Example 1(a), Gi+j—2k)-(i—j+k) =0, so cosd =0 and hence
O=u/2. A
From (3) we get

V1 Vol = [y [V [cos 8.
However, |cosf| < 1, so we have

Ve« Yol < vilf (v,
This is a useful inequality called the Schwarz inequality (and sometimes the

Cauchy—Schwarz—Buniakowski inequality).
From either (2) or (3), we notice that if v = ai + bj + ck, then

vev=al+ b2+ 2= ||y~

Since two nonzero vectors are perpendicular when 6 = 7/2—that is,
when cos# = 0—we have an algebraic test for perpendicularity: the nonzero
vectors v, and v, are perpendicular when v, - v, = 0. (We adopt the convention

that the zero vector is perpendicular to every vector.) The synonyms “or-
thogonal” or “normal” are also used for “perpendicular.”

The Dot Product
Algebraic definition:
(aii+ byj+ c k) (ayi + byj + c,)k) = aja, + b b, + cic, .
Geometric interpretation:
i+ ¥y = lvi] {]v]|cos 8,
where 6 is the angle between v, and v,, 0 < # < «. In particular,
VP =v-v.
Properties:
. u-u > 0 for any vector u.
u-u=0onlyifu=0.
u-v=v-u
L@tV rw=t-w+v-w
. (au)-v=a(u-v).
lu-v| < [Juj] ||v|| (Schwarz inequality).
u and v are perpendicular when u-v = 0.

N N
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Example 3
Solution

Figure 13.4.1. There are
two unit vectors orthogonal
to i — 3j.

Example 4

Solution

Figure 13.4.2. The vector
v—w=(v-u/u-wuis the
orthogonal projection of v
on u.

Figure 13.4.3. The
orthogonal projection of v
on u equals — fu.

Copyright 1985 Springer-Verlag.

Find a unit vector in the plane which is orthogonal to v =1i — 3j.

If w = ai + bj is perpendicular to i — 3j, we must have 0 = v+ w = a — 3b; that
is, @ = 3b. If w is to be a unit vector, we must also have 1 = a*> + b= (3b)Y +
b?=10b?% so b= +1/y10 and a= +3/y10. Thus there are two possible
solutions: (£1/y10)(3i + j). (See Fig. 13.4.1.) A

i—3j

Let u and v be vectors in the plane; assume that u is nonzero.

(a) Show that w=v — (v-u/u - uu is orthogonal to u.

(b) Sketch the vectors u, v, w, and v — w. The vector v —w= (v -u/u-uu is
called the orthogonal projection of v on u. Why?

(c) Find the orthogonal projection of i + j on i — 2j.

(a) We compute

cw=u-{yv— YU
u-w=u (v T u u).
By the algebraic properties of the dot product, this is equal to

y-u

u'v——u-u=u'v—v-u=0,
u-u

so u+-w =0 and w is orthogonal to u.
(b) We note that v — w = (v u/u-uu is a multiple of u. Thus the configura-
tion of vectors must be as in Fig. 13.42. The vector v —w is called the
orthogonal projection of v on u because it is obtained by dropping a perpendic-
ular from the “tip” of v to the line determined by u. (The base points of u and
v must be the same for this construction.)
(c) With u=1i— 2j and v =i + j, the orthogonal projection of v on u is
u-y
u-u
(See Fig. 13.4.3.) &

We can use the dot product to find the distance from a point Q = (x,, y,,z;)
to the line / which passes through a point P = (xy, y,,Zo) and has the direction
d = ai + bj + ck. Indeed, in Fig. 13.4.4 the distance from Q to the line is the

—1=2Gi-2)= - 1i-2)

\ Q=(x1,y1,zl)

-
e

Orthogonal
projection

ofvonu d=aitbj+ck

P= (XQ,J’(),Z())

Figure 13.44. || QR'H is the
distance from Q to /.

All rights reserved



dist( Q,/) = {(xl - xo)2 + —yO)2 +(z,— 20)2 -

Example 5

Solution

Figure 13.4.5. The plane &
is perpendicular to the
vector n.

Example 6

Solution

13.4 The Dot Product 671

distance between Q and R, where R is chosen on / in such a way that PR and
Qk' are orthogonal. Then PR is the orthogonal projection of PQ on the line /.
Thus, by Example 4,

PO - a(x;— xo)+ b(y, — y,) + ¢c(z, — z
E = PQ dd= (* 0) (1= >0) (21— 29) d
d-d a’+ b+ ¢?

By Pythagoras® theorem, |RQ]| = y|[Pg]® — |PR|]> which gives

[a(x, = xo) + B(y1 — yo) + (21~ 2) |’
a*+ b2+ 2

1/2

4)

as the distance from Q to the line /.

Find the distance from (1,1,2) to the line through (2,0,0) in the direction
(1/V2)i — (1 /¥2)j.
In formula (4), we set (x,, y;,z,) =(1,1,2), (x,, Y0, 20) = (2,0,0) and obtain
a,b,c from ai+ bj+ ck=(1/V2)i—(1/V2)j to be a=1/y2, b= —1/2,
¢ =0. Thus,

2 172
La-29-L1

dist( Q,/) =<(1 -2+ 12+ 22 - 2 V2

+

[N
N =

=(6-2)'?=2. A

The dot product makes it simple to determine the equation of a plane.
Suppose that a plane & passes through a point Py = (x,, yo,2,) and is
perpendicular to a vector n = Ai + Bj + Ck. (See Fig. 13.4.5.)

Let P = (x, y,2) be a point on &. Then n must be perpendicular to the
vector v from P, to P; thatis,n-v=0, or

(Ai+ Bj+ Cky-[(x = x)i + (¥ — yo)i + (z — z)k ] = 0.
Hence

A(x = xg) + B(y — po) + C(z — zp) = 0.

We call n the normal vector of the plane. If we let D = —(Ax, + By, + Cz),
the equation of the plane becomes

Ax+ By+ Cz+ D=0.

Find the equation of the plane through (1, 1, 1) with normal vector 2i + j — 2k.
Here Ai+ Bj+ Ck =2i+j— 2k, and (%9, Yo, 20) = (1,1, 1), so we get
A(x=1)+ B(y— 1)+ C(z~1)=0.
Hence
Ax-DH+(y-1H—-2(z-1)=0,
2x+y—2z=1 A
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Example 7

Solution

Figure 13.4.6. The plane
Ix+y—z=10.

Example 8

Solution

Find a unit normal vector to the plane 3x + y — z = 10. Sketch the plane.

A normal vector is obtained by making a vector out of the coefficients of x, y,
and z; that is, (3,1, — 1). Normalizing, we get

B, L—1)/P+ T+ 1 =3/, 1/{TT, - 1/1T); ie. 711_1—(3i+j~k).

We may sketch the plane by noting where it meets the coordinate axes.
For example, setting y = z = 0, we see that (12,0, 0) lies on the plane (see Fig.
13.4.6). A

(0,10,0)

Equation of a Plane in Space

The equation of the plane through (xg, yy,2z,) with normal vector n
=Ai+ Bj+ Ckis
A(x = x0)+ B(y —yo) + C(z —29) =0 (&)
or ’
Ax+ By + Cz+ D =0. (6)

(a) Find the equation of the plane passing through the point (3, —1, — 1) and
perpendicular to the vector i —2j + k. (b) Find the equation of the plane
containing the points (1,1, 1), (2,0,0), and (1, 1,0).

(a) We use the first displayed equation (5) in the preceding box, choosing the
point (xy, yo,20) = (3, —1, — 1) and components of the normal vector to be
A=1,B= -2, C=1to give

(x=3)-2(y+1)+1(z+1)=0

which simplifies to x — 2y + z = 4.
(b) The general equation of a plane has the form (6) Ax + By + Cz+ D =0.
Since the points (1,1, 1), (2,0,0), and (1, 1,0) lie on the plane, the coefficients
A, B, C, D satisfy the three equations:
A+ B+ C+D =0,
2A4 +D =0,
A+B - +D=0.
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Example 9

Solution

Figure 13.4.7. The vector
from O to the closest point
Py on a plane is
perpendicular to the plane.

Figure 13.4.8. The
geometry for determining
the distance from a point to
a plane.

13.4 The Dot Product 673

Proceeding by elimination, we reduce this system to the form
24+ D=0 (second equation),

2B+ D=0 (twice the third equation minus the second),
C=0 (first equation minus the third).

Since the numbers A, B, C, and D are determined only up to a common
factor, we can fix the value of one of them and then the others will be
determined uniquely. If we let D= —2, then 4 =1, B=1, C =0. Thus
x + y —2 =0is an equation of the plane that contains the given points. (You
may go back and verify that the given points actually satisfy this equation.) A

Where does the line through the origin in the direction of i + j + 2k meet the
plane x + y + 2z = 5? Use your answer to find the distance from the origin to
this plane. Sketch.

The line has parametric equations x = 7, y = 7, z = 2¢. It meets the plane when
X +y +2z=1t+t+4r=35; that is, when ¢ = 2. The point of intersection is

(6 162 3

Since a normal to the plane is n=1i+ j + 2k, which is the same as the
direction vector of this line, we see that the line is perpendicular to the plane
at P,. If P is also in the plane, conmderahon of the right triangle OP,P shows
that OPl must be shorter than OP (see Fig. 13.4.7). Thus the distance from the
origin to the plane is the length of OP :

25 .25 .25 _ 150 _ 5/6 N
g

3673179 T 6

Let A(x — x¢) + B(y — yg) + C(z — z,) =0 be the equation of a plane &
through the point P = (x;, yo,2o) in space. Let us use the basic ideas of the
preceding example to determine the distance from a point Q = (x,, y,,z;) to
the plane (see Figure 13.4.8). Consider the vector

» Q=(x1,y1,zl)
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Example 10
Solution

Ai+ Bj+ Ck

yA*+ B*+ C?
which is a unit vector normal to the plane. Next drop a perpendicular from Q
to the plane and construct the triangle PQR shown_i>n Figure 13.4.8. The
distance d =R is the length of the projection of v =P (the vector from P to
Q) onto n; thus

>

distance = |v - n| = |[(x, — Xo)i + (¥ = yo)i + (21 — zo)k ] +n|
_ |4 (x, — x0) + B(y1 — po) + C(z1 — 2o)]
If the plane is given in the form Ax + By + Cz + D =0, choose a point

(Xo» Yo, Zo) On it and note that D = —(Ax, + By, + Cz,). Substituting in the
previous formula gives

|Ax, + By, + Cz, + D|

VA% + B+ C?

for the distance from Q to &,

dist( 0, 7) = Q)

Find the distance from Q = (2,0, — 1) to the plane &: 3x — 2y + 8z + 1 =0.

We substitute into (7) the values x, =2, y, =0, z; = — 1 (from the point) and
A=3, B= -2, C=38, D=1 (from the plane) to give
3:24+(=2)-04+8(—1H+1 -
disy( 0,7y = P2 D OFEED I _ -1 _

A

V3 + (-2 + 82

Exercises for Section 13.4

Compute the dot products in Exercises 1-4.

L+j+Kk-G+j+2k
3.0

5. Find the angle between the pair of vectors in

Exercise 1.

6. Find the angle between the pair of vectors in

Exercise 2.

7. Find the angle between the pair of vectors in

any triangle inscribed in a circle, with one side
of the triangle as a diameter, is a right triangle.

. Show that the length of the orthogonal projection
of v on u is equal to ||v]||cos@|, where @ is the
angle between v and u.

14. Use vector methods to prove that a triangle is

isosceles if and only if its base angles are equal.

15. Find the- distance from (2,8, —1) to the line

through (1,1,1) in the direction of the vector

2. (i+j+k-(i+k) 3
4. (3i+ 4j)- (3j + 4k)

Exercise 3. 1/¥y3)i+(1/3)j+1/¥3)k

8. Find the angle between the pair of vectors in 16. Find the distance from (1,1, —1) to the line
Exercise 4. through (2, —1,2) in the direction of k.

9. Find a unit vector in the xy plane which is 17. Find the distance from (1,1,2) to the line x

orthogonal to 2i — j.

10. Find a unit vector in the xy plane which is 18.

orthogonal to 3j — 5i.

11. Use the formula (i+j+k)-i=1 to find the
angle between the diagonal of a cube and one of

its edges. Sketch.

=3t+2,y=—t—-lz=r+1
Find the distance from (1,1,0) to the line
through (1,0, — 1) and (2,3, 1).
Give the equation for each of the planes in Exercises
19-24.

19. The plane through the origin orthogonal to the

12.

(a) Show that if ||lufj = |jv}, and u and v are not
parallel, then u+v and u—v are perpendic-
ular. (b) Use the result of part (a) to prove that

vectori+j+k.

20. The plane through (1,0,0) orthogonal to the

vector i +j + k.
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21
22,

23.

24.

The plane through the origin orthogonal to i.
The plane containing (a, b, c) with normal vector
ai + bj + ck.

The plane containing the points (0,0, 1), (1,1,1)
and (0, 1,0).

The plane containing the points (1,0,0), (0,2,0),
and (0,0, 3). :

Find a unit vector orthogonal to each of the planes in
Exercises 25-28.

25.
26.
27.

28.

The plane given by 2x + 3y + z=0.

The plane given by 8x — y — 2z + 10=0.

The plane through the origin containing the
points (1,1,1) and (1,1, —1).

The plane containing the line (1 + ¢, 1 — ¢,¢) and
the point (1, 1, 1).

Find the equation of the objects in Exercises 29-32.

29.
30.
3L

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

The plane containing (0, 1, 0), (1,0, 0), (0,0, 1).
The line through (1,2,1) and (-1, 1,0).

The line through (1,1, 1) and orthogonal to the
plane in Exercise 29.

The line through (0,0,0) which passes through
and is orthogonal to the line in Exercise 30.

Where does the line through the origin in the
direction of 2i — j + 3k meet the plane 2x — y +
3z =7? Find the distance from the origin to this
plane.

Where does the line through P =(1,1,1) in the
direction of 2i — j + 3k meet the plane 2x — y +
3z = 7? Find the distance from P to this plane.
The planes 3x +4y +5z=6and x—y+z=4
meet in a line. Find the parametric equations of
this line.

Find the parametric equations of the line where
the plane x + y = z meets the plane y + z = x.
Find the distance from the point (1, 1,1) to the
plane x —y — z+ 10=0.

Find the distance from the point (2, — 1, 2) to the
plane 2x — y + z = 5.

Find the distance from the origin to the plane
through (1,2, 3), (—1,2,3), and (0,0, 1).

Find the distance from the point (4,2,0) to the
plane through (0,0,0), (1,1,1), and (1,1, 2).
Show that the locus of points in the plane equi-
distant from two given points is a line, and give
an equation for that line in terms of the coordi-
nates of the two points.

Use vector methods to show that if three parallel
lines in the plane cut off equal segments on one
transversal, then they do so on any transversal.
Compute the following:

(@ Gi+2j-k-(j-k.

®) [BGi-j—Kk—-G+]]-]

(c) The distance between (1,0,2) and (3,2, 4).
(d) The length of G —j—k) + (2j —k +i).

44.

45.

46.

13.4 The Dot Product 675

- Find the following:

(a) A unit normal to the plane x — 2y + z=0.

(b) A vector orthogonal to the vectors i —j +k
and i +j+ k.

(c) The angle between 2i + j+ k and k — i.

(d) A vector in space making an angle of 45°
with i and 60° with j.

Let P, and P, be points in the plane. Give an

equation of the form ax + by = ¢ for the perpen-

dicular bisector of the line segment between P,

and P,.

Given nonzero vectors a and b, show that the

vector v = [[a]|b + ||b]|a bisects the angle between

aandb.

Exercises 47-50 form a unit.

47.

48.

49.

50.

51

52.

Suppose that e, and e, are perpendicular unit
vectors in the plane, and let v be an arbitrary
vector. Show that v=(v-e e, + (v-e)e,. The
numbers v-e; and v-e, are called the compo-
nents of v in the directions of e; and e,. This
expression of v as a sum of vectors pointing in
the directions of e, and e, is called the orthogonal
decomposition of v relative to ¢, and e,.
Consider the vectors ¢; =(1/y2)(i+j) and e,
=(1/y2)(i—j) in the plane. Check that e, and
e, are unit vectors perpendicular to each other
and express each of the following vectors in the
form v = a,e, + a,e, (that is, as a linear combina-
tion of e; and e,):

(@ v=i, (b) v=j,

(€) v=2i+]}, d v=-2i—j.
Suppose that a force F (for example, gravity) is
acting vertically downward on an object sitting
on a plane which is inclined at an angle of 45° to
the horizontal. Express this force as a sum of a
force acting parallel to the plane and one acting
perpendicular to it.

Suppose that an object moving in direction i+
is acted on by a force given by the vector 2i + j.
Express this force as a sum of a force in the
direction of motion and a force perpendicular to
the direction of motion.

A force of 6 newtons makes an angle of = /4

radians with the y axis, pointing to the right. The

force acts against the movement of an object

along the straight line connecting (1,2) to (5, 4).

(a) Find a formula for the force vector F.

(b) Find the angle # between the displacement
direction D= (5 — )i+ (4 —2)j and the
force direction F.

(¢) The work done is F-D, or equivalently,
I|F|] {|D]|cos 8. Compute the work from both
formulas and compare.

A fluid flows across a plane surface with uniform

vector velocity v. Let n be a unit normal to the

plane surface. Show that v-m is the volume of
fluid that passes through a unit area of the plane
in unit time.
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53.

54.

55.

*56.

Chapter 13 Vectors

Establish the following properties of the dot

product:

(a) u-u > 0 for any vector u.

() fu-u=0, thenu=20.

(¢) u-v=v-ufor any vector u and v.

(d) (qu+dbv)-w=a(u-w)+ b(v-w) for any
numbers a and b and.any vectors u, v, w.

Let:

L, = the line (2,1,1) + ¢(1,1, 1);

L, =the line (1 + 71,7t — 2,2+ 71);

Ly = the line (1,0, 8) + #(1, 1,9);

L, = the line through the points (—1,0,1) and
(1,2,19).

(a) Determine whether each of the following

pairs of lines is parallel or intersects. If the

lines intersect, find the point of intersection.
() Liand L,

(ii) L, and L,

(i) L, and L;

(iv) L, and Ly

(v) L,and L,

(vi) Lyand L,

For each pair of lines in part (a) which lie in

a plane (that is, are not skew), find an

equation for that plane.

(c) For each of the lines L, to L4, find the point
of the closest approach to the origin and an
equation for the plane perpendicular to that
line through that point.

A construction worker is checking the architect’s

plans for some sheet metal construction. One

diagram contains a triangle with sides 12.5, 16.7,

20.9, but no angles have been included. The

worker gets out a calculator to check that

(12.5) + (16.7)% =~ (20.9)%, then marks the angle

opposite the long side as 90°.

(a) Explain from the law of cosines the reason
why the worker’s actions are essentially cor-
rect.

(b) The angle is not exactly 90°, from the data
given. What percentage error is present?

Let P, and P, be points in the plane with polar
coordinates (r,,#,) and (r,,6,), respectively, and
let u; be the vector from O to P; and u, the
vector from O to P,. Show that u;-u, =
riracos(@y — 8,). [Hint: Use a trigonometric iden-
tity.]

®

*57.

Suppose that R = Py+ t(a,b,c) is the line
through P, in the direction d = ai + bj + ck. Let
u=d/||d| = (p,A,»). Let:

= angle from i to d;
B= angle from j to d;
v= angle from k to d.

These are called the direction angles of the line.
The numbers cos ¢, cos 8, and cos y are called its
direction cosines (see Fig. 13.4.9).

Figure
angles
and vy.

*58.

13.4.9. The direction
of the line / are a, B3,

(a) Show that P+ s(p,A,») gives the same
line. (What values of s and  correspond to
the same points on the line?)

Show that cosa=i-u=yu; cos f=j-u

=A;cosy=k-u=r.

(¢) Show that cosa + cos*8 + cos?y = 1.

(d) Determine the direction angles and cosines
of each of the lines in Exercise 54.

(e) Which lines through the origin have direc-
tion angles a = 8 = y?

Imagine that you look to the side as you walk in

the rain. Now you stop walking.

(a) How does the (apparent) direction of the

falling rain change? (The rain may be falling

at an angle because of wind.)

Explain the observation in (a) in terms of

vectors. -

(c) Suppose that there is no wind and that you
know your walking speed. How could you
measure the speed at which the rain is fall-
ing?

(d) Do part (¢) if the rain is falling at an angle.

()

(®)
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Figure 13.5.1. The point P
has velocity vector v.

Figure 13.5.3. Calculating
the area of ORQP.

Example 1

Solution

13.5 The Cross Product 677

The Cross Product

The cross product of two vectors in space is a new vector that is perpendicular to
the first two.

What is the velocity of a point on a rotating object? Let v, be a vector which
points in the direction of the axis of rotation and whose length equals the
rotation rate (in radians per unit time). Let v, be a vector from a point O on
the axis of rotation to a point P on the object (see Fig. 13.5.1). A little thought
shows that the velocity v of the point P has the following properties:

Lo Jlvll = |Iv,|i Iv,llsin @, where 8 is the angle between v, and v,.
2. 1f § # 0 (so that v # 0), v is perpendicular to both v, and v,, and the triple
(v, V5, v) of vectors obeys the right-hand rule (see Fig. 13.5.2).

Figure 13.5.2. Right-hand
rule: Place the palm of your
hand so that your fingers
curl from v, in the direction
of v, through the angle 4.
Then your thumb points in
the direction of v.

Note that condition 1 says the magnitude of the velocity of P is proportional
to the product of the magnitude of the rotation rate and the distance of P
from the axis of rotation; furthermore, for fixed ||v,||, the velocity is greatest
when v, is perpendicular to the axis.

Conditions 1 and 2 determine v uniquely in terms of v, and v,; v is called
the cross product (or vector product) of v, and v, and is denoted by v, X v,.

We will now determine some properties of the cross product operation.
Our ultimate goal is to find a formula for the components of v, X v, in terms
of the components of v, and v,. Let us first show that ||v, X v,]| is equal to the
area of the parallelogram spanned by v, and v,. Drop the perpendicular PS as
shown in Fig. 13.5.3. Then A = |OR||PS|=|OR||OP|sinf = ||v,}| ||v,||sin 8
= |[vy X v,]| by condition 1, proving our claim.

Find all the cross products between the standard basis vectors i, j, and k.

We observe first that i X i = j X j = k X k =0, because the angle between any
vector and itself is zero, and sin0 = 0. Next we observe that i X j must be a
multiple of k, since it is perpendicular to i and j. On the other hand,
li X j|| = ||i]] ||jl{sin90° = 1, so i X j must be k or —k. The right-hand rule then
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Figure 13.54. The
right-hand rule requires
that i X j equal k, not —k.

k .
\/ J
Figure 13.5.5. As we go
around the circle, the cross
product of any two
consecutive vectors equals
the third vector. Going
backwards produces the
negative of the preceding
vector.

shows that i X j =k (see Fig: 13.5.4). Next, j X i must be k or —k; this time
the right-hand rule gives —k as the answer. Similarly, j X k=1, kXi=j},
kxj=—i,andixXk=—j. A

4
e ————-
-k
A good way to remember these products is to write i, j, and k in a circle as in
Fig. 13.5.5.
We will now obtain a general formula for the cross product
(ayi+ byj + ¢ 1K) x (azi + byj + ¢;k).
If we assumed that the usual rules of algebra apply to the cross product, we

could use the result of Example 1 to make the following calculation:
(a)i+ b)j+ c k) X (ayi + b,j + c k)

= a;i X (ayi + b,j + c k) + bjj X (aji + byj + c,k) + ¢k X (@i + byj + )k

= a;bk + a,cy(—j) + bjay(—Kk) + bic,i + cia,j + ¢1by(—i).
Collecting terms, we have
(ai+ bij+ ck) X (a)i+ b,j+ c)k)
= (bic; — c\by)i+ (cya, — acy)j + (a,by, — bay)k. €))

Although to derive (1) we made the unjustified assumption that some
laws of algebra hold for the cross product, it turns out that the result is
correct. To see this, we shall show that u= (b,¢c, — ¢;0,)i + (c,a, — a,¢,)j +
(a,b, — b,a,)k is indeed the cross product of v,=ayi+ bj+ ck and v,
= a,i + b,j + c,k. We accomplish this by verifying that u satisfies conditions
I and 2 in the definition of the cross product.

First, we consider the squared length of u:

(byc, — clb2)2+ (c1a, — a|c2)2+ (a,b, — b,a2)2
= blci — 2b,c,byc, + cib? + cla3 — 2a,c,a,c, + aicl + aibi — 2a,b,a,b, + bla?
Now we compute the square of ||v,|] ||v,|[sin8:

Vi lIZ11vPsin®® = [|v || ?|voll*(1 — cos®d)

= [VullPIvall? = (Ivall Ivalleos 8)?
= [[vill?1vall® = (vy - v2)? _
= (al2 + b+ clz)(a% + b2+ c%) —(aja, + bb, + c,cz)2

which, when it is multiplied out and terms are collected, is the same as |u|?, so
[[ull = [1vy]l [I¥,||sin 6. ‘
Next we check that u is perpendicular to v, and v,. We have

u-v; = (bjc; — c1by)a, + (¢1a; — ajer)by + (a,by — biay)e,
= b,c,a, — ¢\bya, + ciayb, — a,c,b, + a,bye, — bjase
= 0’;
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Example 2

Solution

13.5 The Cross Product 679

since the terms cancel in pairs. Similarly, u - v, = 0, so u is perpendicular to \f
and v,.

To check the right-hand rule would require a precise mathematical
definition of that rule, which we will not attempt to give. Instead, we will
merely remark that the rule is satisfied for all products of standard basis
vectors; see Example 1.

We have now shown that the vector u on the right-hand side of (1)
satisfies the conditions in the definition of v, X v,, so it must be v, X v,. The
algebraic rules in the following display may then be verified as a consequence
of formula (1) (see Example 7).

The Cross Product
Geometric definition: v, X v, is the vector such that:

L [lvy X vy|| = ||v,]| [|v,[lsin 8, the area of the parallelogram spanned by v,
and v, (# is the angle between v, and v,; 0 < 8 < 7).

2. vy X v, is perpendicular to v, and v,, and the triple (v,,v,,v, X v,)
obeys the right-hand rule.

Component formula:
(aii + bij + ¢ k) X (a,i + byj + c,k)
= (bic, — c\by)i+ (ca, — aic)j + (aby, — biay)k
Algebraic rules:

. ¥y X v, =0 if and only if v, and v, are parallel or v, or v, is zero.
VXV = v, Xy

Vi X (Vy+ V)=V, Xv,+ v, Xv,.

(Vi + V) X vy =v; Xv3+ v, Xv3.

(av)) X vy = a(v; X v,).

N

Moultiplication table (see Fig. 13.5.5):

Second Factor
X | i i k
. k -
First _ ?{ 0 :
Factor k f _ 0

(a) Compute (3i+2j—k)x (j—k). (b) Find i X (ixj) and (i X i) X j. Are
they equal?
(a) We use the products i X j =k, etc. and the algebraic rules as follows:
Gi+2i-k)xX(j—k)=Ci+2j—k)yxj—3i+2j—k)xk
=3iXj+2jXj—kxj-3ixk—2jxXk+kxk
3k+0+i+3j—2i+0
= —i+ 3j+ 3k.

This can be checked using the component formula.

(b) We find that i X (i X j)=iX k= —j, while (i Xi)Xj=0Xj=0, so the
two expressions are not equal. This example means that the cross product is
not associative—one cannot move parentheses as in ordinary multiplication. A
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Example 3

Solution

Example 4

Solution

Example 5

Solution

Example 6

Solution

Find the area of the parallelogram spanned by the vectors v, =i+ 2j + 3k
and v, = —i—k.

We calculate the cross product of v, and v, by applying the component
formula, with @, = 1,5, =2,¢,=3,a,= —1,b,=0,¢,= — I:

vi X% =[@)(~ )= @O ]i+[@)(- )= O(=DH]i+[(1)O) = @)(~D]k
= —2i—2j+ 2k

Thus the area is

vy X Vol = (=27 + (=27 + ()

=2/3. A
Comparing the methods of Examples 2 and 3 shows that it is often easier
to use the algebraic rules and the multiplication table directly, rather than
using the component formula.

Find a unit vector which is orthogonal to the vectors i + j and j + k.

A vector perpendicular to both i + j and j + k is the vector
(+)x({+k)=ixj+ixk+jxj+jxk
=k—j+0+i
=i—j+k

Since |ji — j + k|| =3, the vector (1/ V3 )i — j + k) is a unit vector perpendic-
ulartoi+jand j+ k. 4

Use the cross product to find the equation of the plane containing the points
(1,1, 1), (2,0,0), and (1, 1,0). (Compare Example 8 of Section 13.4.)

The normal to the plane is perpendicular to any vector which joins two points
in the plane, so it is perpendicular to v, =(1,1,1) - (2,0,0)= (-1, 1, 1) =
—i+j+kand v,=(1,1,1) = (1,1,0)=(0,0,1) =k. A vector perpendicular
tov,and vyis vy X v, = (—i+j+ k) Xk= —iXk+jXk+kXk=j+i+0
=i+ j, so the equation of the plane has the form x + y + D =0. Since
(1,1,1) lies in the plane, 2+ D =0, and the equation is x + y —2=0. (In
Example 8 of Section 13.4, we obtained this result by solving a system of
simultaneous equations. Here the cross product does the solving for us.) A

Find the area of the triangle with vertices P, =(1,1,2), P, = (2, —1,0), and
Py=(1,-13).

The area of a triangle is half that of the parallelogram spanned by two of its
sides. As sides we take the vectors v, =P P,=i—2j— 2k and v, =P P;=
—2j+ k. Then

vy X vy = (i —2j—2k) X (=2j+ k)= —6i—j— 2k
The area of the triangle is thus

1/2
Ly X vyl = 1(6* + 12+ 2%)

=141 ~3.20. A
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Example 7 . Prove the algebraic rule 3 by using the component formula.
Letv,=ai+ bj+ ck (i =1,2,3). Then
v+ vy =(ay+ az)i+ (b, + by)j + (e + c;3)k

Solution

and
Vi X (Vy + V) =[b(cy + ¢3) = ¢y(by + by) i
+ [01(02 + a;) — ay(c, + q)]j + [al(b2 + b3) — by(ay + a3)]k

=(bicy — c\by)i+ (c1a, — ac,)j+ (alb2 — blaz)k
+ (bie; — ¢ by)i+ (a3 — ayc3)f + (a;b; — asb))k

=V XV, +v; Xv;. A

Example 8 Show that |ju X v||> = |jul?||v|? — (u- v)~

Solution

Let # be the angle between u and v. Then

[l X vi| = |juf ||v|]|sin@ and w-v=u|v{cosf.

Squaring both equations and summing gives

lu X vi* + (u-v)*= |ju|]?|jv|[*(sin® + cos’¥)

= |lul®jIv?,

2 2
so [uXv|* = [ulv]|* = (u-v)*. A

Exercises for Section 13.5

Calculate the cross products in Exercises 1-10.

20.

Find a unit vector perpendicular to i — j and to
i + k and with a positive k component.

% ?‘ _J: + k) X (j - k). 21. Find the equation of the plane passing through
ZixG-w. the points (0,0,0), (2,0, — 1), and (0,4, —3).
3. + ]),X [(k — !) +@j-2i+k) 22. Find the equation of the plane through the
4 d+j-kbxi points (1,2, 0), (0, 1, —2), and (4,0, 1).
5. [§3' + 2) X 3].] X (21— j+k). 23. Find the equation of the plane through (1,1, 1)
6. (f X J)_X (i+j +.k)' and containing the line which is the intersection
7. (§+.2]+3k)>f(l+3k). of the planes x —y =2 and y — z = 1.
8. (f it k).>< (f +K). 24. Find the equation of the plane through the point
9. f+k)xX@i+j+k. (2,1,1) and containing the line x=:—-1, y
10. (3i—2k) X (3i — j — k). =241, z=—1—1.
Find th.e area _Of the parallelogram spanned by the 25. Find the area of the triangle whose vertices are
vectors in Exercises 11-14. 0,1,2), (3,4,5), and (— 1, —1,0).
1L ' -2+ k-and i+j+k 26. Find the area of the triangle whose vertices are
12.i—jandi+j. (0,1,2), (1,1, 1), and (2, 1,0).
13. i and i —2j. 27. Find the area of the triangle whose vertices are
14 i-j—kandi+j+k (0,0,0), (0, —1,1), and (0, 1, — 1).
Find a unit vector orthogonal to the pairs of vectors in 28. Find the area of the triangle whose vertices are
Exercises 15-18. (-1,-1,—-1),(-10,1), and (1,0, — 1).
15.iandi+j+k. 29. Prove algebraic rule 5 by using the component
16. i—jandi+j. formula.
17.i—j—kand 2i — 2j + k. 30. Prove the formula in Example 8 by using the
18. i+2j+k and 3i — ;. compox}ent formula.
31. By using the cross product of the vectors
19. Find a unit vector perpendicular to i + j and to cosfi +sinfj and cosyi + sinyj, verify that

i—j— 1k and with a positive k component..

sin(f — ) = sin § cosyy — cos fsiny.
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32. Let £ be a line through a point P, in direction d. are separated by a plane surface perpendicular to
Show that the distance from a point P to / is the unit vector N. Let a and b be unit vectors
given by [(PoP) x d||/{|d]. along the incident and refracted rays, respec-

33. Let a line in the plane be given by the equation tively, their directions being those of the light
ax + by = c¢. Use the cross product to show that rays. Show that n;(N X a) = ny(N X b) by using
the distance from a point P = (x, y) to this line is Snell’s law sin#,/sin 8, = n,/n;, where 6, and 6,
given by : are the angles of incidence and refraction, re-

lax + by — ¢| spectively. (See Fig. 13.5.7.)
T/ «38. Prove the following:
yat+ b (a) (uXv)-(axb)=(u-a)v-b)—(v-a)u-b)

34. Use the cross product to find a solution of the (b) The Jacobi identity:
following simultaneous equations: x + y = 0 and UXV)Xw+FXW)Xu+(wxu)xXv=0.
x—y~-2:=0. *39. (a) Using vector methods, show that the dis-

35. In ,meChaI?lCS’ the moment M of a for ce F about a @ tance between two nonparallel lines /, and /,
point O is defined to be the magnitude of F is given by
times the perpendicular distance d from O to the
line of action of F. The vector moment M is the d= [(v2 = vy) « (2 X )|
vector of magnitude M whose direction is per- Hla; X ay|
pendiculz?.r to the plane of O and F, determined where v,, v, are vectors from the origin to
by the right-hand rule. Show that M =R XF, points on /, and /,, respectively, and a, and
wh?:re R is any vector from O to the line of a, are the directions of /, and /. [Hint:
action of F. (See Fig. 13.5.6.) Consider the plane through /, which is paral-

0 lel to /;. Show that (a, X a,)/[|a; X a,|| is a
. unit normal for this plane; now project
v, — v; onto this normal direction.]
R (b) Find the distance between the line /; deter-
mined by the two points (—1, —1,1) and
line of action Figure 13.5.6. Moment of a (0,0,0) and the line /, determined by the
force. points (0, —2,0) and (2,0, 5).

36. The angular velocity € of rotation of a rigid *40. Use p.rop‘erties of t.he Cross pr'oduct to explgin
body has direction equal to the axis of rotation w.hy » 1 tn.e d1501'1551on of rotat.lon at the begin-
and magnitude equal to the angular velocity in ning of this section, the' resulting Ve'ct'or v dpes
radians per second. The sense of Q is determined not depend on. the .ch01ce of the origin 0; L€,
by the right-hand rule. what happen§ if Ois r.eplaced by another point
(a) Let r be a vector from the axis to a point P O’ on the axis of rotat19n? . .

*41. When a gyroscope rotating about an axis £, as in

37.

N

on the rigid body. Show that the quantity
v=Q Xr is the velocity of P, as in Fig.
13.5.1, with & =v, and r=v,.

Interpret the result for the rotation of a
carousel about its axis, with P a point on the
circumference.

Two media with indices of refraction n; and n,

(b)

Light ray

Figure 13.5.7. Snell’s law.

Anchor
point

Fig. 13.5.8, is subject to a force F, the gyroscope
responds by moving in the direction £ X F.}
Show that this fact is consistent with the gyro-
scopic precession you actually observe in toy
gyroscopes.

Figure 13.5.8. Gyroscope
and cross products.

5 This relationship is easiest to see in an orbiting earth satellite, where the effects of gravity do not complicate the issue. Indeed, the
Skylab astronauts had great fun carrying out such experiments. (See Henry S. Cooper, Jr., 4 House in Space, Holt, Rinehart, and
Winston, 1976).

Copyright 1985 Springer-Verlag. All rights reserved



13.6 Matrices and Determinants 683

13.6 Matrices and
Determinants

The cross product can be expressed as a 3 X 3 determinani.
From the point of view of geometry and vectors, we will consider, in turn,
2 X 2 determinants and matrices, and then the 3 X 3 case.

If vi=a,i+ b,j and v, = a,i + b,j are vectors in the plane, to compute
the area of the parallelogram spanned by v, and v,, we may consider them as

Vs vectors in space (with ¢, =c,=0) and take the cross-product v, X v,
) = (a,b, = byay)k. The area is then ||v; X v,|| = |a,b, — b,a,|, but the sign of

ab, — bya, also gives us some information: it is positive if the sense of
Vi (shortest) rotation from v, to v, is counterclockwise and negative if the sense

of rotation is clockwise (see Fig. 13.6.1). We may say that the sign of
a,b, — b,a, determines the orientation of the ordered pair of vectors (v,,v,).
The combination a,b, — b,a, of the four numbers a,, by, a,, and b, is

/O\ denoted by
Al

a, b

@) ajby —bja, >0

V2

a, b,

(b) ajby —b1ay; <0
Figure 13.6.1. The sign of and is called the determinant of these four numbers.
ayb, — ba, determines the
orientation of the ordered
pair (a;i + b\j, asi + b,j).

2 X 2 Determinants

If a, b, ¢, d are any four numbers, we write

a b

= ad — bc.

. 4 a C

The absolute value of
a b
c d

equals the area of the parallelogram spanned by the vectors v = ai + bj
and w = ci + dj. The sign of

a b
c d

gives the orientation of the pair (v, w).

Example 1 (a) Find the determinant | ~ ~ 3 '

7/2 6

(b) Show that ; i’ = H é' = );_ g' What is their common value?

(c) Prove that (the two columns are interchanged).

c

a b'=_b a
d d

Solution (a)
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(b) = (Y& - @B = -2

= (1)~ ) = =2

ANE AN BN

1
3
1
4
) A= mE - ®e)= -2

Their common value is —2.

a Z‘=ad—bc,and

_ \b a

d c

From the previous section we recall that
(aji+ bij+ k)X (a + byj + c-K)

= —(bc——ad)=ad—bc.A

= (bycy — €1by)i + (c1a5 — a1 ¢2)i + (ay by — bras)k.
All the components on the right-hand side are determinants. We have:
(aii+ bjj+ k) X (@i + byj + k)
ay b

by ¢,

c, a
i+ b

o a k. (1)

b, ¢ a, b,

The middle term can also be written
a ¢
a €

Shortly we shall see how to write the cross product in terms of a single 3 X3
determinant.
Sometimes we wish to refer to the array

a b

¢ d
of numbers without taking the combination ad — bc. In this case, we use the
notation

a b
¢ d
and refer to this object as a 2 X 2 matrix. Two matrices are considered equal

only when all their corresponding entries are equal; thus, in contrast to the
equalities in Example 1(b), the matrices

12 1 2 1 4
13 47 4 6/ 2 6
are all different. The determinant

a b
c d

is a single number obtained by combining the four numbers in the matrix

(a b }
L € d
Geometrically, we may think of a matrix as representing a parallelogram

(that is, a geometric figure), while the determinant represents only the area of
the parallelogram (that is, a number).
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Example 2

Solution

Figure 13.6.2. The absolute
value of a determinant
equals the volume of the
parallelepiped spanned by
the rows.

Figure 13.6.3. The volume
of the parallelepiped is its
height | PQ/| times the area
of its base.

13.6 Matrices and Determinants 685

The transpose of a matrix [a Z ] is defined to be the matrix [Z 2]
c

obtained by reflection across the main (upper left to lower right) diagonal.

(a) Find the transpose of [ 15 jl

, -3 2
(b) Show that the determinant of a matrix is equal to the determinant of its
transpose: |2 | = 'a ¢ '
d b d

(c) Check (b) for the matrix in (a).

(a) The transpose of [ 1 5} is [ I -3 ]

—3 2{%5 2
a b_ _ =(l C
(b) ’ d'—-ad be 'b °l
15
=2+ 15=17;
© |3 2.
1 -3
=2+15=17.
5 2| A

A 3 X 3 matrix consists of nine numbers in a square array, such as

1 4 6
0 2 9|
31 -5
a, b ¢ a; b, ¢
To define the determinant D =|a, b, c¢,|of a 3 X3 matrix |a, b, ¢, |,
ay by o a; by ¢

we proceed by analogy with the 2 X 2 case. The rows of the matrix give us
three vectors in space:

vi=ai+ bjj+ ¢k,

vy = ai + byj + ¢k,

vy = a4i + bi3j + ¢k
Since the determinant of a 2 X 2 matrix represents an area, we should define
the determinant in such a way that its absolute value is the volume of the
parallelepiped spanned by vy, v,, and v;. (See Fig. 13.6.2.)

To compute this volume in terms of the nine entries in the matrix, we
drop a perpendicular PQ from the tip of v, to the plane spanned by v, and v,.
It is a theorem of elementary solid geometry that the volume of the parallelepi-
ped is equal to the length of PQ times the area of the parallelogram spanned
by v, and v, (see Fig. 13.6.3). .

Looking at the right angle OQP, we find that the length of PQ is
lv4]f lcos @{, where @ is the angle between v, and PQ. On the other hand, PQ is
perpendicular to v, and v,, so it is parallel to v| X v,, so # is also the angle
between v; and v, X v,. Now we have:
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Volume = (area of base)(height)
= ||y X ¥o|| ||v3]| |cos 8]
= | ||lv; X v, [|vs]|lcos 0|
= |(vi X ¥g) - v3l.

Since the volume is to be the absolute value of the determinant, we define the
determinant to be the expression inside the bars:

a, by ¢
a, b, c|=[(ai+bj+ck)X (ai+bj+ k)] - (a3 + byj + c3K).
ay by ¢

By using the component formula for the cross product in equation (1), we find

a b, ¢
1 by 4
b, ¢ ¢ a a, b,
a, b, ¢l= a,+ by + €3
b, ¢ € a4 a, b,
a; by ¢
or
a b, ¢
1 by G
b by ¢ a, c a, b, )
a, by o|= a; — by + C3. (2)
b, ¢ a & a, b,
a; by o

We take equation (2) as the definition of the determinant of a 3 X3
matrix; the volume of the parallelepiped spanned by three vectors is thus
equal to the absolute value of the determinant of the matrix whose rows are
the components of the vectors. The sign of the determinant is interpreted
geometrically in Example 9.

0 0 4
Example 3 Evaluate the determinant [2 -1 6|
3 I 2
Solution By equation (2),
0 0 4
2 -1 6=’ ¢ 21(3)—‘2’ 2‘(1)+|(2) ?1(2)
3 1 2 - N

= (4)(3) — (=8)(1) + (0)(2)
=12+8=20. A '

We can express the cross product of two vectors as a single 3 X 3 determinant.
In fact, comparing equation (2), with (1),

a, by ¢
(aji+ bjj+ck) X (ai+ bj+ck)y=l|a, by ¢ 3)
i j k

Example 4 Write (i + k) X (j — 2k) as a determinant.

Solution

1o 1
(+kx@(G-2k)=[0 1 —2/.A
i j k
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Example 5

Solution

Example 6

Solution

13.6 Matrices and Determinants 687
Formula (2) is worth memorizing. To do so, notice that the ith entry in the
third row is multiplied by the determinant obtained by crossing out the ith
column and third row of the original matrix. Such a 2 X 2 determinant is
called a minor, and formula (2) is called the expansion by minors of the third
row.

It turns out that a determinant can be evaluated by expanding in minors
of any row or column. (We shall verify this for the second column in Example
71.) To do the expansion, multiply each entry in a given row or column by the
2 X 2 determinant obtained by crossing out the row and column of the given
entry. Signs are assigned to the products according to the checkerboard
pattern:

+ - +

— + — 1.

+ - +

(Remember the plus sign in the upper left-hand corner, and you can always
reconstruct this pattern.) Thus, the cross product (3) can also be written

i j k
a by ¢
a, b, c,

(a) Evaluate the determinant

0 0 4
2 -1 6
3 1 2

of Example 3 by expanding in minors of the first row.
(b) Find (2i — j + k) X (i — j — 3k) using a 3 X 3 determinant.

(a)

0 0 4 Y
3 1 2 1 2 3 2 3 1

=0-0+ (5)(4) = 20.

Since we do not need to evaluate the minors of the zero entries, the expansion
by minors of the first row results in a simpler calculation (for this particular
matrix) than the expansion by minors of the third row.

i j Ok
®) Qi-j+xi-j-3k=r _1
1 -1 -3

'—1 1
-1

=4i+7 -k A

Find the volume of the parallelepiped spanned by the following vectors:
i+ 3k, 2i +j— 2k, and 5i + 4k.

The volume is the absolute value of

10 3
21 =2
50 4
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If we expand this by minors of the second column, the only nonzero term is

1 3
5 4
so the volume equals 11. A

(1= -11,

To prove that the expansions by minors of rows or columns all give the same
result, it is sufficient to compare these expansions for the “general” 3 X3
determinant.

Example 7 Show that expanding the determinant

a b ¢
a, b, ¢,
a; by ¢

by minors of the second column gives the correct result.

Solution The expansion by minors of the second column is
a, ¢
as C3

a, ¢
as; ¢

a, ¢
a €

- b, — ;.

1

Expanding the 2 X 2 determinants gives
— (@503 — Ca3)b, + (a,¢3 — ¢1a3)b, — (a;c;, — €,a,)b;
= —b,a,c; + bc,as + abycy — ¢bya; — ajcbys + ciazby.
Collecting the terms in a;, b;, and ¢;, we get

(bycy — ¢1by)as — (ayep — c,ay)b; + (ayby — biay)cs

b, ¢ a, c¢ a, b

1 1

= 1a3—a clb3+ b e,
b, ¢, 2 & a, b,
a by ¢

=la, b, c,|. A
ay by ¢

The proof that we get the same result by expanding in any row or column is
similar.

If vi=aji+bj+ck, vy=a)i+ bj+ ck, and vy = aji + byj + cik,
equation (2) can be written

a, by ¢
a, by c;|=(¥V,X V) v;.
a3 by ¢

This is called the triple product of v, v,, and v;.

Example 8 Show that (v; X v,)*v3=(v3 X v)*v,. In fact, the numbers 1,2,3 can be
moved cyclically without changing the value of the triple product:

71y
3 2

| g

Soiution The triple product (v; X v,) * v, is equal to the determinant

a; by ¢
a, by ¢
a, b, ¢
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Expanding this by minors of the first row gives

by ¢
b, ¢,

a, ¢
a, ¢

a; b

a, b,

as; — 3 C3.

Expanding the determinant for (v, X v,) - v, by the rhird row gives the same
result.’ A

Example 9 Let v, = aji+ bj+ ¢k, v, = ai + b,j + ¢k, and v; = a,i + b;j + c;k. Show
that the triple (v,,v,,v;) is right-handed (left-handed) if the determinant

a by ¢
a, b, o
ay by ¢

is positive (negative). What does it mean if the determinant is zero?

Solution Let & be the plane spanned by v, and v,. (We assume that v, and v, are not
parallel; otherwise v, X v, = 0, and the determinant is zero.) Then (v,,v,,v,) is
right handed (left handed) if and only if v, lies on the same (opposite) side of
Z as v; X v,; that is, if and only if (v; X v,) - v3 is positive (negative); but
(¥y X v,) » v5 is the determinant

a b ¢
a, by, c,l.
a; by ¢

If the determinant is zero (but v, X v, is not zero), then v; must lie in the
plane #. In general, we may say that the determinant is zero when the vectors
Vi, V5, and v, fail to span a solid parallelepiped, but instead lie in a plane, lie
on a line, or are all zero. Such triples of vectors are said to be linearly
dependent and are neither right-handed nor left-handed. 4

3 X 3 Determinants

a b ¢
b, ¢ a, ¢ a, b
a, b, c|= b a; — b; + 5 Cy
2 G a, ¢ a by
a; by ¢

The determinant can be expanded by minors of any row or column. If

vVi=aji+bj+ ck,

Vo = ayi + b,j + ¢k,

V3 = asi + byj + ¢k,
then the determinant equals (v, X v,) - v, which is also called the triple
product of v, v,, and V5.

The absolute value of the determinant equals the volume of the
parallelepiped spanned by v, v,, and v,.

The sign of the determinant tells whether the triple (v,,v,,v,) is
right- or left-handed.
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Exercises for Section 13.6

Evaluate the determinants in Exercises 1-10.

1ol 5| 102
o B o o'
3|6 5 410 0 |
12 10 3 17
I 2 6 |1 2
> 13 4 2 4‘
5 |4 3 o [1-x -1
17 ’ 1 - 1=x
9. 2 b a b
a’ .| _a b
Prove the identities in Exercises 11-14.
11. |@ b = —|¢ 9| (the two rows are interchanged).
c d a b
12. |@ b|=|atc bt dl (the last row is added to
c d c d
the first).
13. |ra rbl=,la b l (the first row is multiplied by
¢ d c d
a constant).
14, |@—sb bl _]a b| 3 constant times the sec-
c—sd d d

ond column is subtracted from the first).
Evaluate the determinants in Exercises 15-24.

1 0 1 110
1510 1 0 l6. fo 1 1
1 0 1 0 1 1
2 -1 0 1 1 2
17. 14 3 2 18.12 —1 1
3 0 1 1 0 0
1 2 3 -1 0 1
19. -1 -1 2 20. 21 3
0 1 -1 01 2
21 60 -1 0 1
2.0 2 1 22. 21 3
1 0 2 31 2
a d e a 00
23.10 b f 24. e b d
0 0 ¢ 0 0 ¢

Write the cross products in Exercises 25-30 as determi-
nants and evaluate.

25. Bi—jx(G+k). 26.(i+3j—-kyx@i-3+k).

27. i+ X (G+Kk).  28. (20 +4j + 6k) X k.
29. i—K) X (i+k). 30. (j+ 2K) X (32j + 64K).

31. Find the volume of the parallelepiped spanned
by the vectors i+ j +k, i —j + k, and 3k.

32. Find the volume of the parallelepiped spanned
byi—j,j—k and k+1i

33. Find the volume of the parallelepiped with one
vertex at (1,1,2) and three adjacent vertices at
(2,0,2), (3,1,3), and (2,2, —3).

34.

35.

36.
37.
38.
39.

40.
41.

42.

43.

44.

*45.

Find the other four vertices of the parallelepiped
in Exercise 33 and use them to recompute the
volume.

Check that expanding the determinant

a; bl Cy
a b, o
a; by o

by (a) minors of the second row and (b) minors
of the third column gives the correct result.
Show that if the first two rows of a 3 X 3 matrix
are interchanged, the determinant changes sign.
Show that if the first two columns of a matrix are
interchanged, the determinant changes sign.

Use Exercise 36 to verify that (v Xvy):v;=
— (V3 X v} vs.

Verify that (vy X v5) = v3 = (v X ¥3) * V}.

Verify that (v; — vy) X (v; + vy) = 2v; X v,.

Show by drawing appropriate diagrams that if
(v|,¥5,V;) is a right-handed triple, then so is
(v2, V3, V1)

Show that if two rows or columns of a 3 X3
matrix are equal, then the determinant of the
matrix is zero.

Show that if

a b

Fka 0,
then the solutions to the equations
ax + by = e,
ex+dy=f
are given by the formulas
e b a e
fd ¢ f
T a b|’ Y= a b
c d c d

This result is called Cramer’s rule® (We have
already used it without the language of determi-
nants in our discussion of Wronskians in the
Supplement to Section 12.7.)

Use Cramer’s rule (Exercise 43) to solve the
equations 4x + 3y =2; 2x — 6y = 1.

Suppose that the determinant

ap by ¢
D= a bz Cy
a; by ¢

6 Gabriel Cramer (1704—1752) published this rule in his book, Introduction a I’analyse des lignes courbes algébriques (1750). However,
it was probably known to Maclaurin in 1729. For systems of n equations in n unknowns, there is a generalization of this rule, but it
can be inefficient to use on a computer when # is large. (See Exercises 45 for the case n = 3.)
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is unequal to zero. Show that the solution of the
equations

ax+by+cz=4d,
ax+byy+cz=4d,
asx + b3y + c3z2 = d

is given by the formulas

d by a d ¢
d, b o a, dy ¢
d; by cs a; dy ¢,
*=—7p - YT Db
a b 4
a by &
a; by dy
2= —FpF—-
This result is called Cramer’s rule for 3 X 3 sys-
tems.
46. Use Cramer’s rule (Exercise 45) to solve
—x+y = 14,

2x+y+z =38,
x+y+5z=—1
Use Cramer’s rule to solve the systems in Exercises 47
and 48.
47. 2x+ 3y =5;3x -2y =9.
48. x+y+z=3; x—y+z=4;x+y—z=5.

49, Check that

a d g| |a b ¢
b e h|=|d e f|.
c [ i g h i

That is, check that the determinant of the trans-
pose of a 3 X 3 matrix is equal to the determi-
nant of the original matrix.

*50. Show that adding a multiple of the first row of a

*51.

*52.

*53.

*54.

Review Exercises for Chapter 13 691

matrix to the second row leaves the determinant
unchanged; that is,

a b, G ay by ¢
a; + Aal b2 + Abl Cy + }\Cl =4y b2 Cy|-
das b3 C3 as b3 C3

[In fact, adding a multiple of any row (column)
of a matrix to another row (column) leaves the
determinant unchanged.]

Justify the steps in the following computation:

12 3{ 11 2 3
4 5 6|=l0 -3 —6
7 8 100 |7 8 10
1 2 3
=0 -3 -6
0 -6 -1l
=|=3 —6|_33_36=-3.
—6 —11

Follow the technique of Exercise 51 to evaluate
the determinant

1 25
2 3 6}
-1 2 1

(Add —2 times the first row to the second row,
then add the first row to the third row.)

Use the technique in Exercise 51 to evaluate the
3 X 3 determinants in Exercises 18 and 19.
Show that the plane which passes through the
three points 4 = (ay,ay,a;), B = (by,b,,b3), and
C = (cy, ¢y, c3) consists of the points P = (x, y, z)
given by

a—x a—y a3—z
byj—x by—y by—z
Cl—X ¢—y ¢3—z

[Hint: Write the determinant as a triple product.]

=0.

Review Exercises for Chapter 13

Complete the calculations in Exercises 1-16.

. 3,2)+(—-1,6)=

2L -+ (L5 =

(L2, +2(-1,-2,T) =

. 2[(~1,0,1) + (6,0,2)] — (0,0, 1) =

@i+ Bi-j-k) =
LBi+3j -k —-6(i-j-k =

LBk xX(i-j—k=
(i-j-kR-i+j+2k) =

9. Gi+3j—k-(i—-j—-k=

10 G+)- G- J) =

1L i+j)xi-j=
R2.[QI-j)xGi+p-Qi+k =

13. uXv="7 whereu=2i+jand vy=k.

14, u-v=? whereu=3j—kand v=2j+1i

15. u— 3v =17, where u and v are as in Exercise 13.
16. u + 6v =2, where u and v are as in Exercise 14.

[c el B SR, I O )

17.

18.
19.

20.

21.

22.

23.

Find a unit vector orthogonal to 3i+ 2k and
i—k

Find a unit vector orthogonal to j + k and 2i + k.
Find the volume of the parallelepiped spanned
by2i—j+k i and j—k

Find the volume of the parallelepiped spanned
byi+j,i—jandi+ k.

(a) Draw the vector v joining (—2,0) to (4, 6) and
find the components of v. (b) Add v to the vector
joining (—2,0) to (1, 1).

Find the intersection of the medians of the trian-
gle with vertices at (0,0), (1,1), and (2,0).

Let POR be a triangle in the plane. For each side
of the triangle, construct the vector perpendicu-
lar to that side, pointing into the triangle, and
having the same length as the side. Prove that the
sum of the three vectors is zero.
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24,

25.

26.

27.

28.

Chapter 13 Vectors

Show that the diagonals of a rhombus are per-
pendicular to each other.
A bird is headed northeast with speed 40 ki-
lometers per hour. A wind from the north at 15
kilometers per hour begins to blow, but the bird
continues to head northeast and flies at the same
rate relative to the air. Find the speed of the bird
relative to the earth’s surface.
An airplane flying in a straight line at 500 miles
per hour for 12 minutes moves 35 miles north
and 93.65 miles east. How much does its altitude
change? Can you determine whether the airplane
is climbing or descending? (Ignore the curvature
of the earth.)

The work W done in moving an object from

(0,0) to (7,2) subject to a force F is W=F-r

where r is the vector with head at (7,2) and tail

at (0,0). The units are feet and pounds.

(&) Suppose the force F = 10cosfi+ 10sin#j.
Find W in terms of 6.

(b) Suppose the force F has magnitude 6 lbs
and makes an angle of 7 /6 radian with the
horizontal, pointing right. Find W in feet-
Ibs.

If a particle with mass m moves with velocity v,
its momentum is p = mv. In a game of marbles, a
marble with mass 2 grams is shot with velocity 2
meters per second, hits two marbles with mass 1
gram each, and comes to a dead halt. One of the
marbles flies off with a velocity of 3 meters per
second at an angle of 45° to the incident direc-
tion of the larger marble as in Fig. 13.R.1. As-
suming that the total momentum before and
after the collision is the same (law of conserva-
tion of momentum), at what angle and speed
does the second marble move?

3m/5;'/<'
2m/sec RV lg 77\/4

‘ <%
2e /!\\

LN

Figure 13.R.1. Momentum
and marbles.

Write an equation, or set of equations, to describe each
of the following geometric objects in Exercises 29-40.

29.
30.
3L
32.

33.
34.

35.

The line through (1, 1,2) and (2,2, 3).

The line through (0,0, — 1) and (1, 1, 3).

The line through (1,1,1) in the direction of
i—j—k

The line through (1, —1,2) in the direction of
i+j+ 3k

The plane through (1, 1,2), (2,2, 3), and (0,0, 0).
The plane through the points (1,2,3), (1, —1,1),
and (—1,1,1).

The plane through (1,1, — 1) and orthogonal to
i—j—k :

36.

37.

38.

39.

40.

In E

The plane through (1, —1,6) and orthogonal to
i+j+k

The line perpendicular to the plane in Exercise
33 and passing through (0, 0, 3).

The line perpendicular to the plane in Exercise
34 and passing through (1,1, 1).

The line perpendicular to the plane in Exercise
35 and passing through (2,3, 1).

The line perpendicular to the plane in Exercise
36 and passing through the origin.

xercises 41-46, find a unit vector which has the

given property.

41

42.

43.
44.

45.

46.

47.

48.

49.

50.

5L

52.

53.

. Orthogonal to the plane x — 6y + z = 12.
Parallel to the line x=3¢r+1, y=16¢-2,
z=—(1+2).

Orthogonal to i+ 2j — k and to k.

Parallel to both the planes 8x + y+ z=1 and
x—y—z=0.

At an angle of 30° to i and makes equal angles
with j and k.

Orthogonal to the line x =2r—1, y= —¢—1,
z =1+ 2, and the vector i — j.

Suppose that v and w each are parallel to the

(x, y) plane. What can you say about v X w?

Suppose that u, v and w are three vectors. Ex-

plain how to find the angle between w and the

plane determined by u and v.

Describe the set of all lines through the origin in

space which make an angle of #/3 with the x

axis.

Consider the set of all points P in space such that

the vector from O to P has length 2 and makes

an angle of 45° with i + j.

(a) What kind of geometric object is this set?

(b) Describe this set using equation(s) in x, y,
and z.

Let a triangle have adjacent sides a and b.

(a) Show that ¢ =b — a is the third side.

(b) Show thatcXa=c¢cXb.

(c) Derive the law of sines (see p. 263).

Find the equation of the plane through (1,2, —1)

which is parallel to both i — j + 2k and i — 3k.

Thales’ theorem states that the angle ¢ in Fig.

13.R.2(a) is @ /2. Prove this using the vectors a

and b shown in Fig. 13.R.2(b).

LN ()
—
(a) (b)

Figure 13.R.2. Triangle

inscr

54

ibed in a semicircle.

. Show that the midpoint of the hypotenuse of a
right triangle is equidistant from all three verti-
ces.
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Evaluate the determinants in Exercises 55-62.

55.

57.

59.

61.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

1 2 2 -1
Z1 1 56. 0 1'
-1 -1 0 1

! 1‘ 58. | _ 0}
1 -1 1 1 0 0
2 1 1 60. [0 —1 1
1 3 - 0 1 1
1 1 1 -1 0 1
2 2 2 62. 0 0
3 3 3 - 0 -1

Find the area of the parallelogram spanned by

3i—2j+kand 8i — k.

Find the area of the parallelogram spanned by

2i — j and 3i — 2j.

Find the volume of the parallelepiped spanned

byi—j—~k 2i+j— 5k and §i—j+ 1k

Find the volume of the parallelepiped spanned

by 2j+1i,i—j, and k.

The volume of a tetrahedron with concurrent

edges a, b, ¢ is given by V' = (1/6)a - (b X ¢).

(a) Express the volume as a determinant.

(b) Evaluate Vwhena=i+j+k,b=i—j+k,
c=i+].

A tetrahedron sits in xyz coordinates with one

vertex at (0,0,0), and the three edges concurrent

at (0,0, 0) are coincident with the vectors a, b, c.

(a) Draw a figure and label the heads of the
vectors as a, b, c.

(b) Find the center of mass of each of the four
triangular faces of the tetrahedron.

Let r, ..., 1, be vectors from 0 to the masses

my, ..., m,. The center of mass is the vector

(3 (5

i=1 i=1
Show that for any vector r,

n n
2
2 mille—x|* = 3 mlr,— |’ + mr — |,

i=1 i=1

where m = >7_ m; is the total mass of the sys-
tem.

Solve the following equations using Cramer’s
rule (Exercise 43, Section 13.6): x + y=2;
3x —~y=4.

Solve by using determinants (Exercise 45, Sec-
tion 13.6): x—y+2z=4; 3x+y+z=1;

dx—y—z=2.
Use Exercise 50, Section 13.6 to show that
66 628 246 68 627 247
88 435 24|=|86 436 23|.
2 -1 1 2 -1 1

73.

74.

75.

76.

77.

78.

79.

80.

Review Exercises for Chapter 13 693

Evaluate
6 2 -3
2 2 3
4 8§ -1

using Exercise 50, Section 13.6.
Use Exercise 50, Section 13.6 to show that

n n+l n+2
n+3 n+4 n+5
n+6 n+7 n+8

has the same value no matter what n is. What is
this value?
Show that for all x, y, z,

x+2 y z y  x+2 z
z y+1 100= =11 z-x-2 10—z
5 5 2 5 5 2
Show that

1 x x?

Iy y29ﬁ0

1 z 22

if x, y, and z are all different.

If the triple product (v X j) -k is zero, what can
you say about the vector v?

Suppose that the three vectors g;i + b;j + ¢k for
i=1, 2, and 3 are unit vectors, each orthogonal
to the other two. Find the value of

a; b ¢
day b2 Cri-
as by

A sphere of radius 10 centimeters with center at
(0,0,0) rotates about the z axis with angular
velocity 4 radians per second such that the rota-
tion looks counterclockwise from the positive z
axis.
(a) Find the rotation vector 2 (see Section 13.5,
Exercise 36).
(b) Find the velocity v= Xr when r=
5y2 (i — j) is on the “equator.”
A pair of dipoles are located at a distance r from
each other. The magnetic potential energy P is
given by P = —m, - B, (dipole-dipole interaction
potential), where the first dipole has moment m,
in the external field B, of the second dipole. In
MKS units,
—m; + 3(m, - 1)1,

B2= o Aqr3 ’

where 1, is a unit vector, and py is a scalar
constant.
(a) Show that

m, -m; —3(m,-1,)(m,-1,)

P:.u() 3

4y

(b) Find P when m, and m, are perpendicular.
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81.

82.

*(b)

*(c)

83.

84.

*85.

* 86.

Chapter 13 Vectors

(a) Suppose that v-w=0 for all vectors w.
Show that v = 0. [ Note: This is not the same
thing as showing that 0 - w=0.]

(b) Suppose that u-w=v-w for all vectors w.
Show that u=v.

(c) Suppose that v-i=v-.-j=v:k=0. Show
that v=10.

(d) Suppose that u-i=v:i, u-j=v-j, and
u-k =v-k Show thatu=v.

Let A4, B, C, D be four points in space. Consider

the tetrahedron bounded by the four triangles

A= BCD, A,=ACD, A;3=ABD, and

A 4= ABC. The triangle A; is called the ith face

of the tetrahedron. For each i, there is a unique

vector v; defined as follows: v, is perpendicular
to the face A; and points into the tetrahedron;

the length of v, is equal to the area of A;.

(a) Prove that for any tetrahedron ABCD, the

sum vy + v, + v, + v, is zero. [Hint: Use al-

gebraic properties of the cross-product.]

Try to generalize the result of part (a) to

more complicated polyhedra. (A polyhedron

is a solid which is bounded by planar fig-
ures.) In other words, show that the sum of
the inward normals, with lengths equal to
areas of the sides, is zero. You may want to
do some numerical calculations if you can-
not prove anything, or you may want to
restrict yourself to a special class of figures

(distorted cubes, decapitated tetrahedra, fig-

ures with five vertices, and so forth).

There is a physical interpretation to the re-

sults in parts (a) and (b). If the polyhedron

is immersed in a fluid under constant pres-
sure p, then the force acting on the ith face
is pv,. Interpret the result Sv; =0 in this
context. Does this contradict the fact that

water pressure tends to buoy up an im-

mersed object? [Note: There is a version of

all this material for smooth surfaces. It is
related to a result called the divergence theo-
rem and involves partial differentiation and

surface integrals. See Chapter 18.]

Let P=(1,2) and Q =(2,1). Sketch the set of

points in the plane of the form rP + sQ, where r

and s are:

(a) positive integers;

(b) integers;

(c) positive real numbers;

(d) real numbers.

Repeat Exercise 83 with P=(1,2) and Q=

2,4).

Repeat Exercise 83 using the points P =(1,2)

and Q = (7,27). (You may have to guess parts

(a) and (b).)

There are two unit vectors such that if they were

drawn on the axes of Fig. 13.R.3, their heads and
tails would appear to be at the same point (that
is, they would be viewed head on). Approxi-
mately what are these vectors? [Hint: Suppose
that when you tried to plot a point P, the result-
ing dot on the paper fell right where the axes
cross.]

X

Figure 13.R.3. Which unit
vectors would be drawn as
the dot at the orign?

*87.

*88.

*89.

A regular tetrahedron is a solid bounded by four
equilateral triangles. Use vector methods to find
the angle between the planes containing two of
the faces.

In integrating by partial fractions, we are led to
the problem of expressing a rational function

czx2 +x + ¢
(x = r)(x = r)(x —r3)
as a sum
a ) as

X—r  X—ry x-—ry

(a) Show that the undetermined coefficients a,,
a,, a, satisfy a system of three simultaneous
linear equations.

(b) Applying Cramer’s rule (Exercise 45, Sec-
tion 13.6) to this system, show that the deter-
minant D is equal to

1 1 1
rptry rstry oritorl.
rars rary nry

(c) Evaluate the determinant in (b) and show
that it is nonzero whenever r|, r,, and r; are
all different.

(d) Conclude that the decomposition into par-
tial fractions is always possible if r, r,, and
ry are all different.

() What happens if r| = r,7 Give an example.

Read Chapter 5 of Friedrichs’ book, From

Pythagoras to Einstein (Mathematical Associa-

tion of America, New Mathematical Library, 16

(1965)) on the application of vectors to the study

of elastic impacts, and prepare a two-page writ-

ten report on your findings.
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Chapter 14

Curves and
Surfaces

Some three-dimensional geometry is needed for understanding functions of two
variables.

The main subject of this chapter is surfaces in three-dimensional space. In
preparation for this, we begin with a study of some special curves in the plane
—the conic sections. In the last two sections, we will do some calculus with
curves in space. Applications of calculus to surfaces are given in Chapters 15
and 16.

14.1 The Conic Sections

All the curves described by quadratic equations in two variables can be obtained
by cutting a cone with planes.

The ellipse, hyperbola, parabola, and circle are called conic sections because
they can all be obtained by slicing a cone with a plane (see Fig. 14.1.1). The

Figure 14.1.1. Conic
sections are obtained by
slicing a cone with a plane;
which conic section is
obtained depends on the
direction of the slicing
plane. Hyperbola Parabola Circle Eltipse
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Chapter 14 Curves and Surfaces

theory of these curves, developed by Apollonius of Perga (262-200 B.C.), is a
masterwork of Greek geometry. We will return to the three-dimensional origin
of the conics in Section 14.4, after we have studied some analytic geometry in
space. For now, we will treat these curves, beginning with the ellipse, purely as
objects in the plane.

Definition of Ellipse

An ellipse is the set of points in the plane for which the sum of the
distances from two fixed points is constant. These two points are called
the foci (plural of focus).

An ellipse can be drawn with the aid of a string tacked at the foci, as shown in
Fig. 14.1.2.

To find an equation for the ellipse, we locate the foci on the x axis at the
points F' = (—¢,0) and F =(c,0). Let 2a > 0 be the sum of the distances
from a point on the ellipse to the foci. Since the distance between the foci is
2¢, and the length of a side of a triangle is less than the sum of the lengths of
the other sides, we must have 2¢ < 2q; i.e., ¢ < a. Referring to Fig. 14.1.3, we

¥y

F'=(—c,0) F=(0)

X

Figure 14.1.3. P is on
Figure 14.1.2. Mechanical the ellipse when
construction of an ellipse. |FP| + |F'P| = 2a.

see that a point P = (x, y) is on the ellipse precisely when
|FP|+ |F'P| = 2a.
That is,

\/(x + c)2 + y? +\/(x - 0)2 +y* =2a.
Transposing /(x — c)2 + »?, squaring, simplifying, and squaring again yields

(a2 - cz)x2 + 06}2 = a2(a2 - 6‘2).

Let a* — ¢* = b? (remember that @ > ¢ >0 and so @? — ¢*> > 0). Then, after
division by a%?, the equation becomes
2

2
2ty
This is the equation of an ellipse in standard form.

Since b* = a® — ¢* < a’, we have b < a. If we had put the foci on the y
axis, we would have obtained an equation of the same form with 5 > a; the
length of the “string” would now be 24 rather than 2a. (See Fig. 14.1.4) In
either case, the length of the long axis of the ellipse is called the major axis,
and the length of the short axis is the minor axis.

= 1.
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14.1 The Conic Sections 697

Figure 14.1.4. The
appearance of an ellipse in
the two cases b < a and
b>a. @ b<a (b) b>a

0
Y

Example 1  Sketch the graph of 4x? + 9y? = 36. Where are the foci? What are the major
and minor axes?

Solution Dividing both sides of the equation by 36, we obtain the standard form
EA
5 + v 1.

Hence a=3, b=2, and ¢ =ya® — b2 =y5. The foci are (£y5,0), the y
intercepts are (0, £2), and the x intercepts are (% 3,0). The major axis is 6 and
the minor axis is 4. The graph is shown in Fig. 14.1.5.

Figure 14.1.5. The graph of
4x? + 9y? = 36.

Example 2 Sketch the graph of 9x? + y? = 81. Where are the foci?
Solution Dividing by 81, we obtain the standard form x?/3* + y*/9* = 1. The graph is

v
ﬁ sketched in Fig. 14.1.6. The foci are at (0, £6v2 ). A
0,9
*0\6VD)
Ellipse
2 2
3.0 G0 Equation: x_2 +2L =1 (standard form).
x a b2

Foci: (* ¢,0) where ¢ =a*> — b* if a>b.
(0, + ¢) where ¢ = yb* — a* if a<b.

$0./-6v) If a = b, the ellipse is a circle.
x intercepts: (a,0) and (—a,0).

.= y intercepts: (0,b) and (0, — b).
If P is any point on the ellipse, the sum of its distances from the foci is
Figure 14.1.6. The ellipse 2aif b<aor2bifb>a.
9x? + yz = 81. .
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Figure 14.1.7. Mechanical
construction of a
hyperbola.

Figure 14.1.8. P is on the
hyperbola when
|F'P| - |FP|= +2a.

The second type of conic section, to which we now turn, is the hyperbola.

Definition of Hyperbola

A hyperbola is the set of points in the plane for which the difference of
. the distances from two fixed points is constant. These two points are
called the foci.

To draw a hyperbola requires a mechanical device more elaborate than the
one for the ellipse (see Fig. 14.1.7); however, we can obtain the equation in the
same way as we did for the ellipse. Again let the foci be placed at F' = (— ¢, 0)

and F={(c,0), and let the difference in question be 24, a > 0. Since the
difference of the distances from the two foci is 2a and we must have
|F'"P| <|FP|+ |F'F|, it follows that |F'P| — |FP| < |F'F|, and so 2a < 2c.
Thus we must have a < ¢ (see Fig. 14.1.8). The point P = (x, y) lies on the

Asymptote
V.
V.

hyperbola exactly when

\/(x +c)+y? —\/(x — )+ y* = *2a
After some calculations (squaring, simplifying and squaring again), we get
(@ = A+ a¥? = a¥(a® - ).
If we let ¢ — a* = b? (since a < ¢), we get
2

X2 _ Y _
2

2 b
which is the equation of a hyperbola in standard form.

For x large in magnitude, the hyperbola approaches the two lines y =
*(b/a)x, which are called the asymptotes of the hyperbola. To see this, for
x and y positive, we first solve for y in the equation of the hyperbola, ob-
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Figure 14.1.9. The vertical
distance d from the
hyperbola to its asymptote

y=(b/a)x is
g(x—\/xz— a2)
ab

x+\/x2—a2 '

Example 3

Solution

Figure 14.1.10. The
hyperbola
25x% — 16y? = 400.

14.1 The Conic Sections 699
taining y = (b/a)yx* — a® . Subtracting this from the linear function (b/a)x,
we find that the vertical distance from the hyperbola to the line y = (5 /a)x is
given by

=b(x = 2).

To study the behavior of this expression as x becomes large, we multiply by

(x +vyx* — a®)/(x +x* — a®) and simplify to obtain ab/(x + Vx> — a®). As
x becomes larger and larger, the denominator increases as well, so the
quantity d approaches zero, Thus the hyperbola comes closer and closer to the

line. The other quadrants are treated similarly. (See Fig. 14.1.9.)

Sketch the curve 25x% — 16y = 400.

Dividing by 400, we get the standard form x?/16 — »?/25=1, so a = 4 and
b =5. The asymptotes are y = * 2x, and the curve intersects the x axis at
(=4,0) (see Fig. 14.1.10). A

y
\\ 0,0)
,C
N ///\ b
; / y=;x
2 Y
y2 ,%:1 \\(O,b) /
b a N | ,
2
/0,
W .
7,
y

Figure 14.1.11. A
hyperbola with foci
on the y axis.

If the foci are located on the y axis, the equation of the hyperbola takes the
second standard form y*/b* — x*/a* = 1 (see Fig. 14.1.11).

Notice that if we draw the rectangle with (= «,0) and (0, = b) at the
midpoints of its sides, then the asymptotes are the lines through opposite
corners, as shown in Figs. 14.1.10 and 14.1.11.
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Example 4 Sketch the graph of 4y% — x2 =4.

Solution Dividing by 4, we get y> — x?/2? = 1, which is in the second standard form
with 2 =2 and b = 1. The hyperbola and its asymptotes are sketched in Fig.

14.1.12. A
y‘t/Focus= 0,V5)
~
R (0.1) —
y=-x/27>2 — T y=x]2

Figure 14.1.12. The =" S

4
hyperbola 4y? — x? = 4. ™ Focus = (0,—/3)

Hyperbola
Case 1: Foci on x axis Case 2: Foci on y axis
on: X2 _ Y0 _ X
Equation: ?_—b?— ?_?“1
Foci: (% ¢,0), c =ya* + b* 0, *¢), c =ya*+ b*
x intercepts: (% a,0) none
y intercepts: none 0, £b)
Asymprotes: y = £ %x y== gx
If P is any point on the hyperbola, the difference between its distances
from the two foci is 2a in case 1 and 25 in case 2.

We are already familiar with the circle and parabola from Section R.5. The
circle is a special case of an ellipse in which a = b; that is, the foci coincide.
The parabola can be thought of as a limiting case of the ellipse or hyperbola,
in which one of the foci has moved to infinity. It can also be described as
follows:

Definition of Parabola

A parabola is the set of points in the plane for which the distances from
a fixed point, the focus, and a fixed line, the directrix, are equal.

Placing the focus at (0,c) and the directrix at the line y = — ¢ leads, as above,
to an equation relating x and y. Here we have (see Fig. 14.1.13) | PF| = | PG]|.

l= (x.»)

Figure 14.1.13. P is on the -
parabola when y=c
|PF| =|PG|.

Directrix G=(x,—c)

That is, x>+ (y —¢)> =|p+c|, so x2+(y — c)* = (y + c)’, which gives
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Example 5

Solution

Axis

Focus ¢

Figure 14.1.14. The angles
a and B are equal.

Example 6

Solution

Figure 14.1.15. Find the
focus of the searchlight.

14.1 The Conic Sections 701

x?—dcy =0,

x2

" 4c
which is the form of a parabola as given in Section R.5.
If we place the focus at (¢, 0) on the axis and use x = — ¢ as the directrix,
we get the “horizontal” parabola x = y?/4c.

Parabola

Case 1: Focus on y axis Case 2: Focus on x axis

] M = 2 = ——1— = 2 = L
Equation: y = ax (a Ac ) x = by (b e )
Focus: (0,c) (c,0)

Directrix: y = —c¢ x=-c

If P is any point on the parabola, its distances from the focus and
directrix are equal.

(a) Find the equation of the parabola with focus (0,2) and directrix y = —2.
(b) Find the focus and directrix of the parabola x = 10y2.

(a) Here ¢ =2, s0 a=1/4c = 1/8, and so the parabola is y = x*/8.
(b) Here b=10=1/4c, so ¢ = 1/40. Thus the focus is (1/40,0) and the
directrix is the line x = —1/40. A

The conic sections appear in a number of physical problems, two of which will
be mentioned here; we will see additional ones in later sections. The first
application we discuss is to parabolic mirrors. The parabola has the property
that the angles « and 8 shown in Fig. 14.1.14 are equal. This fact, called the
reflecting property of the parabola, was demonstrated in Review Exercise 86 of
Chapter 1. Since the angles of incidence and reflection are equal for a beam of
light, this implies that a parallel beam of light impinging on a parabolic mirror
will converge at the focus. This is the basis of parabolic telescopes (visual and
radio) as well as solar-energy collectors. Similarly, a searchlight will produce a
parallel beam of light if a light source is placed at the focus of a parabolic
mirror.

A parabolic mirror for a searchlight is to be constructed with width 1 meter
and depth 0.2 meter. Where should the light source be placed?

We set up the parabola on the coordinate axes as shown in Fig. 14.1.15. The
equation of the parabola is y = ax’. Since y =02 when x =0.5, we get

Vi

|
—1 m—

ot N | A

=

a=02/025=0.8. The focus is at (0,c), where a=1/4c, so c=1/4a=
0.3125. Thus the light source should be placed on the axis, 0.3125 meters from
the mirror. &
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Example 7

In courses in mechanics, it is shown that bodies revolving about the sun
(planets, asteroids, and comets) do so in elliptic, parabolic, or hyperbolic
orbits with the sun at one focus. We shall see part of the derivation of this fact
in Section 14.7. Most planetary orbits are nearly circular. To measure the
departure from circularity, the eccentricity is introduced. It is defined by

c

e= =,

a
where a, b, and ¢ are defined as on p. 697, with @ > b. Thus a and b are the
semi-major and semi-minor axes and ¢ is the distance of a focus from the

center; ¢ =vya* — b%. An ellipse is circular when e = 0, and as e approaches 1,
the ellipse grows longer and narrower.

The eccentricity of Mercury’s orbit is 0.21. How wide is its orbit compared to

its length?

Solution

Since e =021, ¢ =0.2la, so ¢Z=a?— b? and therefore b>=a

2_ 2o

a*(1 — (0.21)%) = 0.95594> Hence b =~ 0.9777a, so the orbit is 0.9777 times as

wide as it is long. A

Exercises for Section 14.1

1. Sketch the graph of x2+9y2= 36. Where are 17. A parabola with vertex at (0,0) and passing
the foci? through (2, 1).
2. Sketch the graph of x? + 4y* = 1. Where are the 18. The circle centered at (0, 0) and passing through
foci? (L.
3. Sketch the graphs of x*+ 4y2 =4, x?+ y?=4, 19. The hyperbola with foci at (0,2) and (0, —2) and
and 4x? + 4% = 4 on the same set of axes. passing though (0, I). ,
4. Sketch the graphs of x2 + 9y2 =9,9x2+ y2 =9, 20. The ellipse with x intercept (1,0) and foci (0, —2)
and 9x2 + 9y? = 9 on the same set of axes. and (0,2).
5. Sketch the graph .Of y* = x*=2, showing its 21. A parabolic mirror to be used in a searchlight
asymptotes and foci. 2 ) . has width 0.8 meters and depth 0.3 meters.
6. :sker:l(;)}:ottetea f;aff)}cl of 3x=2+y" showing Where should the light source be placed?
Yy 1 22. A parabolic disk 10 meters in diameter and 5
7. Sketch the graphs x* + 4y* =4 and x* — 4y* =4 meters deep is to be used as a radio telescope.
on the same set of axes. I Where should the receiver be placed?
8. Sketch the graphs of x” — )" =4 and x* + )" =4 23. The eccentricity of Pluto’s orbit is 0.25. What is
. on the same set of axes. . . the ratio of the length to width of this orbit?
Find the equation of the parabolas in Exercises 9 and 24. A comet has an orbit 20 times as long as it is
10 with the given focps an.d directrix. wide. What is the eccentricity of the orbit?
9. Focus (0,4), dTrectr%xy =-4 *235. Prove the reflecting property of the ellipse: light
. 10. Focus (0,3), dlrectrl?(y = -3 ) originating at one focus converges at the other
Elnd the focus and directrix of the parabolas in Exer- (Hint: Use implicit differentiation.)
cises 11-14. 5 , *26. A planet travels around its sun on the polar path
11.y=x2 12.y=5x2 r=1/(2 + cos$), the sun at the origin.
13. x=y 14. x =4y (a) Verify that the path is an ellipse by chang-

Find the equations of the curves described in Exercises
15-20.
15. The circle with center (0, 0) and radius 5.
16. The ellipse consisting of those points whose dis-
tances from (—2,0) and (2,0) sum to 8.

ing to (x, y) coordinates.
(b) Compute the perihelion distance (minimum
distance from the sun to the planet).
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Example 1

Solution

Figure 14.2.1. The graph
(x=52/9+(y—42/4=1
is an ellipse centered at

(3,4).

14.2 Translation and Rotation of Axes 703

Translation and Rotation of Axes

Whatever their position or orientation, conics are still described by quadratic
equations.

In Section R.5 we studied the shifted parabola: if we move the drigin to (p,9),
y = ax* becomes (y — q) = a(x — p)>. We can do the same for the other
conic sections:

Shifted Conic Sections
% — p)? N2
Shifted ellipse: af LU bzq) =1 (shifted circle if a = b).
x — ) _ 82
Shifted hyperbola: ( 2]?) - & bzq) =1 (horizontal);
a
N2 ¥ — p)?
&4 bzq) — ( azp) =1 (vertical).
Shifted parabola: y — q = a(x — ]g)2 (vertical);
x—p=b(y—gq) (horizontal).
2 2 x —5)? — 4y’
Graph the ellipse % + 2 =1 and shifted ellipse ( ) + =9 =1

9 4 9 4

on the same xy axes.

The graph of x?/9 + »?/4 =1 may be found in Fig. 14.1.5. If (x, y) is any
point on this graph, then the point (x + 5, y + 4) satisfies the equation
(x = 5)*/9+ (y — 4?/4 = 1; thus the graph of (x — 52/9 + (y —4)*/4=1is
obtained by shifting the original ellipse 5 units to the right and 4 units upward.
(See Fig. 14.2.1.) A

2 2
CRITRO

g 9
shift ellipse to (5,4)

- .
N x

+L =

a5

Although we referred to the second graph in Example 1 as a “shifted ellipse,”
it is really just an ellipse, since it satisfies the geometric definition given in
Section 14.1. (Can you locate the foci?) To emphasize this, we may introduce
new “shifted variables,” X =x —5 and Y = y — 4, for which the equation
becomes X2/9 + Y?/4 = 1. If we superimpose X and Y axes on our graph as
in Fig, 14.2.2, the “shifted” ellipse is now centered at the origin of our new
coordinate system. We refer to this process as translation of axes.
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704 Chapter 14 Curves and Surfaces

Figure 14.2.2. The ellipse

(x =529+ (y—4?/4=1
is centered at the origin

in a shifted coordinate
system.

Example 2

Solution

Figure 14.2.3. The
hyperbola
x2— 4y —2x + 16y = 19.

v Ya
I
|
I
I
I

=Y

The importance of translation of axes is that it is possible to bring any
equation of the form

Ax*+ C*+ Dx+ Ey+ F=0 (1)
into the simpler form

AX*+ CY*+G=0 2)
of a conic by letting X =x —a and Y=y — b for suitable choices of
constants @ and b. Thus, (1) always describes a shifted conic. The way to find
the quantities a and b by which the axes are to be shifted is by completing the
square, as was done for circles and parabolas in Chapter R. (Notice that in
equation (1) there is no xy term. We shall deal with such terms by means of
rotation of axes in the second half of this section.)
Sketch the graph of x* — 4y — 2x + 16y = 19.
We complete the square twice:

x2—2x=(x— 1)2— [

—4y” + 16y = —4(y* —4y) = —4[(y -2’ - 4].
Thus

0=x>—4y>—2x+ 16y — 19=(x — 1)°~ 1 —4[()}—2)2—4] —19

=(x— 1y’ —4(y -2y’ —4.

Hence our equation is

x — 1)?
(_4)-—(y—2)2=1

which is the hyperbola x?/4 — y* = 1 shifted over to (1,2). (See Fig. 14.2.3.)

An alternative procedure is to write
x*—4y? —2x + 16y — 19 = (x — a)’— 4(y — b)’+ G.
Expanding and simplifying, we get
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Example 3

Solution

y
X
41 3
.-

Figure 14.2.4. The parabola
Y +x+3y—-8=0.

Figure 14.2.5. The XY
coordinate system is
obtained by rotating the xy
system through an angle a.

14.2 Translation and Rotation of Axes 705

—2x+ 16y — 19= —2ax + o’ + 8by — 4b + G.
We find a, b, and G by comparing both sides, which gives a = 1, b = 2, and
—19=0a>-4b>+ G, or G=—19—1+ 16 = —4. This gives the same an-
swer as above. A

Sketch the curve y* + x + 3y — 8 = 0.

Completing the square, we get y*> + 3y = (y + 2)* — 2, so that p? + x + 3y — 8
=0 becomes (y+3)’+ x —4 =0; that is, x —4 = —(y + )% This is a
shifted parabola opening to the left, as in Fig. 14.2.4. A

We next turn our attention to rotation of axes. The geometric definitions of
the ellipse, hyperbola, and parabola given in Section 14.1 do not depend on
how these figures are shifted or oriented with respect to the coordinate axes.
In the preceding examples we saw how the equations are changed when the
coordinate axes are shifted; now we examine how they are changed when the
axes are rotated.

In Figure 14.2.5 we have drawn a new set of XY axes which have been

Yi

rotated by an angle « relative to the old xy axes. The corresponding unit
vectors along the axes are denoted i, j and L, J, as shown in the figure.
To understand how to change coordinates from the xy to XY systems, we
will use vector methods. Note that as vectors in the plane,
I=icosa + jsina

)

Observe that either a direct examination of Fig. 14.2.5 or the fact that
J =k XI can be used to derive the formula for J.

Now consider a point P in the plane and the vector v from O to P. The
coordinates of P relative to the two systems are denoted (x, y) and (X, 7Y),
respectively, and satisfy

v=xi+yj=XI+YJ ©)
Substituting (3) into (4), we get
xi+ yj= X(icosa + jsina) + Y(—isina + jcosa).

J= —isina + jcosa.

Comparing coefficients of i and j on both sides gives
x=Xcosa — Ysina 5
y= Xsina + Ycosa. ()

To solve these equations for X, Y in terms of x, y, we notice that the roles
of (X, Y) and (x, y) are reversed if we change & to — a. In other words, the Xy

Copyright 1985 Springer-Verlag. All rights reserved



706 Chapter 14 Curves and Surfaces

axes are obtained from the XY axes by a rotation through an angle — . Thus
we can interchange (x, y) and (X, Y) in (5) if we switch the sign of a:

X =xcosa + ysina
(6)

Y= —xsina + ycosa.

This conclusion can be verified by substituting (6) into (5) or.(5) into (6).

Example 4 Write down the change of coordinates corresponding to a rotation of 30°.

Solution We have cos30° =y3 /2 and sin30° = 1/2, so (5) and (6) become

x=gX-%Y,

y=%X+gY
andX=gx+%y,

Y %x+§y.‘

Now suppose we have a rotated conic, such as the ellipse shown in Fig.
14.2.6. In the XY coordinate system, such a conic has the form given by (1):

y
Y
E X
[44
Figure 14.2.6. The conic is %
aligned with the rotated
coordinate system (X, Y)
but is rotated relative to the
(x, y) coordinate system.
AX*+ CY?*+ DX+ EY+ F=0. (7)

Substituting (6) into (7) gives

A (xcosa + ysina)’+ C(—xsina + ycosa)’

+D(xcosa + ysina) + E(—xsina + ycosa) + F =0.

Expanding, we find

Ax2+Bxy+Cy2+Dx+Ey+F=0, 8)
where

A = 4 cos’a + C sin‘a,

B= (I— E) -2cosasina = (Z— f)sinZa,

C

A sin’e + C cos’a,

®

= Dcosa — Esina, (

D
E = Dsina + E cosa,
F=F.
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Notice the introduction of the xy term in (8). If we are given an equation
of the form (8), we may determine the type of conic it is and the rotation angle
a by finding the rotated form (7). To accomplish this, we notice from (9) that

A — C= A4 (cos’a — sin’a) — C (cos’a — sin’a)

= (A — C)cos2a.
Therefore,
B=(4—C)sin2a = (4 - C)tan2a.
Thus,
B
tan2a = i-cC (10)

(a=45° if A= C). Equation (10) enables one to solve for « given equa-
tion (8).

Equation (8) will describe an ellipse only when (7) does, i.e., when 4 and
C have the same sign, or AC > 0. To recognize this condition directly from
(8), we use (9) to obtain

AC = (Acos’a+ C sin’e)(4 sin’a + C cos’a)
= (A% + CHcos’asin’a + AC (cos’a + sina).

However, B =(4 —C)2cosasina, so 1B*=(4%+ C*— 24C)(cosx sin%a),
and thus

AC — {B? = AC (cos*a + sin‘a + 2 cos’a sin’a)
= AC (cos’a + sinza)2= AC.

Thus (8) is an ellipse if AC — 1 B*>0; ie,, B2~ 44C < 0. The other conics
are identified in a similar way, as described in the following box.

Rotation of Axes
The equation
Ax*+ Bxy+ Cy*+ Dx + Ey+ F=0
(with 4, B, and C not all zero) is a conic; it is

an ellipse if B2 —44C < 0;
a hyperbola if B> —44C > 0;
a parabola if B2 —44C = 0.

To graph this conic, proceed as follows:

. _ B
1. Find a from a = }tan ’[ - }

2. Let x=Xcosa — Ysina, y = Xsina + Ycosa, and substitute into
the given equation. You will get an equation of the form

AX?+ CY*+ DX+ EY+ F=0.

3. This is a shifted conic in XY coordinates which may be plotted by
completing the square (as in Examples 2 and 3).

4. Place your conic in the XY coordinates in the xy plane by rotating
the axes through an angle o, as in Figure 14.2.6.
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Example 5 What type of conic is given by x* + 3y% — 23 xy + 23 x + 2y = 0?
Solution This is a rotated conic because it has an xy term. Here 4 =1, B = -2/3,
C=3, D=2y3, and E=2. To find the type, we compute the quantity
—44C=4-3—-4-3=0, so this is a parabola. A
Example 6 Sketch the graph of the conic in Example 5.

Solution We follow the four steps in the preceding box:

la=4tan”'[B/(4~ C)] =4tan"'[ =23 /(1 -3)]

=ltan~ 13 = 7/6.
Thus a = 7 /6 or 30°.
2. As in Example 4, we have
x = gx—%Y and y= 1X+%Y

Substituting into x? + 3y® — 2/3 xy + 2y3 x + 2y = 0, we get

Y)H(% +_g3_y)2

x-1 )(%X+ 3 Y)

2 2

Y)+2(1X+gy)=0.

1
2
_2[(

& wlﬁ

X —

+2J_(

Expanding, we get

3,2, 1,2 3 3.2, 92, 33
(4X +4Y TXY)+(4X +4Y+ > XY

~|
l\)lt—‘
[\®]

—2\/—( By Ixy- ‘/j_ 2)+3X—J3_Y+X+\/§Y=0
which simplifies to 4Y2 +4X =0or X = — Y2

3. The conic X = — Y? is a parabola opening to the left in XY coordi-
nates.

4. We plot the graph in Fig. 14.2.7. A

30°

Figure 14.2.7. The graph of
x*+3y2— 23 xp +
2y3 x + 2y =0.
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Example 7 Sketch the graph of 3x” + 3y? — 10xy + 18y2 x — 14/2 y + 38 = 0.

Solution Let us first determine the type of conic. Here B2 —4A4C=100—4-3-3
=100 — 36 = 64 > 0, so it is a hyperbola.

la=Jtan"'[B/(4 — C)]=Ltan"'o0 = 7 /4 or 45°.
2. x=(1/2)X - Y), »=(/¥2)X + Y); substituting and simplifying, one
arrives at
X?—4Y?-2X +16Y — 19 =0.
3. This is the hyperbola in Fig. 14.2.3.
4. See Fig. 14.2.8. A

y
Y/ /
= S
N Y:_/f \ 4 /X
\ // O ///
y )\ N -7
/ */ 7/
& // |7
/// \ VAR
//7‘\}; N
! -
Figure 14.2.8. The graph of | x
3x243y*— 10xy + s /
182 x — 14\/7y+38=0.

Exercises for Section 14.2

Sketch the graphs of the conics in Exercises 19-22.
In Exercises 1-4, graph the conics and shifted conics on 19. The conic in Exercise 15.
the same xy axes. 20. The conic in Exercise 16.
I y= ——xz,y —2=—(x+ 12 21. The conic in Exercise 17.
2 xr— =1, (x =22 — (y+372=1. 22. The conic in Exercise 18.

3. x2 +y2 =4, (x + 37+ (y— 8): = 4. Find the equations of the curves described in Exercises

4. x2/9+y2/16=1, (x = 1)’/9+(y —2)*/16=1. 23-28.

Identify the equations in Exercises 5—10 as shifted conic 23. The cirFle with center (2,3) and re.ldius > .
sections and sketch their graphs, 24. The ellipse consisting of those points whose dis-

5 %2 +y2 —2x =0 tances from (0, 0) and (2,0) sum to 8.
6. x?+4y? - 8y =0 25. The parabola with vertex at (1,0) and passing
7. 952 + 4y2 —6y =8 through o, 1 a.nd 2, 1.
8 x4+ 2x+ 22y =2 26. The circle passing through (0,0), (1,1), and (2, 0).
9. x242x—p2—2y=1 27. The Ihyperbola with foci at (0, — 1) and (0, 3) and
10. 3x% - 6x + y=7=0 passing through (0, 2).

In Exercises 11-14, write down the transformation of 28. The ellipse with x intercept (1,0) and foci (0,0) and

coordinates corresponding to a rotation through the ©,2).
given angole. 29. Find the equation of the conic in Exercise 8
IL. 600 12. /4 rotated through 7 /3 radians.
13. 15 14. 27/3 30. Find the equation of the conic in Exercise 9
In Exercises 15-18, determine the type of conic. rotated through 45°.
15. xy =2. 31. Show that 4 + C is unchanged under a rotation
16. x>+ xy + y2 =4, or translation of axes.
3 32. Show that D?+ E? is unchanged under a rota-
17 252 43 2y - 48 : : -
i x E)’ 5 Xy = 4o. tion of axis, but not under translation.
R ; 6 6 *33. Show that if B> —4A4C < 0, the area of the el-
18. 3x*+3y" —2xp — —x— — y=8. i
V2 V2 ‘ lipse Ax*>+ Bxy + Cy*=11is 2m/\J4AC — BZ.
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14.3 Functions, Graphs, and

Figure 14.3.1. Isotherms
are lines of constant
temperature (in degrees
Celsius).

Level Surfaces

The graph of a function of two variables is a surface in space.

The daily weather map of North America shows the temperatures of various
locations at a fixed time. If we let x be the longitude and y the latitude of a
point, the temperature 7T at that point may be thought of as a function of the
pair (x, y). Weather maps often contain curves through points with the same
temperature. These curves, called isotherms, help us to visualize the tempera-
ture function; for instance, in Fig. 14.3.1 they help us to locate a hot spot in
the southwestern U.S. and a cold spot in Canada.

Functions of two variables arise in many other contexts as well. For
instance, in topography the height 4 of the land depends on the two coordi-
nates that give the location. The reaction rate ¢ of two chemicals 4 and B
depends on their concentrations @ and b. The altitude « of the sun in the sky
on June 21 depends on the latitude / and the number of hours ¢ after
midnight.

Many quantities depend on more than two variables. For instance, the
temperature can be regarded as a function of the time ¢ as well as of x and y
to give a function of three variables. (Try to imagine visualizing this function
by watching the isotherms move and wiggle as the day progresses.) The rate of
a reaction involving 10 chemicals is a function of 10 variables.

In this book we limit our attention to functions of two and three
variables. Readers who have mastered this material can construct for them-
selves, or find in a more advanced work,! the generalizations of the concepts
presented here to functions of four and more variables.

! See, for example, J. Marsden and A. Tromba, Vector Calculus, Second Edition, W. H. Freeman
and Co., 1980.
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The mathematical development of functions of several variables begins
with some definitions.

Functions of Two Variables

A function of two variables is a rule which assigns a number f(x, y) to
each point (x, y) of a domain in the xy plane.

Example 1 Describe the domain of f(x, y) = x/(x* + y?). Evaluate f(1,0) and f(1,1).

Solution  As given, this function is defined as long as x% + y?+0, that is, as long as
(x, ) # (0,0). We have

£(1,0) = 12102 =1 and f(1,1)=

1 __1
2+12 27

A

The Graph of a Function

The graph of a function f(x, y) of two variables consists of all points
(x, y,2) in space such that (x, ») is in the domain of the function and

z = f(x, y).

Some particularly simple graphs can be drawn on the basis of our work in
earlier chapters.

Example 2  Sketch the graph of (a) fx,y)=x—p+2and (b) f(x, y) =3x. .

Solution (a) We recognize z = x — Y+ 2 (thatis, x — y — z + 2 = 0) as the equation of
a plane. Its normal is (1, — 1, — 1) and it meets the axes at (—2,0,0),(0,2,0),
(0,0,2). From this information we sketch its graph in Fig. 14.3.2.
(b) The graph of f(x, y) = 3x is the plane z = 3x. It contains the y axis and is
shown in Fig. 14.3.3. &

X

Figure 14.3.3. The graph of
z=3x.

Figure 14.3.2. The graph of
z=x—y+2isaplane.
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Using level curves instead of graphs makes it possible to visualize a function
of two variables by a two-dimensional rather than a three-dimensional picture.

Level Curves

Let f be a function of two variables and let ¢ be a constant. The set of all
" (x, y) in the plane such that f(x, y) = ¢ is called a level curve of f (with
value ¢).

Isotherms are just the level curves of a temperature function, and a contour
plot of a mountain consists of representative level curves of the height
function.

Example 3 Sketch the level curves with values —1,0,1 for f(x, y) = x — y + 2.

Solution The level curve with value —1 is obtained by setting f(x, y) = —1; that is,
x—y+2=-1, thatis, x—y+3=0,

which is a straight line in the plane (see Fig. 14.3.4). The level curve with value
v zero is the line

x—y+2=0,
/ ¥ :‘2’+10:0 and the curve with value 1 is the line
x—y+2=
// Xx—p+3=0 x—y+2=1, thatis, x—y+1=0. A

4 Figure 14.3.4. Three level
=0 curves of the function

c=-1 f ) =x—y+2

Example 4 How is the intersection of the plane z = ¢ with the graph of f(x, y) related to
" the level curves of f? Sketch.

Solution The intersection of the plane z = ¢ and the graph of f consists of the points
(x, y,c) in space such that f(x, y) = c. This set has the same shape as the level
curve with value ¢, but it is moved from the xy plane up to the plane z = c.
(See Fig. 143.5.) A

Graph of f(x,y)

Figure 14.3.5. The level
curve of f(x, y) with value ¢ /_
is obtained by finding the d
intersection of the graph of
f with the plane z = ¢ and
moving it down to the

(x, y) plane. x Y re=e

We turn now to functions of three variables.

Functions of Three Variables

A function of three variables is a rule which assigns a number f(x, y,z) to
each point (x, y,z) of a domain in (x, y,z) space.
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Example 5

Solution

Figure 14.3.6. Three level
surfaces of the function
fx, p,2)=x—y+:z+2.

Figure 14.3.7. The level
surface of x? + y2 + 22~ 8
with value 1 is a sphere of
radius 3.

14.3 Functions, Graphs, and Level Surfaces 713

The graph of a function w = f(x, y,z) of three variables would have to lie in

four-dimensional space, so we cannot visualize it; but the concept of level
curve has a natural extension.

Level Surfaces

Let f be a function of three variables and let ¢ be a constant. The set of
all points (x, y, z) in space such that f(x, y,z) = c is called a level surface
of f (with value c).

(a) Let f(x, y,z) = x — y + z + 2. Sketch the level surfaces with values 1,2,3.
(b) Sketch the level surface of f(x, y,z) = x> + y* + 22 — 8 with value 1.

(a) In each case we set f(x, y,z) = c:
c=1 x—y+z+2=1 (thatis,x—y+z+l=0),
c=2: x—y+z+2=2 (thatis,x—y+z=0),
=3 x—y+z+2=3 (thatis, x —y +z — 1 =0).

These surfaces are parallel planes and are sketched in Fig. 14.3.6.

z

X

(b) The surface x*+ y>+ z2—8=1 (that is, x>+ y?+ z>=9) is the set
of points (x, y,z) whose distance from the origin is Y9 = 3; it is a sphere with
radius 3 and center at the origin. (See Fig. 14.3.7.) A

Plotting surfaces in space is usually more difficult than plotting curves in the
plane. It is rare that plotting a few points on a surface will give us enough
information to sketch the surface. Instead we often plot several curves on the
surface and then interpolate between the curves. This technique, called the
method of sections, is useful for plotting surfaces in space, whether they be
graphs of functions of two variables or level surfaces of functions of three
variables. The idea behind the method of sections is to obtain a picture of the
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714 Chapter 14 Curves and Surfaces

Figure 14.3.8. The section
z = ¢ of the graph

z=f(x, y).

Example 6

Solution

Example 7

Solution

surface in space by looking at its slices by planes parallel to one of the
coordinate planes. For instance, for a graph z = f(x, y) the section z = ¢ is
illustrated in Fig. 14.3.8.

z

/z = constant / z=f(x,y)

! >
\ Level curve in f

x xy plane

Sketch the surfaces in xyz space given by (a) z = —y? and (b) x* + y* = 25.

(a) Since x is missing, all sections x = constant look the same; they are copies
of the parabola z = — y2. Thus we draw the parabola z = — y* in the yz plane
and extend it parallel to the x axis as shown in Fig. 14.3.9. The surface is
called a parabolic cylinder.

Figure 14.3.9. The graph

z = —y?is a parabolic

cylinder. Figure 14.3.10. The graph
x? + y?=25is a right
circular cylinder.

(b) The variable z does not occur in the equation, so the surface is a cylinder
parallel to the z axis. Its cross section is the plane curve x* + y? = 25, which is
a circle of radius 5, so the surface is a right circular cylinder, as shown in Fig.
14.3.10. A

(a) Sketch the graph of f(x, y) = x>+ y? (this graph is called a paraboloid of
revolution). (b) Sketch the surface z = x* + y* — 4x — 6y + 13. [Hint: Com-
plete the square.] ’

(a) If we set z = constant, we get x> + y? = ¢, a circle. Taking ¢ = 13, 22 3% 4,
we get circles of radius 1, 2, 3, and 4. These are placed on the planes
z=12=1,2z=22=4,z=3*=09, and z = 4> = 16 to give the graph shown in
Fig. 14.3.11.

If we set x = 0, we obtain the parabola z = y2; if we set y = 0, we obtain
the parabola z = x2. The graph is symmetric about the z axis since z depends

only on r = x>+ y?.
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14.3 Functions, Graphs, and Level Surfaces 715
(b) Completing the square, we write z = x> + y* — 4x — 6y + 13 as

z=x*—4x+ yr—6y +13
=x>—4x+4+ 2 -6y +9+ 13— 13
=(x -2+ (y -3~

The level surface for value ¢ is thus the circle (x —2)* + (y — 3)* = ¢ with
center (2,3) and radius ¢ . Comparing this result with (a) we find that the
surface is again a paraboloid of revolution, with its axis shifted to the line
(x, y)=(2,3). (See Fig. 14.3.12.) A

Z4

z)

,

|

|

l

+

I

)

7/ 7

@ L_{x =2
W=
X

Figure 14.3.11. The Figure 14.3.12. The graph
sections of the graph z=x?+y*—4x — 6y + 13
z=x%+ y*byplanes z = ¢ is a shifted paraboloid of

are circles. revolution.

Plotting Surfaces: Methods of Sections

1. Note any symmetries of the graph.

2. See if any variables x, y, or z are missing from the equation. If so, the
surface is a “cylinder” parallel to the axis of the missing variable, and
its cross section is the curve in the other variables (see Example 6).

3. If the surface is a graph z = f(x, y), find the level curves f(x, y) = c
for various convenient values of ¢ and draw these curves on the
planes z = ¢. Smoothly join these curves with a surface in space.
Draw the curves obtained by setting x = 0 and y = 0 or other conve-
nient values to help clarify the picture.

4. If the surface has the form F(x, y,z) = ¢, then either:

(a) Solve for one of the variables in terms of the other two and use
step 2 if it is convenient to do so.

(b) Set x equal to various constant values to obtain curves in y and z;
draw these curves on the corresponding x = constant planes.
Repeat with y = constant or z = constant or both. Fill in the
curves obtained with a surface.
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Figure 14.3.13. The graph
of z= x*+ y? drawn by
computer in two ways.

In the next section, we will use our knowledge of conic sections to plot the
graphs of more complicated quadratic functions.

The computer can help us graph surfaces that may be tedious or impossi-
ble to plot by hand. The computer draws the graph either by drawing sections
perpendicular to the x and y axes or by sections perpendicular to the z
axis—that is, level curves lifted to the graph. When this is done for the
function z = x% + y2 (Example 7), Figs. 14.3.13(a) and 14.3.13(b) result. (The
pointed tips appear because a rectangular domain has been chosen for the
function.)?

The computer-generated graph in Fig. 14.3.14 shows the function
z= (x2 + 3y2)e1‘(x2+y2).

Fig. 14.3.15 shows the level curves of this function in the xy plane, viewed first
from an angle and then from above. Study these pictures to help develop your
powers of three-dimensional visualization; attempt to reconstruct the graph in
your mind by looking at the level curves.

2 The authors are indebted to Jerry Kazdan for preparing most of the computer-generated graphs
in this book.
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Figure 14.3.14. Computer-
generated graphs of
z=(x2+3pe! 0,

(a)

(b)

Figure 14.3.15. Level
curves for the function
z={(x% 4 3y2)e! )
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Exercises for Section 14.3

In Exercises 1-8, describe the domain of each of the
given functions and evaluate the function at the indi-
cated points.

L fex )= 25.0,0,0,1)

2. f(x, y) = ;i_i; a, -1y, (1,0.9).

x+y

3. flx,y)= ——2—
fx ) x2+y?-1

s (LD, (=11,

2
4. f(x, y) = Tﬁg; 1,1y, (= 1,1).

5. it po2) = T2 T2 (11,1), (0,0,2).
x“+y +zi—1
6. f(x,y,z) = ——2——(1,05,1), (0.1,0.5, 1).
fx,y g ( ) ( )
2x — sin
7. f(x, y) = —1Tosxy ; (0,7/4), (n/4,7).
X _ o)
8. f(x, ) = {3 O, 1 (7/4, = 1).

Sketch the graphs of the functions in Exercises 9-12.
9. f(x,y)=1=—x—y 10. f(x, y)=—-1—-x—y
Il.z=x~y 12. z=x+2

Sketch the level curves for the indicated functions and

values in Exercises 13-18.

13. f in Exercise 9, values 1, —1.

14. f in Exercise 10, values [, — .

15. f in Exercise 3, values —2, —1,1,2 and describe
the level curve for the general value.

16. f in Exercise 4, values —2, —1,1,2 and describe
the level curve for the general value.

17. f in Exercise 2, values —2, —1, 1,2 and describe
the level curve for the general value.

18. f(x, y) = 3=V value 1/ e.

Sketch the level surfaces in Exercises 19-22.

19. x+y—2z=8 20. 3x -2y —z=4
21.x2+y2+22=4 22.x2+y2—z=4

Draw the level curves f(x, y) = c—first in the xy plane

and then lifted to the graph in space—for the functions

and values in Exercises 23-26.

23. f(x, y) = x2 + 2y2; c=0,12.
24. f(x, y)=x*—y% c=—-1,0,1
25. f(x, y)=x —y2; c=-2,02.
26. f(x, )=y — x%ec=-1,0,1.

Sketch the surface in space defined by each of the

equations in Exercises 27—40.
27 z=x2+2
29. 22+ x%2=4
3Lz=(x— 17 +y?

33 z=x*+y?L2x +8.
34, z=3x2+3y2 —6x + 12y + 15.

35. z=yx>+ »?

36. z = max(|x|, | y|). [Note: max(|x|,|y|) is the maxi-
mum of |x| and |y|.]
37. z = sin x (the “washboard”).

28. z =y
30. x2+y=2
3. x=—8z2+z

38.
39.
40.
41.

842

43.

*44.

z=1/(1+ y?.

4x?+ y? + 922 =1.

x2+4y* + 1622 =1.

Let f(x, y) = e~ /439 £(0,0) = 0.

(a) Skeich the level curve f(x, y)=c for ¢ =
0.001, c =0.01, c = 0.5, and ¢ = 0.9.

(b) What happens if ¢ is less than zero or
greater than 1?7

(c) Sketch the cross section of the graph in the
vertical plane y = 0 (that is, the intersection
of the graph with the xz plane).

(d) Argue that this cross section looks the same
in any vertical plane through the origin.

(e) Describe the graph in words and sketch it.

The formula

2x
G-y Y+

appears in the study of steady state motions of a

mechanical system with viscous damping sub-

jected to a harmonic external force. The average
power input by the external force is proportional
to the variable z (with proportionality constant

k > 0). The variable y is the ratio of input fre-

quency to natural frequency. The variable x

measures the viscous damping constant.

(a) Plot z versus y for x =0.2,0.5,2.0 on the
same axes. Use the range: of values 0 <y
< 2.0.

(b) The average power input is a maximum
when y =1, that is, when the input and
natural frequencies are the same. Verify this
both graphically and algebraically.

The potential difference E between electrolyte

solutions separated by a membrane is given by
E= RT X7 ) ..

F x+y

z =

(The symbols R, T, F are the universal gas con-

stant, absolute temperature, and Faraday unit,

respectively—these are constants. The symbols x

and y are the mobilities of Na™* and Cl~ respec-

tively. The symbol z is ¢,/ c,, where ¢ and ¢, are

the mean salt (NaCl) concentrations on each side

of the membrane.) Assume hereafter that RT/F

= 25.

(a) Write the level surface £ = —12 in the form
z = f(x, y).

(b) In practice, y = 3x /2. Plot E versus z in this
case.

Describe the behavior, as ¢ varies, of the level

curve f(x, y) = ¢ for each of these functions:

@ flx,y)= x2+yr+ 1

®) fix, y)=1- x>y

© fx,y)= x2+ xy;

@ flx,y)= x3 - x.
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14.4 Quadric Surfaces

Quadric surfaces are defined by quadratic equations in x, y, and z.

The methods of Section 14.3, together with our knowledge of conics, enable us
to graph a number of interesting surfaces defined by quadratic equations.

Example 1  Sketch the graph of

z=f(x,y)=x*— »? (a hyperbolic paraboloid).

Solution To visualize this surface, we first draw the level curves x> — y2=¢ for
¢=0,x1,+4. For ¢ =0 we have y* = x? (that is, y = =+ x), so this level set
consists of two straight lines through the origin. For ¢ = 1 the level curve is
x? - y*=1, which is a hyperbola that passes vertically through the x axis at
the points (£1,0) (see Fig. 14.4.1). Similarly, for ¢ =4 the level curve is
x2/4 — y*/4=1, the hyperbola passing vertically through the x axis at
(£2,0). For ¢ = —1 we obtain the hyperbola x* — y*= —1 passing horizon-
tally through the y axis at (0, 1), and for ¢ = —4 the hyperbola through
(0, £2) is obtained. These level curves are shown in Fig. 14.4.1. To aid us in
visualizing the graph of f, we will also compute two sections. First, set x = 0 to
obtain z = — 2, a parabola opening downward. Second, setting y = 0 gives
the parabola z = x? opening upward.

Figure 14.4.1. Some level
curves of f(x) = x? — 2, X2 =p X y2= 2

The graph may now be visualized if we lift the level curves to the
appropriate heights and smooth out the resulting surface. The placement of
the lifted curves is aided by the use of the parabolic sections. This procedure
generates the saddle-shaped surface indicated in Fig. 14.4.2. The graph is
unchanged under reflection in the yz plane and in the xz plane. When
accurately plotted by a computer, this graph has the appearance of Fig.
14.4.3; the level curves are shown in Fig. 14.4.4. (The graph has been rotated
by 90° about the z axis.) A
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x? 7),2 =_(12)

Figure 14.4.2. The graph
z = x*— y*is a hyperbolic
paraboloid, or “saddle.”

Figure 14.4.3. Computer-

generated graph of

z=x2—y%

Figure 14.44. Level curves
of z = x? — y* drawn by
computer.
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Figure 14.4.5. Graph of the
monkey saddle:
z=x>—3xp%

Figure 14.4.6. Level curves
for the monkey saddle.
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The origin is called a saddle point for the function z = x? — y? because of the
appearance of the graph. We will return to the study of saddle points in
Chapter 16, but it is worth noting another kind of saddle here. Figure 14.4.5
on the preceding page shows the graph of z = x* — 3xy?, again plotted by a
computer using sections and level curves. The origin now is called a monkey
saddle, since there are two places for the legs and one for the tail. Figure 14.4.6
shows the contour lines in the plane. Figure 14.4.7 shows the four-legged or
dog saddle: z = 4x% — 4xy’.

i
Al
\\\\\“0
W)

Figure 14.4.7. The dog
saddle: z = 4x’y — 4xp°.
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Example 2

Solution

~Example 3

Solution

Figure 14.4.8. The surface
z = y? + 1 is a parabolic
cylinder.

14.4 Quadric Surfaces 723

A quadric surface is a three-dimensional figure defined by a quadratic
equation in three variables:

ax*+ b+l +dxytexz+ fyz+gx+hy+kz+ m=0.

The quadric surfaces are the three-dimensional versions of the conic sections,
studied in Section 14.1, which were defined by quadratic equations in two
variables.

Particular conic sections can degenerate to points or lines. Similarly, some
quadric surfaces can degenerate to points, lines, or planes. Match the sample
equations to the appropriate descriptions.

@ x*+3y*+22=0 (1) No points at all
(b) z2=0 (2) A single point
(© x*+y*=0 (3) A line

(d) x>+ y*+z22+1=0 (4) One plane

(e) x*—y*=0 (5) Two planes

Equation (a) matches (2) since only (0,0, 0) satisfies the equation; (b) matches
(4) since this is the plane z = 0; (¢) matches (3) since this is the z axis, where
x =0 and y = 0; (d) matches (1) since a non-negative number added to 1 can
never be zero; (¢) matches (5) since the equation x? — y> = 0 is equivalent to
the two equations x + y = 0 or x — y = 0, which define two planes. A

If one variable is missing from an equation, we only have to find a curve in
one plane and then extend it parallel to the axis of the missing variable. This
procedure produces a generalized cylinder, either elliptic, parabolic, or hyper-
bolic.

Sketch the surface z = y? + 1.

The intersection of this surface with a plane x = constant is a parabola of the
form z = y? + 1. The surface, a parabolic cylinder, is sketched in Fig. 14.4.8.
(See also Example 6, Section 14.3). &

<
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Example 4

Solution

Figure 14.4.9. The surface
x?4+4p?~ 2= —4disa
hyperboloid of two sheets
(shown with some of its
sections by planes of the
form z = constant).

Example 5

Solution

Figure 14.4.10. The surface
(x*/9+ (Y?¥/16)+ 22 =1
is an ellipsoid.

The surface defined by an equation of the form x?/a* + y?/b? - z2/c? = —1
is called a hyperboloid of two sheets. Sketch the surface x> + 4y? — 22 = —4,

The section by the plane z = ¢ has the equation x* + 4y = ¢? — 4. This is an
ellipse when |c| > 2, a point when ¢ = =2, and is empty when |c| < 2. The
section with the xz plane is the hyperbola x* — z> = —4, and the section with
the yz plane is the hyperbola 4y* — z? = —4. The surface is symmetric with
respect to each of the coordinate planes. A sketch is given in Fig. 14.4.9. &

The surface defined by an equation of the form x?/a® + y?/b*+ z2/c?> =1 is
called an ellipsoid. Sketch the surface x?/9 + y*/16 + z2 = 1.

First, let z be constant. Then we get x?/9 + »?/16 = 1 — z2. This is an ellipse
centered at the origin if —1 < z < 1. If z = 1, we just get a point x = 0,y=0.
Likewise, (0,0, — 1) is on the surface. If |z| > 1 there are no (x, y) satisfying
the equation.

Setting x = constant or y = constant, we also get ellipses. We must have
|x| < 3 and, likewise, | y| < 4. The surface, shaped like a stepped-on football,
is easiest to draw if the intersections with the three coordinate planes are
drawn first. (See Fig. 14.4.10.) A
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Example 6 The surface defined by an equation of the form x2/a? + y?/b* — z2/c* =1 is
called a hyperboloid of one sheet. Sketch the surface x* + y* — 2% = 4.

Solution If z is a constant, then x% + y* =4+ z%is a circle. Thus, in any plane parallel
to the xy plane, we get a circle. Our job of drawing the surface is simplified if
we note right away that the surface is rotationaily invariant about the z axis
(since' z depends only on r* = x? + »?). Thus we can draw the curve traced by
the surface in the yz plane (or xz plane) and revolve it about the z axis. Setting
x =0, we get y*> — z2 = 4, a hyperbola. Hence we get the surface shown in Fig.
14.4.11, a one-sheeted hyperboloid. Since this surface is symmetric about the z
axis, it is also called a hyperboloid of revolution. A

Figure 14.4.11. The surface
x?+y?—z=4isa
one-sheeted hyperboloid of
revolution.

The hyperboloid of one sheet has the property that it is ruled: that is, the
surface is composed of straight lines (see Review Exercise 76). It is therefore
easy to make with string models and is useful in architecture. (See Fig.
14.4.12)

Figure 14.4.12. One can
make a hyperboloid with a
wire frame and string.

Example 7 Consider the equation x* + y? — z2 = 0.
(a) What are the horizontal cross sections for z = + 1, 2, +37
(b) What are the vertical cross sections for x =0 or y =07 (Sketch and
describe.)
(c) Show that this surface is a cone by showing that any straight line through
the origin making a 45° angle with the z axis lies in the surface.
(d) Sketch this surface.
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Solution (a) Rewriting the equation as x? + y* = z? shows that the horizontal cross
sections are circles centered around the z axis with radius |z|. Therefore,
for z= %1, 2, and =*3, the cross sections are circles of radius 1, 2,
and 3.
(b) When x =0, the equation is y* — z2=0 or y*=z? or y = +z, whose
graph is two straight lines. When y =0, the equation is x*—z?=0or
x = =*z, again giving two straight lines.
(¢) Any point on a straight line through the origin making a 45° angle with

the z axis satisfies |z|/yx?+ y? + z2 = cos45° = 1/12. Squaring gives
1/2=22/(x*+ p* + z%), or x>+ y?+22=22% or x*+ y?—z2=0,
which is the original equation.

(d) Draw a line as described in part (c) and rotate it around the z axis (see
Figure 14.4.13). A

2

z

Forx=0 Fory=0

Z4

~ Figure 14.4.13. The cone
x2+yt—22=0.

We now discuss how the conic sections, as introduced in the first section of
this chapter, can actually be obtained by slicing a cone.

Example 8 Show that the intersection of the cone x* + y* = z* and the plane y =1 is a
‘ hyperbola (see Figure 14.4.14).

Figure 14.4.14. The
intersection of this vertical
plane and the cone is a
hyperbola. Hyperbola

X

U/
/TN
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Example 9

Solution

/\

Figure 14.4.15. The
intersection of the plane
tilted at 45° and the cone is
a parabola.

14.4 Quadric Surfaces 727

The intersection of these two surfaces consists of all points (x, y,z) such that
x*+ y*=z? and y = 1. We can use x and z as coordinates to describe points
in the plane. Thus, eliminating y, we get x?+ 1 = z? or z2 — x?=1. From
Section 14.1, we recognize this as a hyperbola with foci at x =0, z = = V2 in
the plane y = 1, with the branches opening vertically as in the figure. A

Show that the intersection of the cone x? + y? = z> and the plane z = y — l is
a parabola (see Figure 14.4.15).

We introduce rectangular coordinates on the plane as follows. A normal
vector to the plane is n = (0,1, — 1), and so a vector w = (a, b, ¢) is parallel to
the plane if 0 =n-w= b — ¢. Two such vectors that are orthogonal and of
unit length are

. 1 ,.
u=i and v=—=—(j+k)
5 )

Pick a point on the plane, say P, = (0,0, — 1), and write points P = (x, y,z) in
the plane in terms of coordinates (£, 1) by writing

PP =fu+qv
(see Fig. 14.4.16). In terms of (x, y, z), this reads
n n
x=¢ y=—, and z=——1
V2

Figure 14.4.16. Coordinates
(¢,m)in the plane z = y — 1.

Substitution into x? + y* = z* gives

7’ 1 > g
€2+—=(———1)=7—\5ﬂ+1,

2\

or
£2=—‘/5TI+1’

or

2 2

This, indeed, is a parabola opening downwards in the &y plane. A

Other sections of the cone can be analyzed in a similar way, and one can
prove that a conic will always result (see Exercise 27).
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Exercises for Section 14.4

Sketch the surfaces in three-dimensional space defined
by each of the equations in Exercises 1-16.

L y*+22=1 2 x7+yr=0

3. 9x% +4z22=36 4. 4x*+y?=2

5. 22— 8yr= 6. x*— 7=

7. 8x?+322=0 8. x*=4z2+9

9. x4yt L =] 1. 2 4y24 2
R S A

11 x =222 — y? 12, y=4x2 - 72

13. x2+9y? — 22 =1 14, x>+ p? + 422 =1

15. 162> =4x*+ 2+ 16 16. 22 +4y> = x>+ 4
17. This problem concerns the Ayperbolic paraboloid.
(A surface of this kind was studied in Example
1. ) A standard form for the equation is z =
ax® — by?, with a and b both positive or both
negative.
(a) Sketch the graph of z = x? — 22
(b) Show that z = xp also determines a hyper-
bolic paraboloid. Sketch some of its level
curves.
18. This exercise concerns the elliptic paraboloid:
(a) Sketch the graph of z = 2x2 + )2,
(b) Sketch the surface given by
x= -3y 272
(c¢) Consider the equation z = ax? + by?, where
a and b are both positive or both negative.
Describe the horizontal cross sections where
z = constant. Describe the sections obtained
in the planes x = 0 and y = 0. What is the
section obtained in the vertical plane x = ¢?
(The special case in whicha = b is a parabo-
loid of revolution as in Example 7(a), Section
14.3.)
19. Sketch the cone z? = 3x? + 3y

14.5 Cylindrical and

20.
21.
22,
23.
24,

25.

*26.

*27.

Sketch the cone (z — 1) = x? + y2

Sketch the cone 22 =x2+2)%

Sketch the cone z% = x2/4 + 2 /9.

Show that the intersection of the cone x2+ 2

= z? and the plane z = 1 is a circle.

Show that the intersection of the cone x? + y?

= z? and the plane 2z = y+ 1is an ellipse.

This problem concerns the elliptic cone. Consider

the equation x2/a?+ y2/b? — z2/¢2 = 0.

(a) Describe the horizontal cross sections z =
constant.

(b) Describe the vertical cross sections x =0
and y = 0.

(c) Show that this surface has the property that
if it contains the point (xgy, yg,z), then it
contains the whole line through (0,0, 0) and
(X0, Yo, 20)-

The quadric surfaces may be shifted and rotated

in space just as the conic sections may be shifted

in the plane. These transformations will produce
more complicated cases of the general quadratic
equation in three variables. Complete squares to
bring the following to one of the standard forms

(shifted) and sketch the resulting surfaces:

(a) 4x? +y + 422 +8x—4y—82+8 0;

() 2x*+3y* -4z +4x+9y — 82+ 10=0.

Show that the intersection of the cone x? + y?

= z? and any plane is a conic section as follows.

Let w and v be two orthonormal vectors and Py a

point. Consider the plane described by points P

such that —P>— £u + nv, which introduces rec-

tangular coordinates (£,9) in the plane. Substi-

tute an expresswn for (x, y,z) in terms of (& 7)

into x? + y?= 72 and show that the result is a

conic section in the £y plane.

Spherical Coordinates

) T r(x,y,Z)

X

Figure 14.5.1. The
cylindrical coordinates of
the point (x, y, z).

x =rcosf, y=rsinb,
See Fig. 14.5.1. As with polar coordinates, we can solve for r and # in terms of
x and y: squaring and adding gives

There are two ways to generalize polar coordinates to space.

In Sections 5.1, 5.6, and 10.5, we saw the usefulness of polar coordinates in the
z plane. In space there are two different coordinate systems analogous to polar
coordinates, called cylindrical and spherical coordinates.

Y The cylindrical coordinates of a point (x, y,z) in space are the numbers
r (7,0,z), where r and @ are the polar coordinates of (x, y); that is,

and z=z.

x*+ y?=rXcos +sinB)=r% 5o r=xyx*+y’.
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Example 1

Solution

Figure 14.5.2. Comparing
the cylindrical and
cartesian coordinates of
two points.

14.5 Cylindrical and Spherical Coordinates 729
Dividing gives

= tané.

J _ siné

x  cosf
As in polar coordinates, it is sometimes convenient to allow negative r; thus
(r,9) and (—r,8 + 7) represent the same point. Also, we recall that (r,8) and
(r,0+ 27) represent the same point. Sometimes we specify r > 0 (with r =0
corresponding to the z-axis) and a definite range for 6. If we choose # between
7 and — 7 and choose tan~'u between — /2 and 7 /2, then the solution of
y/x=tanf is § =tan"'(y/x) if x>0, and § =tan"'(y/x)+ 7 if x <O
(@=w/2if x=0andy >0,and # = —7/2 if x =0 and y <0).

Cylindrical Coordinates

If the cartesian coordinates of a point in space are (x, y,z), then the
cylindrical coordinates of the point are (r, 8, z), where
x = rcosé, y = rsiné, z=7z;

or, if we choose r > 0 and —7 < @ < 7,

r=\/x2+y2 ,
) tan~'(y/x) if x>0,
tan"'(y/x)+ 7 if x<O.

(a) Find the cylindrical coordinates of (6, 6, 8). Plot.
(b) If a point has cylindrical coordinates (3, — 7 /6, —4), what are its cartesian
coordinates? Plot.

(c) Let a point have cartesian coordinates (2, —3,6). Find its cylindrical
coordinates and plot.

(d) Let a point have cylindrical coordinates (2,37 /4,1). Find its cartesian
coordinates and plot.

(a) Here r=y6*+6* =6y2 and §=tan"'(¢)=tan"'(1) = #/4. Thus the
cylindrical coordinates are 62,7 /4,8). See Fig. 14.5.2(a).

(b) x =rcosf =3cos(—7/6)=3y3 /2, and y=rsinf=23sin(—7/6)=
—3/2. Thus the cartesian coordinates are (3y3 /2, —3/2, —4). See Fig.
14.5.2(b). :

© r=+x2+y? =22+ (=3)> =/13; f=tan" (- })~ —0.983 ~
—56.31°; z = 6. See Fig. 14.5.3(a).

z zZ
(6,6,8)
o
s
4
\ r8
3
g / 4
x 6V2 e/ ’

x 3V372, -3/2, -4

(a) ‘ (b)
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Figure 14.5.3. Two points
in cylindrical coordinates.

Example 2

Solution

Figure 14.5.4. The cylinder
has a very simple equation
in cylindrical coordinates.

z} z
1
6

V13 2

/

r/ Y _/ y
21
4

—56° Y

(a) (b)

(d) x=rcosf=2cos(3w/4)=2- (—\/5/2) =—2;
y=rsind=2sin(37/4)=2-(V2 /2)=2;z=1
See Fig. 14.5.3(b). A

Many surfaces are easier to describe in cylindrical than in cartesian coordi-
nates, just as many curves are easier to work with using polar rather than
cartesian coordinates.

Plot the two surfaces described in cylindrical coordinates by (a) r = 3 and
(b) r = cos26.

(a) Note that r is the distance from the given point to the z axis. Therefore the
points with » = 3 lie on a cylinder of radius 3 centered on the z axis. See Fig.
14.5.4.

(b) The curve r = cos26 in the xy plane is a four-petaled rose (see Example 1,
Section 5.6). Thus in cylindrical coordinates we obtain a vertical cylinder with
the four-leafed rose as a base, as shown in Fig. 14.5.5. A

Figure 14.5.5. The surface
r = cos 28 is a cylinder with
a four-petaled rose as its
base.

Example 3 Describe the geometric meaning of replacing (r,6,z) by (r,8 + 7, — z).

Solutiocn

Increasing # by = is a rotation through 180° about the z axis. Switching z to
— z reflects in the xy plane (see Fig. 14.5.6). Combining the two operations
results in reflection through the origin. A
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z Sz z4
R Reflect in
Rotate 180 P’ xy plane P

—_— —l

P P
Figure 14.5.6. The effect of z T - .
replacing (r, 8, z) by S y 7 ¥y )i p y
(r,0 + m, — z) is to replace 9
Pby —P. % @ 6+m d

Example 4 Show that the surface r = f(z) is a surface of revolution.

Solution If we set y = 0 and take x > 0, then r = x and r = f(z) becomes x = f(z); the
remaining points satisfying r = f(z) are then obtained by revolving the graph
x = f(z) about the z axis; note that r = ¢, z = d is a circle centered on the z
axis. Thus we get a surface of revolution with symmetry about the z axis. A

Cylindrical coordinates are best adapted to problems which have cylindrical
symmetry—that is, a symmetry about the z axis. Similarly, for problems with
spherical symmetry—that is, symmetry with respect to all rotations about the
origin in space—the spherical coordinate system is useful.

The spherical coordinates of a point (x, y,z) in space are the numbers

z ( ) (p, 9, ¢) defined as follows (see Fig. 14.5.7).
X, V,zZ
0 p = distance from (x, y,z) to the origin;
# = cylindrical coordinate # (angle from the positive x axis to the point
9 (x, Y));
> ¢ = the angle (in [0, 7]) from the positive z axis to the line from origin to
9 (x, y,2).
% 6.7.0) To express the cartesian coordinates in terms of spherical coordinates,
Figure 14.5.7. Spherical we first observe that the cylindrical coordinate r = yx? + y? is equal to psin¢
coordinates. and that z = pcos¢ (see Fig. 14.5.7). Therefore

x =rcosf = psingcosf, y=rsind=psin¢gsing, z=pcoso.
We may solve these equations for p, #, and ¢. The results are given in the
following box.

Spherical Coordinates
If the cartesian coordinates of a point in space are (x, y,z), then the
spherical coordinates of the point are (p, 8, ¢), where
X = psin¢cosd,
y = psin¢sind,
Z = pCoso,

or, if we choose p >0, — 7 <O <7and 0< ¢ < =,

p=\/x2+y2+zz,

_ jtan”(p/x) if x>0,
tan"(y/x)+a7 if x<0,
¢ =cos™! Z

VX2 + y?+ 22
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Example 5

Solution

Figure 14.5.8. Finding the
spherical coordinates of the
point (1, — 1, 1) and the
cartesian coordinates of
3,7/6,7/4).

Notice that the spherical coordinates § and ¢ are similar to the geographic
coordinates of longitude and latitude if we take the earth’s axis to be the z
axis. There are differences, though: the geographical longitude is |#| and is
called east or west longitude according to whether # is positive or negative; the
geographical latitude is |7 /2 — ¢| and is called north or south latitude accord-
ing to whether 7 /2 — ¢ is positive or negative.

(a) Find the spherical coordinates of (1, —1, 1) and plot.

(b) Find the cartesian coordinates of (3,7 /6,7 /4) and plot.

(c) Let a point have cartesian coordinates (2, —3, 6). Find its spherical coordi-
nates and plot.

(d) Let a point have spherical coordinates (1, — /2,7 /4). Find its cartesian
coordinates and plot.

(a) p=\/x2+y2+22= 12+(—1)2+12=\/§,
=tan Y ZY=tan-(=L)=_ 7
¢ =tan (x) tan ( 1) ik
¢=cos_1(5)=cos_l(—1—)z0.955%54.74°.
p 3
See Fig. 14.5.8(a).
z z 4
L¢=55° P
a,~1,1)e_p=V3

(a) (b)

(b) x =psingcosd = 3sin(%)cos(z67-) = 3(%)% = ﬁ

y =psin¢sinf = 3sin(%)sin(%) = 3( 1 )(

z=pc0s¢=3cos(%)=3—2‘/§-.

See Fig. 14.5.8(b).

(C) p=ﬂx2+y2+22 = 22+(—3)2+62 =\/4__=7,

9= tan—l(l) = tan"‘(i)w —0.983 & —56.31°
X 2

¢ = cos“(%) = cos'l(g)%0.54l ~31.0°.

See Fig. 14.5.9(a) (the point is the same as in Example 1(d)).
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z zh
I
I \7
|
| 31° N
| | 4
| |
! L .
{ —~ y n y
L 2
—56°
Figure 14.5.9. Two points * *
in spherical coordinates. (a) (b)

(d) x=psindcosf = lsin(%)cos(—Tﬂ) = (—2—) -0=0,

y=psinpsinf = lsin( —} )sin(

2
e

zZ=pcos¢ = lcos(%) =
See Fig. 14.5.9(b). A
Example 6 Find the equation in spherical coordinates of x2 + y* — 22 = 4 (a hyperboloid
of revolution).
Solution To take advantage of the relationship x? + y? + z% = p?, write
x2+y?— 2= ()c2 +y? + 22) — 222 = p? — 2p%cos’e,
since z-= p cos ¢. Also, we can note that
p? = 2p%cos’p = p*(1 — 2cos’p) = — pZcos 2¢.
Thus the surface is

pZcos2¢+4=0. A

Example 7 (a) Describe the surface given in spherical coordinates by p = 3. (b) Describe
the geometric meaning of replacing (p, 8, ¢) by (p,8 + 7, ¢).

Solution (a) In spherical coordinates, p is the distance from the point (x,.,z) to the
origin. Thus p = 3 consists of all points a distance 3 from the origin—that is, a
sphere of radius 3 centered at the origin. (b) Increasing # by 7 has the effect of
rotating about the z axis through an angle of 180°. &

Example 8 Show that the surface p = f(¢) is a surface of revolution.

Solution The equation p= f(¢) does not involve # and hence is independent of
rotations about the z axis; thus it is a surface of revolution. If we set y=0,

then p =yx?+ 2z and ¢ = cos™'(z/Vx + z?). Thus the surface p = f(¢) is

obtained by revolving the curve in the xz plane given by

Wi+ 22 =f(cos_1( —x—z‘/_{? )),

about the z axis. A
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Exercises for Section 14.5

In Exercises 1-6, convert from cartesian to cylindrical
coordinates and plot:

1. (1,-1,0) 2. (2,11
3. 3,-21) 4. (0,6, -2)
5. (6,0, —2) 6. (-L 11

In Exercises 7-12, convert from cylindrical to cartesian
coordinates and plot.

7. (1,7/2,0) 8. (3,45°,8)
9. (—1,7/6,4) 10. (2,0,1)
11. (0,7/18,6) 12. 2, —7/4,3)

13. Sketch the surface described in cylindrical coor-
dinates by r =1 + 2 cos¥.

14. Sketch the surface given in cylindrical coordi-
nates by r =1 + cos#.

In Exercises 15-18, describe the geometric meaning of
the stated replacement.

15. (r,0,2) by (1,0, — 2)

16. (r,8,2) by (2r,0,2)

17. (r,8,z) by (2r,0, — z)

18. (r,0,2) by 2r,0 + 7,2)

19. Describe the surfaces r = constant, # = constant,
and z = constant in cylindrical coordinates.
20. Describe the surface given in cylindrical coordi-
nates by z = 4.
In Exercises 21-26, convert from cartesian to spherical
coordinates and plot.

21. (0,1,1) 22. (1,0,1)
23.(=2,1,-3) 24. (1,2,3)
25. (=3, -2, —4) 26. (1,1,1)

In Exercises 27-32, convert from spherical to cartesian
coordinates and plot.

27. (3,7/3,7) 28. 2, —w/6,7/3)

29. (3,27,0) 30. (1,7/6,7/3)

31. 8, —w/3,7) 32. (1,7/2,%/2)

33. Express the surface xz =1 in spherical coordi-
nates.

34. Express the surface z = x* + y? in spherical co-
ordinates.

35. Describe the surface given in spherical coordi-
nates by § = = /4.

36. Describe the surface given in spherical coordi-
nates by p = ¢.

37. Describe the geometric meaning of replacing
(p,0,9) by (20,0, ).

38. Describe the geometric meaning of replacing
(p,8,¢) by (p,0,¢6+ 7/2) in spherical coordi-
nates.

39. Describe the curve given in spherical coordinates
byp=1,¢=a/2.

40. Describe the curve given in spherical coordinates
byp=16=0.

In Exercises 41-46, convert each of the points from
cartesian to cylindrical and spherical coordinates and
plot.

41. (0,3,4) 42. (=2,1,0)
43. (0,0,0) 4. (—1,0,1)
45. (=23, -2,3) 46. (~1,1,0)

In Exercises 47-52, the points are given in cylindrical
coordinates. Convert to cartesian and spherical coordi-
nates:

47. (1,7/4,1) 48. (3,7/6, —4)
49. (0,7/4,1) 50. (2, —7/2,1)
51 (=2, —7/2,1) 52. (1, - 7/6,2)

In Exercises 53-58, the points are given in spherical
coordinates. Convert to cartesian and cylindrical coor-
dinates and plot.

53. (1,7 /2,7) 54, 2, —7w/2,7/6)
55. (0,7 /8,7 /35) 56. 2, —7w/2, — =)
51. (—1,7,7/6) 58. (—1,—7/4,7/2)

59. Express the surface z = x2— y2 (a hyperbolic
paraboloid) in (a) cylindrical and (b) spherical
coordinates.

60. Express the plane z = x in (a) cylindrical and (b)
spherical coordinates.

61. Show that in spherical coordinates:

(a) p is the length of xi + yj + zk;
(b) ¢ =cos™ '(v-k/|v|), wherev = xi + yj + zk;
(¢) 6=rcos '(u-i/|ulf), where u = xi + yj.

62. Two surfaces are described in spherical coor-
dinates by the equations p= f(f,¢) and p=
—2f(8,¢), where f(#,¢) is a function of two
variables. How is the second surface obtained
geometrically from the first?

63. A circular membrane in space lies over the re-
gion x> + y2 < @ The maximum deflection z of
the membrane is 5. Assume that (x, y,z) is a
point on the deflected membrane. Show that the
corresponding point (7,8, z) in cylindrical coordi-
nates satisfies the conditions
0<r<a,0<0<27|z|<b

64. A tank in the shape of a right circular cylinder of
radius 10 feet and height 16 feet is half filled and
lying on its side. Describe the air space inside the
tank by suitably chosen cylindrical coordinates.

65. A vibrometer is to be designed which withstands
the heating effects of its spherical enclosure of
diameter d, which is buried to a depth d/3 in the
earth, the upper portion being heated by the sun.
Heat conduction analysis requires a description
of the buried portion of the enclosure, in spheri-
cal coordinates. Find it.

66. An oil filter cartridge is a porous right circular
cylinder inside which oil diffuses from the axis to
the outer curved surface. Describe the cartridge
in cylindrical coordinates, if the diameter of the
filter is 4.5”, the height is 5.6” and the center of
the cartridge is drilled (all the way through) from
the top to admit a 3” diameter bolt.

x67. Describe the surface given in spherical coordi-
nates by p = cos 2.
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(1), g(1)

X

Figure 14.6.1. A parametric
curve in the plane.

Example 1

Solution

Figure 14.6.2. The ellipse
traced out by (sin ¢, 2 cos ).

Example 2

Solution

14.6 Curves in Space 735

Curves in Space

Tangents and velocities of curves in space can be computed by vector methods.

We continue our study of three-dimensional geometry by considering curves
in space. We can consider tangents to these curves by using calculus, since
only the calculus of functions of one variable and a knowledge of vectors are
required. (To determine tangent planes to surfaces, we will need the calculus
of functions of several variables.)

Recall from Section 2.4 that a parametric curve in the plane consists of a
pair of functions (x, y) = (f(¢), g(1)). As ¢ ranges through some interval (on
which f and g are defined), the point (x, y) traces out a curve in the plane; see
Fig. 14.6.1.

What curve is traced out by (sint,2cos?), 0 < ¢ < 277

Since x =sin¢ and y/2 = cost, (x, y) satisfies x>+ y?/4 =1, so the curve
traced out is an ellipse. As ¢ goes from zero to 2«7, the moving point goes once
around the ellipse, starting and ending at P (Fig. 14.6.2). A

P=(0,2)

(1,00 x

The step from two to three dimensions is accomplished by adding one more
function; i.e., we state the following definition: A parametric curve in space
consists of three functions (x, y,z) = (f(¢), g(¢),h(?)) defined for ¢ in some
interval on which f, g, and % are defined.

The curve we “see” is the path traced out by the point (x, y, z) as ¢ varies,
just as for curves in the plane.

(a) Sketch the parametric curve (x, y,z) = (3t + 2,87 — 1,1). (b) Describe the
curvex=3t3+2,y=t3—8,z=4t3+3.
(2) If we write P = (x, y,z), then
P=(2,-1,0)+¢(3,8,1)
which is a straight line through (2, —1,0) in the direction (3,8, 1) (see Section

13.3). To sketch it, we pick the points obtained by setting = 0 and ¢ = 1, that
is, (2, —1,0) and (5,7, 1); see Fig. 14.6.3 on the next page.
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Figure 14.6.3. The — » .7, 1)/// Y
parametric curve @,-1 0~ M
GBt+2,8:—1,0)isa — b
straight line. x

(b) We find

(%, y,2) = (3 + 2, — 8,41 + 3)
= (2, —8,3) + £(3,1,4);

so the curve is a straight line through (2, — 8, 3) in the direction (3,1,4). A

Example 3 (a) Sketch the curve given by x = cost, y = sint, z = ¢, where — o0 < ¢ < 0.
(b) Sketch the curve (cost,2sint,2¢).

Solution  (a) As ¢ varies, the point (x, y) traces out a circle in the plane. Thus (x, y,z) is
a path which circles around the z axis, but at value 7, its height above the xy
plane is z = . Thus we get the helix shown in Fig. 14.6.4. (It is called a right
circular helix, since it lies on the right circular cylinder x? + y? = 1.)

@
@

(1,0,0)

NAVAVAV

Figure 14.6.4. The curve —
(cost,sint, 1) is a helix. *

In Fig. 14.6.4, the z axis has been drawn with a different scale than the x

and y axes so that more coils of the helix can be shown. It is often useful to do
something like this when displaying sketches of curves or graphs. You should
be careful, however, not to give a false impression—label the axes to show the
scale when necessary.
(b) Since x = cost and y/2 = sint, the point (x, y,0) satisfies x> + y2/4 = 1,
so the curve lies over this ellipse in the xy plane. As ¢ increases from zero
to 27, the projection in the xy plane goes once around the same ellipse as in
Example 1 (Fig. 14.6.2), only now it starts at (1,0,0) at ¢ =0 and proceeds
counterclockwise since x behaves like cost and y like 2sins. Meanwhile, z
increases steadily with ¢ according to the formula z = 27. The net result is a
helix winding around the z axis, much like that of part (a), but no longer
circular. It now lies on a cylinder of elliptical cross section (see Fig. 14.6.5). A
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Figure 14.6.5. The curve
(cost,2sint,2¢t) is an
elliptical helix.

Example 4 Sketch the curve (¢,2¢, cos?).

Solution  If we ignore z temporarily, we note that (#,2r) describes the line y = 2x in the
xy plane. As ¢ varies, (,2f) moves along this line. Thus (z,2¢,cosf) moves
along a curve over this line with the z component oscillating as cos¢. Thus we
get the curve shown in Fig. 14.6.6. A

Figure 14.6.6. The curve
(2,21, cos?) lies in the plane
y=2x. .

In doing calculus with parametric curves, it is useful to identify the point
P =(x,y,z)=(f(1), g(t), (1)) with the vector

r=xi+yj+zk=f(r)i+ g(2)j + h(H)k.

This vector is a function of ¢, according to the following definition.

Vector Functions

A vector function of one variable is a rule ¢ which associates a vector
r = o(¢) in space (or the plane) to each real number ¢ in some domain.
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Example 5

Solution

Figure 14.6.7. The tip of
u+ vcost + wsin ¢ moves
in a circle of radius r with
center at the tip of u and in
a plane parallel to that
spanned by v and w.

If o is a vector function and ¢ is in its domain, we can express a(¢) in terms of
the standard basis vectors, i, j, and k. The coefficients will themselves depend
upon ¢, SO we may write
o(t) = f(Oi+ g(i + h(1)k,

where f, g, and h are scalar (real-valued) functions with the same domain as o.
Notice that the functions f(7), g(¢),(¢) define a parametric curve such that
the displacement vector from the origin to (f(¢), g(¢), ~(?)) is just o(z). The
functions f, g, and A are called the component functions of the vector function
o(t). To summarize, we may say that parametric curves, vector functions, and
triples of scalar functions are mathematically equivalent objects; we simply
visualize them differently. For instance, the wind velocity at a fixed place on
earth, or the cardiac vector (see Fig. 13.2.14), may be visualized as a vector
depending on time.

Let u, v, and w be three vectors such that v and w are perpendicular and have
the same length r, and let’ 6(¢) = u + vcos¢ + wsin .
(a) Describe the motion of the tip of &(¢) if the tail of 6(r) is fixed at the
origin. (That is, describe the parametric curve corresponding to o(¢).)
(b) Find the component functions of o(¢) if u=2i+j, v=j—k, and w=
itk
(a) We observe first that the vector vcost + wsint always lies in the plane
spanned by v and w and that the square of its length is
(veost + wsinf) « (veost + wsin )

v-vcos’ + 2v-wsintcost + w - wsin
r’cos’ + r’sin’t = r’(cos’ + sin’) = r?,

so the tip of the vector vcos? + wsinz moves in a circle of radius r if its tail is
fixed. Adding u to vcost + wsin# to get o(t), we find that the tip of o(¢)
moves in a circle of radius r whose center is at the tip of u. (See Fig. 14.6.7.)

Path of the tip of u+vcos ¢ + wsin ¢
if its tail is at O

Path of the tip of
v cos t+ wsin ¢ if

its tail is at O - .
u+vcoss+wsint
2 )
0
v
(b) We have

o(f)=u+vcost+wsint =2i+ j+ (j — k)cosz + (j + Kk)sin¢
=2i + (1+cost+ sint)j + (—cost + sint)k,

so the component functions are 2, 1 + cost + sinz, and —cos? + sinz. A

3 Formulas involving vector functions are sometimes clearer to write and read if scalars are
placed to the right of vectors. Any expression of the form vf(z) is to be interpreted as f(£)v.
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Example 7

Solution
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We now wish to define the rate of change, or derivative, of a vector function
o(r) with respect to ¢. If a(¢) is the displacement from a fixed origin to a
moving point, this derivative will represent the velocity of the point. To see
how the derivative should be defined, we examine the case of uniform
rectilinear motion.

Let o(f)=u + tv, so that o(¢) is the displacement from the origin to a point
moving uniformly with velocity vector v. Let u= ai + bj + ck and v=1/i+
mj + nk.

(a) Find the component functions of o(?).
(b) Show that the components of the velocity vector are obtained by differen-
tiating the component functions of a(r).

(a) We have
o(t)=u+ tv=ai+ bj+ ck + 1(i + mj + nk)
=(a+ i+ (b+ mj+ (c+ nk,
so the component functions are a + /t, b + mt, and ¢ + nt.

(b) The derivatives of the component functions of o(¢) are the constants /, m,
and n; these are precisely the components of the velocity vector v. A

Let o(f) = f(1)i + g(¢)j be a vector function in the plane. Show thgt the
tangent line at time ¢, to the parametric curve corresponding to &(¢) (with the
tail of o(7) fixed at zero) has the direction of the vector f'(£o)i + gt

Recall from Section 2.4 that if ( f(¢), g(¢)) is a parametrized curve in the plane,
then the slope of its tangent line at (f(zy), g(t)) is g'(t)/f (to)- A line in the
direction of f'(#)i + g'(t,)j has slope g’(t5)/f (%), so it is in the same direction
as the tangent line. A

Guided by Examples 6 and 7, we make the following definition.

Derivative of a Vector Function

Let o(?) = f(0)i + g(2)j + h(1)k be a vector function. If the coordinat.e
functions f, g, and & are all differentiable at ¢,, then we say that o is
differentiable at #,, and we define the derivative o'(t,) to be the vector

J' @i+ g'(t)j + I (1p)k:
6'(to) = [(to)i + g'(to)j + M (to)k.

The derivative of o is a function of the value of ¢ at which the derivative is
evaluated. Thus o'(¢) is a new vector function, and we may consider the
second derivative o”(t), as well as higher derivatives.

We will sometimes use Leibniz notation for derivatives of vector func-
tions: if r = (), we will write dr/dt for o’(¢) and d*r/dt* for a”(1).

The derivative of a vector function can also be expressed as a limit of
difference quotients. If r = a(z), we write Ar = o(¢ + At) — o(?). Then Ar/At
(i.e., the scalar 1/A¢ times the vector Ar) is a vector which approaches ¢'(?) as
At—0. (See Fig. 14.6.8 on the next page and Exercise 52.)
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Ar=0(t +At) —a(t)

Figure 14.6.8. As Az >0, ot +an

the quotient

[o(t + Ar) — o(2)] /At
approaches a’(?); i.e.,
Ar/At->dr/dr. 0

Example 8 Let o(¢) be the vector function of Example 5, with u, v, and w as in part (b) of
that example. Find ¢'(¢) and ¢”(¢).
Solution In terms of components,
o(1)=2i+ (1+cost+sint)j+ (—cost + sinr)k.
Differentiating the components, we have
o'(t) = (—sint + cos?)j + (sint + cost)k
and
o”(t) = (—cost —sint)j + (cost — sint)k. A
The differentiation of vector functions is facilitated by algebraic rules which

follow from the corresponding rules for scalar functions. We list the rules in
the following box.

Differentiation Rules for Vector Functions

To differentiate a vector function a(f) = f(£)i + g(1)j + h()k, differenti-
ate it component by component: o’(f) = f'(:)i + g'(H)j + A'(H)k. Let o (¢),
o,(?), and o,() be vector functions and let p(r) and ¢(r) be scalar
functions.

Sum Rule: [ (1) + o,(1) ] = 0/(1) + 03(0).

Scalar Multiplication Rule: % [p(t)a(t)] = p'()o(t) + p(1)o'(1).

Dot Product Rule: g; [01(2) - 05(1) ] = 61(2) * 0(1) + &,(2) * O)(2).
Cross Product Rule: g; [0,(1) X 65(1)] = &/(£) X 0(1) + 6,(2) X a)(1).

Chain Rule: L[ a(g(1))] = 4'(1)o'(4(1)).

For example, to prove the dot product rule, let o,(¢) = fi(Di + g ()i + hy(Hk
and o,(f) = fL,(Di + g,(1)j + h,(t)k. Hence,

o (1) - ox(2) = fi(1) o(2) + £1(F) ga(1) + hy(D)hy(2),

so by the sum and product rules for real-valued functions, we have
2 o(1)- o:(t)] =[ O + F(AO] + [ 81(D8:1) + 81(Dgx(0)]
+ [ H(Dhy(2) + By(D)Ry(D)].
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Solution

(f(tg). g(1y), h(ty))
(¢

o'(1)
Figure 14.6.9. The velocity
vector of a parametric
curve is the derivative of
the vector o(r) from the
origin to the curve.

Example 10

Solution

14.6 Curves in Space 741

Regrouping terms, we can rewrite this as

[Fi(Df0) + gi(Dga(t) + Ki(D)hx(1)]
+[ L) + gi(Dgx(1) + hi(1)hy(1)]
=[fi(ni+ gi(0)i + hi(0k] [ fo()i + ga(1)i + k(1)K ]
+[ [+ gi(Di + hy(0k] - [ f3(0)i + g5(0)i + hy(0)k]
= o/(1) - oy(1) + 0,(7) - 03(1),

so the dot product rule is proved. The other rules are proved in a similar way
(Exercises 53-56).

Show that if o(¢) is a vector function such that ||e(¢)| is constant, then o’(¢) is
perpendicular to a(¢) for all ¢.

Since ||@()]| is constant, so is its square ||6(¢)||> = o(r) - a(f). The derivative
of this constant is zero, so by the dot product rule we have

0= % [a(t) . a(t)] =da'(t) a(t) +a(t) - o'(t)=20(t)- o'(1);
so a(t) - a'(¢) = 0; that is, o'(¢) is perpendicular to o(z). A

Let (f(¢), g(2), k(1)) be a parametric curve. If f, g, and % are differentiable at
1y, the vector f'(zp)i + g'(1o)j + ' (1o)k is called the velocity vector of the curve
at t,. Notice that if e(¢) is the vector function corresponding to the curve
(f(1), g(1),h(1)), then the velocity vector at ¢, is just ¢”(¢,) (see Fig. 14.6.9). We
often write v for the velocity vector—that is, v = o'(¢). In Leibniz notation, if
r= o(r), we have v=dr/dt.

Several other quantities of interest may be defined in terms of the velocity
vector. If v = o'(1y) is the velocity of a curve at ¢,, then the length v = ||v||
= [lo’(ty)] is called the speed along the curve at t,, and the line through &(z,)
in the direction of o’(¢y) (assuming o’'(z,) # 0) is called the rangent line to the
curve (see Example 7). Thus the tangent line is given by r = &(¢,) + t0”(¢).

For a curve describing uniform rectilinear motion, the velocity vector is
constant (see Example 6). In general, the velocity vector is a vector function
v = o’'(¢) which depends on ¢. The derivative a = dv/dt = ¢”(¢) is called the
acceleration vector of the curve. Notice that if the curve is (f(?), g(), h(2)),
then the acceleration vector is

a=fr(0i+ g’ (O)j+ h"(Hk ‘
The terms velocity, speed, and acceleration come from physics, where

parametric curves represent the motion of particles. These topics will be
discussed in the next section.

A particle moves in a helical path along the curve (cos¢,sin¢, ). (a) Find its
velocity and acceleration vectors. (b) Find its speed. (c) Find the tangent line
at 1= 7 /4.

(a) Differentiating the components, we have v = —(sin#)i + (cos#)j + k, and
a=dv/dt= —(cost)i — (sint)j. Notice that the acceleration vector points
directly from (cosz,sin¢, ) to the z axis and is perpendicular to the axis as well
as to the velocity vector (see Fig. 14.6.10).
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742 Chapter 14 Curves and Surfaces

Figure 14.6.10. The velocity
and acceleration of a
particle moving on a helix.

R0

(b) The velocity vector is v = —(sin )i + (cos t)j + k, so the speed is

v = |lv| =\/(—sint)2 + (cost)2 +1

=1sin% + cosr + 1 =2 .

(c) The tangent line is

r=0(ty) + 16'(ty) = (costy)i + (sinp)j + 1ok + t[(—sin to)i + (costy)j + k].
At 1, = 7 /4, we get

r=i(i+j)+%k+t{—Li+Lj+k]

V2 22

1—¢t., 1+1¢. a

=i+ L+ (T +0)k A

St LEt (5

Example 11 A particle moves in such a way that its acceleration is constantly equal to —k.
If the position when ¢ = 0 is (0,0, 1) and the velocity at t = O is i + j, when and
where does the particle fall below the plane z = 0?7 Describe the path travelled
by the particle.

Solution Let (f(?), g(), h(?)) be the parametric curve traced out by the particle, so that
the velocity vector is o'(¢) = f'(Di + g'()j + h'(1)k. The acceleration ¢”(¢) is
equal to —k, so we must have f”(¢) =0, g”(t) = 0, and 2"(¢) = — 1. It follows
that f(¢) and g'(¢) are constant functions, and 4'(¢) is a linear function with
slope —1. Since o’(0) =i+ j, we must have o'(f) =1+ j— tk. Integrating
again and using the initial position (0,0, 1), we find that (f(¢), g(2),kh(2)) =
(t,1,1 — 1 1?). The particle drops below the plane z = 0 when 1 — 1* = 0; that
is, t =V2 . At that time, the position is (\/f N2 ,0). The path travelled by the
particle is a parabola in the plane y = x. (See Fig. 14.6.11.) A

z

Figure 14.6.11. The path of
the parabola with initial
position (0, 0, 1), initial
velocity i + j, and constant
acceleration —kis a
parabola in the plane

y=x.
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14.6 Curves in Space 743

Exercises for Section 14.6

Sketch the curves in Exercises 1-10.

1.

00 N W

9.
10.

x =sint, y =4cost, 0 < ¢t < 2.

. x=2sint, y =4cost, 0 <t < 2.

x=2t—-Ly=t+2;z=1
x=—-ty=2;z=1/t; 1<t <3
x=—ty=tz=1t50<1t<3

(-1 0< <2,
. (4cost,2sint, t); 0 < £ < 2.
. x=cost;y=sint; z=1/27; =27 <t < 2m.

@, 1/60); 1 <r<3.
(cosht,sinhz,1); —1 << 1.

Let u, v, and w be three vectors such that v and w are
perpendicular and have the same length r. In Exercises
11 and 12, (a) describe the motion of the tip of the
vector o(7) and (b) find the components of o(¢) if
u=i—j,v=2(j+k), w=2(j—k).

1.
12.

13.

14.

o(f)=u+ 2vcost + 4wsin .
o(f)=u+ 3vcost — Swsint.

Let o(¢) = 3costi — 8sintj + e’k. Find o'(¢) and
o’ (1).
(a) Give the “natural” domain for this vector

function:
_ 1. 1 . 1
a(t) = tl+—t_lj+-—t_2k.

(b) Find ¢’ and o”.

In Exercises 15-20, let o,(¢) = e‘i + (sin?)j + °k and
o,(t) = e i + (csct)j — 2¢°k. Find each of the stated
derivatives in two different ways:

15.

16.

17.

18.

19.

20.

21.

22,

21 + ox0)]
2 6,(0)- 030
2 a,(5) X ax(0)]
2 (01(1)- 20x(1) + i (0)])

d
aZ e'o(t)

AN

Show that if the acceleration of an object is
always perpendicular to the velocity, then the
speed of the object is constant. [ Hint: See Exam-
ple 9.]

Show that, at a local maximum or minimum of
lle(Dll, o'(¢) is perpendicular to o(z).

Compute (a) the velocity vector, (b) the acceleration
vector, and (c) the speed for each of the curves in
Exercises 23-32.

23.
24.
25.
26.
27.
28.
29.

The curve in Exercise 1.
The curve in Exercise 2.
The curve in Exercise 3.
The curve in Exercise 4.
The curve in Exercise 5.
The curve in Exercise 6.
The curve in Exercise 7.

30.
3L
32.

The curve in Exercise 8.
The curve in Exercise 9.
The curve in Exercise 10.

For each of the curves in Exercises 33-38, determine
the velocity and acceleration vectors for all ¢ and the
equation for the tangent line at the specified value of .

33.
34.
35.
36.
37.
38.

39.

40.

41.

42.

43.

45.

46.

47.

(62,313, 8%); 1 =0.

(sin32,c0834,2t3/%); t = 1.

(cos’,3t — 3,1); t=0.

(tsint,tcost,3 8); t=0.

(2 te',e ); t=0.

(2cost,3sint, t); t = m.

Suppose that a particle follows the path
(e',e”*,cost) until it flies off on a tangent at
t = 1. Where is it at 1 = 2?

If the particle in Exercise 39 flies off the path at
t =0 instead of f = 1, where is it at t = 27
Describe and sketch the curves specified by the
following data:

(@) o'(t)=(1,0,1); 6(0)=(0,0,0),

(b) Ul(t) = (_ 1’ 1: l)a 0'(0) = (1’2’ 3)7

(©) o(t)=(—-11,1); o(0)=(0,0,0).

Suppose that a curve o(?) has the velocity vector
o'(t) = (a,b,sin¢), where a and b are constants.
Sketch the curve if a = — 1, b =2, and assuming
a(0) = (0,0, 1).

Suppose that a curve has the velocity vector
v=0'(t) =(sint, —cost,d), where d is a con-
stant. (a) Describe the curve. (b) Sketch the curve
if you know that (0) = i. (¢) What if in addition,
d=0?

. Suppose that o(t) is a vector function such that

o'() = — o(t). Show that a(r) = e ‘0(0). (Hint:

See Chapter 8.) What is the behavior of o(?) as

t—>o0?

(a) Let o,(¢) and o,(?) satisfy the differential

equation o”(f) = — o(t). Show that for any con-

stants 4, and 4,, 4,0,(f) + A,04(t) satisfies the

equation as well.

(b) Find as many solutions of ¢”(¢) = —a() as

you can.

Suppose that o(7) satisfies the differential equa-

tion o”(¢) + w’a(f) = 0. Describe and sketch the

curve if 6(0) = (0,0, 1) and ¢’(0) = (0, w, w).

(a) Sketch the following curves. On each curve,

indicate the points obtained when ¢ = 0,1,4,3, 1.
D x==-ty=2z=34;0<1t<1.

Gy x=—-ty=2%2=3% -1<r< 1

(iti) x = —sin(w?/2); y = 2sin(nwt /2);

z=3sin(nt/2); 6<t < L.

(b) Show that the set of points in space covered

by each of these curves is the same. Discuss

differences between the curves thought of as

functions of . (How fast do you move along the

curve as ¢ changes? How many times is each

point covered?)
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744 Chapter 14 Curves and Surfaces

48. For each curve in Exercise 47, find the velocity
vector v and the speed v as functions of r.
Compute [%v dt, where [a, b] is the defining inter-
val for ¢ in each case. What should this number
represent? Explain the difference between the
result for part (i) and that for (i) and (iii).

49. Let § and ¢ be fixed angles, and consider the
following two curves:

(a) x=singcost,

y =sin¢sint, 0<t<2n
Z =Cos¢;

(b) x =sintcos¥,
y =sintsiné, 0<t<27

Z = COSt.

Show that each curve is a circle lying on the
sphere of radius 1 centered at the origin. Find
the center and radius of each circle. Sketch the
curves for ¢ = 45° and for 8 = 45°.

50. Suppose that 0 < # < 27 and 0 < ¢ < 27, and
let

o(0,¢) = ((2 + cosp)cos b, (2 + cos d)sin 8, sin ¢).

(Note that this is a vector function of two vari-

ables.)

(a) Describe each of the following curves:

(i) o(6,0); < 0 < 2m;

(i) o(8,m); 0 0 < 27;
(il) o(8,7/2); 0< @ 277,
(iv) 6(0,¢); 0<o<2
(v) 6(7/2,4); 0< ¢
vi) o(7/4,¢); 0 < o <2

(b) Show that the point (0, ¢) hes on the circle of
radius 2 + cos ¢ parallel to the xy plane and
centered at (0,0, sin¢).

(c) Show that &(#,¢) lies on the doughnut-
shaped surface (a forus) shown in Fig.
14.6.12.

(d) Describe and sketch the curve
((2 + cost)cost, (2 + cost)sin ¢, sin ¢).

VAN ANA
AR A

/

277,

N
//\

2

Figure 14.6.12. The points
o(0, ¢) (Exercise 50) lie on
this surface.

51 Suppose that Py = (xg, yo,0) is a point on the
unit circle in the xy plane. Describe the set of
points lying directly above or below P, on the
right circular helix of Example 3. What is the
vertical distance between coils of the helix?

*52. If ()= f(n)i+ g()j + h(t)k is a vector func-
tion, we may define lim,_,, 6(¢) componentwise;
that is,

Jim o (1) =[tliftlof(t)]i + [ lim g(t)]i
+[ lim h(t)]k

1,
if the three limits on the right-hand side all exist.
Using this definition, show that
lim — [cr(to + A1) — a(tp)] = o'(¢p).
A= 0 A
Prove the rules in Exercises 5356 for vector functions.
*53. The sum rule.
*54. The scalar multiplication rule.

*55. The cross product rule.
*56. The chain rule.

*57. Let r = () be a parametric curve.
(a) Suppose there is a unit vector u (constant)
such that e(f)-u=0 for all values of ¢.
What can you say about the curve o(¢)?
(b) What can you say if o(f)u= ¢ for some
constant ¢?
(c) What can you say if o(¢)-u=b|e(s)| for
some constant b with 0 < b < 1?
*58. Consider the curve given by

x=rcoswt, y=rsinw!, and z=ct,

where r, w, and ¢ are positive constants and

—00 <t <.

(a) What path is traced out by (x, y) in the
plane?

(b) The curve in space lies on what cylinder?

(¢) For what ¢, does the curve trace out one coil
of the helix as 7 goes through the interval
0<t<ty?

(d) What is the vertical distance between coils?

(e) The curve is a right-circular helix. Sketch it.
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14.7 The Geometry and Physics of Space Curves 745

The Geometry and
Physics of Space Curves

Particles moving in space according to physical laws can trace out geometrically
interesting curves.

This section is concerned with applications of calculus: arc length, Newton’s
second law, and some geometry of space curves.
In Section 10.4, we found the arc length formula

L=fa”\/mdt=f”\/(;_;y+(%)2 ’

for a parametric curve in the plane. A similar formula, with one term added,
applies to curves in space.

Arc Length

Let (x, y,z) = (f(2), g(2), h(?)) be a parametric curve in space. The length
of the curve, for ¢ in the interval [a, b], is defined to be

L= [P+ (g0 + (o) d

b 2 2 2
R R R R

Find the length of the helix (cos¢,sint,¢) for 0 < ¢t < 7.

or

Here f'(1) = —sint, g'(rf) = cost, and A'(r) =1, so the integrand in the arc
length formula (1) is ysin + cos% + 1 =y2, a constant. Thus the length is
simply

L=fw\/2_dt=7r\/5.A
0

Notice that the integrand in the arc length formula is precisely the speed
llo’(2)]| of a particle moving along the parametric curve. Thus the arc length,
which can be written as L = [%||0”(#)|| dt, is the integral of speed with respect
to time and represents the total distance travelled by the particle between time
a and time b.

Find the arc length of (cost,sint,t?), 0 < ¢ < 7.

The curve o(¢) = (cost,sin ¢, %) has velocity vector v = (—sinz, cos?, 21). Since
V]| =V1+ 4 =24/ + (%)2 , the arc length is

L= "2y + (1) a
[+
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746  Chapter 14 Curves and Surfaces

This integral may be evaluated using the formula (43) from the table of

integrals:
f\/x2 + a dx= %[xw/xz +a’ +a’n(x +yx* + a® )] + C.

Thus

L=y fe (@) + (4m(e s ()]

=’77'\/772+% +}ln(7r+ W2+%)—%ln(\/_)
= Z Vi +427 + {In(27 +11 + 477

=~ 10.63. A

T

t=0

O

Example 3 Find the arc length of (¢',r,e), 0< 1< 1. [Hint: Use u=y1+2¢% to
evaluate the integral.]

Solution  o(1) = (e7,1,e"), 50 v=(e', 1,e"), and [[v|| =y1 +2¢*; so L = f31+2¢* dr.
To evaluate this integral, set u =1 + 2¢* , which leads to

SN2 i [t

u-—1

=f[l+%(ull)—%(u_}_l)]du (partial fractions)

1 1
=u+§1n(u—1)—§1n(u+1)+C

/ 7
=1 +2e% + %ln—le—l +C.
\/1—-!-262’ +1

(This result may be checked by differentiation.) To find L, we evaluate the last
exXpression at ¢ = 0 and ¢ = 1 and subtract, to obtain

2 _
L=\JI+28+ %m——“”el - %111@@2.64. A
frae +1 Gl

We turn next to the study of curves followed by physical particles subject to
forces. : ’

If a particle of mass m moves in space, the total force F acting on it at
any time is a vector which is related to the acceleration by Newton’s second
law (see Section 8.1): F = ma.

In many situations, the force is a given function of position r (the “force
law), and the problem of interest is to find the vector function r= a(?)
describing a particle’s motion, given the initial position and velocity. Thus,
Newton’s second law becomes a differential equation for o(¢), and techniques
of differential equations can be used to solve it (as we solved the spring
equation in Section 8.1). For example, a planet moving around the sun
(considered to be located at the origin) obeys to a high degree of accuracy
Newton’s law of gravitation:

F e _ GmMr=__ GmM
Tl r

>
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Example 3

Solution

This integral may be evaluated using the formula (43) from the table of
integrals:

f\/xz +a’ dx=%[x\/x2+ a* +a’In(x + x> + az)] + C.

Thus

L=2-%[t\/t2+7)2+<%)21n(t+m)]

=myr’ +1 +%ln(7r +ymt+1 ) — %ln(\/_)
= 21+ 4n + 4In(27 +1 + 407

7
t=0

Al

Find the arc length of (e’,t,e’), 0< ¢ < 1. [Hint: Use u=v1+2e* to
evaluate the integral.]

o(t) = (e,t,e"), so v=(e',1,e"), and ||v]| =1 + 2e* ; so L = [3{1 + 2e* dl.
To evaluate this integral, set u =1 + 2¢', which leads to

f 1+ 2e% dt=fu;l;—iu—l

=f[1+ %(ui 1)— %(Fll)]du (partial fractions)

=u+JIn—1)— Tin(u+ 1)+ C

i 2 _
=1 +2e* + %ln—ltze——l +C.
V14+2e* + 1

(This result may be checked by differentiation.) To find L, we evaluate the last
expression at t = 0 and ¢ = 1 and subtract, to obtain

2 _
L=\/1+2e2+%ln————vl+zel—\/§—%ln\/§ 1 <264 a
o Gl

We turn next to the study of curves followed by physical particles subject to
forces. ,

If a particle of mass m moves in space, the total force F acting on it at
any time is a vector which is related to the acceleration by Newton’s second
law (see Section 8.1): F = ma.

In many situations, the force is a given function of position r (the “force
law”), and the problem of interest is to find the vector function r= o(¢)
describing a particle’s motion, given the initial position and velocity. Thus,
Newton’s second law becomes a differential equation for o(¢), and techniques
of differential equations can be used to solve it (as we solved the spring
equation in Section 8.1). For example, a planet moving around the sun
(considered to be located at the origin) obeys to a high degree of accuracy
Newton’s law of gravitation:

__GmM_ _ _ GmM,
Irff P

>
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where r is the vector pointing from the sun to the planet at time ¢, M is the
mass of the sun, m that of the planet, » = ||r||, and G is the gravitational
constant (G =6.67 X 10~"" newton meter? per kilogram?). The differential
equation arising from this force law is

dr _ _ GM
7 T B
dat r
Rather than solving this equation here, we shall content ourselves with
understanding its consequences for the case of circular motion.

Example 4 A particle of mass m is moving in the xy plane at constant speed v in a
circular path of radius r,. Find the acceleration of the particle and the force
acting on it.

Solution Let r be the vector from the center of the circle to the particle at time z.
Motion of the type described is given by

r= rocos( v )i + rosin( v )j.
o To

Differentiating twice, we see that

2 2 2 2
a= d—; = — D—cos(’—”)i— D—sin(t—v)j= -2
dt Iy o ry o rg
Y The force acting on the particle is F = ma = — (mo? /ror. A

Example 4 shows that in uniform circular motion, the acceleration vector
points in a direction opposite to r—that is, it is directed toward the center of
the circle (see Fig. 14.7.1). This acceleration, multiplied by the mass of the
particle, is called the centripetal force. Note that even though the speed is
constant, the direction of the velocity vector is continually changing, which is
why there is an acceleration. By Newton’s law, some force must cause the
Figure 14.7.1. The acceleration which keeps the particle moving in its circular path. In whirling a
acceleration vector of a rock at the end of a string, you must constantly be pulling on the string. If you
particle in uniform circular ~ Stop that force by releasing the string, the rock will fly off in a straight line
motion points to the center tangent to the circle. The force needed to keep a planet or satellite bound into
of the circle. an elliptical or circular orbit is supplied by gravity. The force needed to keep a
car going around a curve may be supplied by the friction of the tires against
the road or by direct pressure if the road is banked (see Exercise 12).
Suppose that a satellite is moving with a speed v around a planet with
mass M in a circular orbit of radius r,. Then the force computed in Example 4
must equal that in Newton’s law:

vl GM
— —=r=-— —/—r.
2 3
ro Fo

The lengths of the vectors on both sides of this equation must be equal. Hence

”2=GT,M' )

If T is the period of one revolution, then 27ry/ T = v (distance /time = speed);
substituting this value for v in equation (2) and solving for T2 we obtain the
rule:

(2)°
=r; i (3)
The square of the perfod is proportional to the cube of the radius. This law is one

T2
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Example 5

Solution

Example 6

Solution

of the famous three which were discovered empirically by Kepler before
Newton’s laws were formulated; it enables one to compute the period of a
satellite given the radius of its orbit or to determine the radius of the orbit if
the period is prescribed. If both the radius and period are known, (3) can be
used to determine GM, and hence if G is known, M can be computed.

Suppose we want to have a satellite in circular orbit about the earth in such a
way that it stays fixed in the sky over one point on the equator. What should
be the radius of such an orbit? (The mass of the earth is 5.98 x 10
kilograms.)

The period of the satellite should be 1 day, so T =60 X 60 X 24 = 86,400
seconds. By formula (3), the radius of the orbit should satisfy

. TM _ (86:400)7 X (6.67 X 107"") X (5.98 x 10%)
rp = =
2'77 2 2’/7 2
) (27)

= 7.54 X 10 meters’,
s0 ry = 4.23 X 107 meters = 42.300 kilometers
= 26,200 miles. A

Let r = o(t) be the vector from a fixed point to the position of an object, v the
velocity, and a the acceleration. Suppose that F is the force acting at time ¢.

(a) Prove that (d/dt)(mr X v) =& X F, (that is, “rate of change of angular
momentum = torque”’). What can you conclude if F is parallel to r? Is this
the case in planetary motion?

(b) Prove that a planet moving about the sun does so in a fixed plane. (This is
another of Kepler’s laws.)

(a) We use the rules of differentiation for vector functions:

%(mr)(v)=m£ Xv+mr><i!=mv><v+mr><a

dt dt
=0+rXma=rXF.

If F is parallel to r, then this last cross product is 0. Thus mr X v must be a
constant vector. It represents the angular momentum, a quantity which
measures the tendency of a spinning body to keep spinning. The magnitude of
mr X v measures the amount of angular momentum, and the direction is along
the axis of spin. If the derivative above is zero, it means that angular
momentum is conserved; both its magnitude and its direction are preserved.
This is the case for our model of planetary motion in which the sun is
regarded as fixed and the gravitational force

aGmM
s

is parallel to the vector r from the sun to the planet. (The actual situation is a
bit more complicated than this: in fact, both the sun and the planet move
around their common center of mass. However, the mass M of the sun is so
much greater than the mass m of the planet that this center of mass is very
close to the center of the sun, and our approximation is quite good. Things
would be more complicated, for example, in a double-star system where the
masses were more nearly the same and the center of gravity somewhere
between. What is conserved is the total angular momentum of the whole
system, taking both stars into account.)

r
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(b) Let I = mr X v be the angular momentum vector. Then certainly r-1= 0.
We argued above that d1/dr =0, so 1 is a constant vector. Since r satisfies
r-1=0, the planet stays in the plane through the sun with normal vector 1. 4

Our third and final application in this section is to the geometry of space
curves,

Differential geometry is the branch of mathematics in which calculus is
used to study the geometry of curves, surfaces, and higher dimensional
objects. When we studied the arc length of curves, we were already doing
differential geometry—now we will go further and introduce the important
idea of curvature.

The curvature of a curve in the plane or in space is a measure of the rate
at which the direction of motion along the curve is changing. A curve with
curvature zero is just a straight line. We can define the curvature as the rate of
change of the velocity vector, if the length of this vector happens to be 1;
otherwise the change in length of the velocity vector confuses the issue. We
therefore make the following definitions.

Parametrization by Arc Length
Let r = o(¢) be a parametric curve.

1. The curve is called regular if v = o’(¢) is not equal to 0 for any ¢.

2. If the curve is regular, the vector T = v /vl =a'(2)/]|0’(1)|| is called
the unit tangeni vector to the curve.

3. If the length of o’(¢) is constant and equal to 1 (in which case T = v),
the curve is said to be parametrized by arc length. :

Example 7 Suppose that the curve r = o(?) is parametrized by arc length. Show that the
length of the curve between f = g and 7 = b is simply b — a.

Solution The integrand in the arc length formula (1) is constant and equal to 1 if the
curve is parametrized by arc length. Thus

L=fb1dt=b—a.A

If a curve r = o(7), as it is presented to us, is regular but not parametrized by
arc length, we can introduce a new independent variable so that the new curve
is parametrized by arc length. In fact, we can choose a value a in the domain
of the curve and define s = p(¢) to be the arc length [}|/6'(u)|| du of the curve
between a and 7. We have ds/dr = lo’(5)]| > O since the curve is regular, so.
the inverse function ¢ = q(s) exists (see Section 5.3). Now look at the new
curve r = o,(s) = o(q(s)), which goes through the same points in space as the
original curve but at a different speed. In fact, the new speed is

i)l = g’ (s)0’(g(s))Il  (chain rule)
(o ()] (g(s) is positive)

1 ’
m llo’(g(s))I-

However, by the fundamental theorem of calculus and the definition of 2
p'(D)= e, so [|ej(s)]| = 1, and so the new curve is parametrized by arc
length. ‘
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Example 8 Find the arc length parametrization for the helix (cost,sinz,?).
Solution We have |[v|| =ysin + cos% + 1 =2. Taking a =0, we have s =p(1) =

Example 9

Solution

ﬁ,\/f du=\21 50 s =21t and t = s/\/f; the curve in arc length parame-
trization is therefore (cos(s /42 ),sin(s/ V2),s/42). A

The arc length parametrization is mostly useful for theoretical purposes,
since the integral in its definition is often impossible to evaluate. Still, the
existence of this parametrization makes the definitions which follow much
simpler.

Whenever a curve is parametrized by arc length, we will denote this
parameter by s. Notice that in this case T=v = dr/ds. Now we can define the
curvature of a curve.

Curvature

Let T be the unit tangent vector of a curve parametrized by arc length.
The scalar k = ||dT/ds| is called the curvature of the curve. If £ # 0O, the
unit vector N = (dT/ds)/||dT/ds| is called the principal normal vector
to the curve.

Let us show that the principal normal vector is perpendicular to the unit
tangent vector. Since T has constant length, we know, by Example 9 of the
previous section, that dT/ds is perpendicular to T. Since N has the same
direction as d'T/ds, it is perpendicular to T as well.

Compute the curvature and principal normal vector of the helix in Example 8.

We have T = —(1/y2 )sin(s/V2 )i + (1/¥2 )cos(s/v2 )j + (1/V2 )k, so dT/ds
= —(1/2)cos(s/ V2)i — (1/2)sin(s/ V2)j; the curvature is

oo S ) e Lo ) =4/1 =1
\/:cos(‘/i_)+4sm(‘/5) 4 7

and the principal normal vector is —cos(s/ Y2)i — sin(s/ 2)i- A

If a curve is not parametrized by arc length, it is possible to compute the
curvature and principal normal vector directly by the following formulas:

VXYV
o IV xv]

4
Il ¥

(v+ V)V = (V- vV
N(t) = H(V N v)vr — (V' . V)VH : ) (5)

We now prove formula (4). The curvature is defined as \|dT/dsl|. We
must use the chain rule to express this in terms of the original parametrization
t. First of all, we have T=v/||v|| =v/(v* V)72, so

dT _ dT dt _ 1 dT

Now ds/dt.= ||v|| and so
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ar
d

o)
(Zo-v e en 2l

1 =32 dv ~1/2dv
2(v v) 2(v I )v+(v V) r

=(v-v)'3/2[—(v d:’)v+(v V) dt}

dv

” ”-—(v v)_- (v Ev+(v V)Z,—} [ v+(v v)dt]

=(v-v) (v %)(v v) -2

L av dv  dv

(v d)(v vy + (v v)(dt I
= (vev)~ dv , dv av —ally 5 d¥ |
vy v)( 2 dt) (v d )} vl “vx a “

(See Exercise 38a, Sectlon 13.5.) Thus

e A e e gl

IvIf?
which is formula (4).
In Exercise 20, the reader is asked to derive (5) using similar methods.

)

Example 10 Find the curvature of the exponential spiral (e ~‘cost,e " ‘sint,0) (Fig. 14.7.2).

What happens as ¢ —> co?
y

~
1}

T N\ t=2x ¢
Figure 14.7.2. Graph of the
exponential spiral in the
(x, y) plane.

Solution We have
v=(—e ‘cost — e 'sint)i + (—e~'sint + e 'cost)j
and
V' = (e ‘cost + e 'sint + e 'sint — e ‘cost)i
+ (e 'sint — e 'cost — e 'cost — e 'sint)j
= 2e~'(sinti — cos tj).
Then

v Xy =2e-2| —cost—sint —sint+ cost|,
sin ¢ — cost

=2e " ¥(cos’ + cosssins + sin’t — costsin 1)k = 2e 'k,
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and so ||v X V|| = 2e %, Sinceé
Ivll = {{e ‘(cost + sint)]* + [e "(cost — sin)P}V/3,
v = e“”[(cost + sin#)’ + (cost — sint)2}3/2= e %23/2,
By formula (4),
: ~2 ¢
k= % = —"ﬁ- .

As t— o0, the curvature approaches infinity as the spiral wraps more and
more tightly about the origin. A

Exercises for Section 14.7

Find the arc length of the given curve on the specified

12. (a) Suppose that a car is going around a circular

interval in Exercises 1-6.

10.

11.

. (2cost,2sint,t); 0 < 1 < 27.
L (1L,385,9P);0<t< 1.
. (sin3#,c0831,267%); 0 < £ < 1.

22

.(t+l,T2t3/2+7,%t2)for1<t<2.

A forl < <2
. (t,tsint,tcost); 0 < t < 7.
. A body of mass 2 kilograms moves in a circular

path on a circle of radius 3 meters, making one
revolution every 5 seconds. Find the centripetal
force acting on the body.

. Find the centripetal force acting on a body of

mass 4 kilograms, moving on a circle of radius 10
meters with a frequency of 2 revolutions per
second.

. A satellite is in a circular orbit 500 miles above

the surface of the earth. What is the period of the

orbit? (See Example 5; 1 mile = 1.609 kilometer; the

radius of the earth is 6370 km).

What is the gravitational acceleration on the satel-

lite in Exercise 97 The centripetal acceleration?

For a falling body near the surface of the earth,

the force of gravity can be approximated very

well as a constant downward force with magni-
tude F= GmM / R?, where G is the gravitational
constant, M the mass of the earth, m the mass of

the body, and R the radius of the earth (6.37 X

10° meters).

(a) Show that this approximation means that
any body falling freely (neglecting air resis-
tance) near the surface of the earth experi-
ences a constant acceleration of g = 9.8 me-
ters per second per second. Note that this
acceleration is independent of m: any two
bodies fall at the same rate.

(b) Show that the flight path of a projectile or a
baseball is a parabola (see Example 11 in
Section 14.6).

curve of radius r at speed v. It will then exert
an outward horizontal force on the roadway
due to the centripetal acceleration and a verti-
cal force due to gravity. At what angle 4
should the roadway be banked so that the
total force tends to press the car directly into
(perpendicular to) the roadway? (See Fig.
14.7.3.) How does the bank angle depend on »
and on the speed v?

Figure 14.7.3. For what
value of # does the total
force press directly into the
roadway?

(b) Discuss how you might treat the design
problem in part (a) for a curve that is not part
of a circle. Design an elliptical racetrack with
major axis 800 meters, minor axis 500 meters,
and speed 160 kilometers per hour.

13. A particle with charge ¢ moving with velocity

vector v through a magnetic field is acted on by

the force F = (¢/¢)v X B, where ¢ is the speed of

light and B is a vector describing the magnitude

and direction of the magnetic field. Suppose

that:

(1) The particle has mass m and is following a
path r = o(s) = xi + yj + zk.

2) o(0)=1i; 0'(0) = aj + ck.

(3) The magnetic field is constant and uniform
given by a vector B = bk.

(a) Use the equation F =(g/c)v x B to write dif-
ferential equations relating the components of
a=gc"(t)and v=¢6'(t).
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15.

16.

17.

18.

15.

*20.

*21.

*22.
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(b) Solve these equations to obtain the compo-
nentis of o (). [Hint: Integrate the equations
for d*x/dr* once, use item (2) in the list
above io determine the constant of integra-
tion, and substitute the resulting expression
for dx/dt into the equation for d%/dt? to
get an equation similar to the spring equa-
tion solved in Section 8.1.]

(c) Show that the path is a right circular helix.
What are the radius and axis of the cylinder
on which it lies? (The dimensions of the
helix followed by a particle in a magnetic
field in a bubble chamber are used to mea-
sure the charge to mass ratio of the particle.)

In Exercise 13, how does the geometry of the

helix change if (a) m is doubled, (b) ¢ is doubled,

(c) ||o’(0)]| is doubled?

Show that a circle of radius r has constant curva-

ture 1/r.

Compute the curvature #§#### and principal nor-

mal vector for the helix (rcoswt,rsinwt, ct) in

terms of , w, and c.

Find the curvature of the ellipse x*+ 2y?=1,

z =0. (Choose a suitable parametrization.)

Compute the curvature and principal normal

vector of the elliptical helix (cos¢,2sint, £).

Show that if the curvature of a curve is identi-

cally zero, then the curve is a straight line.

Derive formula (5) by using the methods used to

derive (4).

A particle is moving along a curve at constant

speed. Express the magnitude of the force on the

particle in terms of the mass of the particle, the
speed of the particle, and the curvature of the
curve.

Let T and N be the unit tangent and principal

normal vectors to a space curve r = a(t). Define

a third unit vector perpendicular to them by,

B =T XN. This is called the binormal vector.

Together, T, N, and B form a right-handed sys-

tem of mutually orthogonal unit vectors which

may be thought of as moving along the curve

(see Fig. 14.7.4.)

zZ 4

r=g(t) T

X
Figure 14.7.4. The vectors
T, N, and B form a
“moving basis” along the
curve,

*23.

*24.

*25.

*26.

753

(a) Show that
B =(vXxa)/|lvXall = (vxa)/(k|v|]),

where a is the acceleration vector.

(b) Show that (dB/dr)-B=0. [Hint: ||B|)>=1
is constant.]

(c) Show that (dB/dr)+ T = 0. [Hint: Take de-
rivatives in B+ T = 0.]

(d) Show that dB/dr is a scalar multiple of N.
(e) Using part (d) we can define a scalar-
valued function 7 called the forsion by

dB/dt = — 7|)v||N. Show that

e [o'(5) X 6”(D] - 0"(1)
oy xo" (D>

(a) Show that if a curve lies in a plane, then the
torsion 7 is identically zero. [ Hint: The vec-
tor function o(#) must satisfy an equation of
the form o(¢)-n=0. By taking successive
derivatives show that o', o, and ¢’ all lie
in the same plane through the origin. What
does this do to the triple product in Exercise
22(e)?]

(b) Show that B is then constant and is a nor-
mal vector to the plane in which the curve
lies.

If the torsion is not zero, it gives a measure of

how fast the curve is tending to twist out of the

plane. Compute the binormal vector and the

torsion for the helix of Example 8.

Using the results of Exercises 22 and 23, prove

the following Frenet formulas for a curve para-

metrized by arc length:

dT _
=
dN
Vi kT
dB
ds
[Hint: To get the second formula from the oth-
ers, note that NN, N-B, and N-T are con-
stant. Take derivatives and use earlier tormulas
to get (dN/ds) - B and (dN/ds) - T.]
Kepler’s first law of planetary motion states that
the orbit of each planet is an ellipse with the sun as
one focus. The origin (0,0) is placed at the sun,
and polar coordinates (r,8) are introduced. The
planet’s motion is r = r(2), § = 8(z), and these
are related by r(¢)=1/[1 + ecos#(s)], where
I=k*/GM and e* =1~ 2k*E/G*M*m); k is a
constant, G is the universal gravitation constant,
E is the energy of the system, M and m are the
masses of the sun and planet, respectively
(a) Assume e < 1. Change to rectangular coor-
dinates to verify that the planet’s orbit is an
ellipse.
(b) Letp=1/r. Verify the energy equation

(du/d8)’+ p? = 2/ k°m)(GMmy — E).

kN,

+ 7B,

= —7N.
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7~

Figure 14.S.1. If r rotates
about 1, its tip describes a

circle.

Figure 14.S.2. The vector
m, is in the plane of ry and
1, is orthogonal to I, and
makes an angle of
(m/2)—A

with ry.

Figure 14.S.3. The triple
(1, my, ny) is a right-handed
orthogonal set of unit

vectors.

Example 1

Solution

Suppliement to Chapter 14:
Rotations and the Sunshine Formula

Rotations described in terms of the cross product are used to derive the sunshine
formula.

The purpose of this section is to derive the sunshine formula, which has been
stated and used in the supplements to Chapters 5 and 10. Before we begin the
actual derivation, we will study some properties of rotations in preparation for
the description of the earth rotating on its axis. The cross product, introduced
in Section 13.5, will be used extensively here.

Consider two unit vectors 1 and r in space with the same base point. If we
rotate r about the axis through 1, then the tip of r describes a circle (Fig.
14.S.1). (Imagine I and r glued rigidly at their base points and then spun about
the axis through 1.) Assume that the rotation is at a uniform rate counterclock-
wise (when viewed from the tip of 1), making a complete revolution in 7" units
of time. The vector r now is a vector function of time, so we may write
r = o(¢). Our first aim is to find a convenient formula for &(?) in terms of its
starting position r, = ¢ (0).

Let A denote the angle between 1 and r,; we can assume that A % 0 and
A # 7, i.e., | and 1, are not parallel, for otherwise r would not rotate. Construct
the unit vector m, as shown in Fig. 14.S.2. From this figure we see that

Iy = cosAl + sinAmy . (1)

(In fact, formula (1) can be taken as the algebraic definition of m, by writing
m, = (1/sin\)r, — (cosA/sinA)l. We assumed that A 70, and A # 7, so sinA
#0.)

Now add to this figure the unit vector ny = I X m,. (See Fig. 14.8.3.) The
triple (I, my,ny) consists of three mutually orthogonal unit vectors, just like

(., k).

Let 1= (1/y3)(i + j + k) and r, = k. Find m; and n,.

The angle between 1 and ry is given by cosA=1-ry,=1/ ¥3. This was
determined by dotting both sides of formula (1) by I and using the fact that |

is a unit vector. Thus sinA =y1 — cos’X =y2/3, and so from formula (1) we
get

_ 1 _ COSA
Mo = sin A (%) sin A I
3 1 3 1 .,
=4/ k——14/ -—(i+j+k
=Lk——1—(i+j)

6 V6
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and

k

1

B3 o=Li-Lja
| B R

Return to Fig. 14.8.3 and rotate the whole picture about the axis 1. Now m
and n will vary with time as well. Since the angle A remains constant, formula
(1) applied after time ¢ to r and 1 gives
1 cosA p
= ——r— 0221 1
M= SnA " sinA (1

(See Fig. 14.5.4.)

Figure 14.S.4. The three
vectors v, m, and n all
rotate about L

On. the other hand, since m is perpendicular to |, it rotates in a circle in
the plane of m, and n,. It goes through an angle 27 in time T, so it goes
through an angle 2#¢/T in ¢ units of time, and so

2mt )m0 + sm( 2? )no.

Inserting this in formula (1’) and rearranging gives

m = COS(

r=o(r)=(cosA)l + sm}\cos( 2t )mo + sm}\sm( 2? )no. (2)

This formula expresses explicitly how r changes in time as it is rotated
about 1, in terms of the basic trihedral (I, my, n,). -
Example 2 Express the function o(¢) explicitly in terms of I, Iy, and 7.

Solution We have cosA=1-r, and sinA = ||l X r,||. Furthermore n, is a unit vector
perpendicular to both 1 and r,, so we must have

_ IXr
BTN

Thus (sinA)ny =1Xr,. Finally, from formula (1), we obtain (sin\)m,=
— (cosMl =1, — (r, - DI. Substituting all this into formula (2),

r=(ro-Dl+ cos( Z;t )[ — (ro- D] + sm( 2t )(l X To)- A
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Example 3

Solution

sin A

Figure 14.S.5. The tip of r
sweeps out a circle of
radius sin A.

Figure 14.S.6. The unit
vector u points from the
sun to the earth at time 7.

Figure 14.S.7. At7 =0, the
earth’s axis is tilted toward
the sun.

Show by a.direct geometric argument that the speed of the tip of r is
(2w / T)sinA. Verify that equation (2) gives the same formula.

The tip of r sweeps out a circle of radius sinA, so it covers a distance 27 sinA
in time T Its speed is therefore (27 sinA)/ T (Fig. 14.S.5). From formula (2),
we find the velocity vector to be

a _ _ 27 2qt 27 2t
7 sinA - sm( )mo+ sinA - T cos( T )no,

and its length is (since my and n, are unit orthogonal vectors)

2

=\/sin2?\ (2;) sin ( 2;t)+s1n}\ (27'”) cof(z—;f)
=sinA - ( Z;I) as above. A

Now we apply our study of rotations to the motion of the earth about the
sun, incorporating the rotation of the earth about its own axis as well. We will
use a simplified model of the earth—sun system, in which the sun is fixed at the
origin of our coordinate system and the earth moves at uniform speed around
a circle centered at the sun. Let u be a unit vector pointing from the sun fo the
earth; we have u = cos(2wt/ T)i+ sin(2wt/ T,)j, where T, is the length of a
year (¢ and T, measured in the same units). See Fig. 14.8.6. Notice that the
unit vector pointing from the earth to the sun is —u and that we have oriented
our axes so that u=i when 7= 0.

dr
|

k

Next we wish to take into account the rotation of the earth. The earth
rotates about an axis which we represent by a unit vector I pointing from the
center of the earth to the North Pole. We will assume that 1 is fixed* with
respect to i, j, and k; astronomical measurements show that the inclination of 1
(the angle between 1 and k) is presently about 23.5°. We will denote this angle

. by a. If we measure time so that the first day of summer in the northern

hemisphere occurs when ¢ =0, then the axis 1 must tilt in the direction —i,
and so we must have 1 = cos ak — sincai. (See Fig. 14.5.7.)

Now let r be the unit vector at time ¢ from the center of the earth to a
fixed point P on the earth’s surface. Notice that if r is located with its base

4 Actually, the axis 1 is known to rotate about k once every 21,000 years. This phenomenon,
called precession or wobble, is due to the irregular shape of the earth and may play a role in
long-term climatic.changes, such as ice ages. See pp. 130-134 of The Weather Machine by Nigel
Calder, Viking (1974).
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point at P, then it represents the local vertical direction. We will assume that P
is chosen so that at 1 = 0, it is noon at the point P; then r lies in the plane of 1
and i and makes an angle of less than 90° with —i. Referring to Fig. 14.S.8,
we introduce the unit vector my = —(sina)k — (cosa)i orthogonal to . We
then have ry = (cosA)l + (sinA)m,, where A is the angle between I and r,. Since
A =90° — [, where / is the latitude of the point P, we obtain the expression
I, = (sin /)l + (cos/)m,. As in Fig. 14.5.3, let ny =1 X my,.

Figure 14.S.8. The vectorr
is the vector from the
center of the earth to a Equator
fixed location P. The
latitude of P is / and the
colatitude is A = 90° — 1.
The vector my is a unit
vector in the plane of the
equator (orthogonal to 1)
and in the plane of | and ry.

S m

Example 4 Prove that ny=1XxXmy= —j.

Solution Geometrically, 1 X m, is a unit vector orthogonal to I and m, pointing in the
sense given by the right-hand rule. But I and m, are both in the ik plane, so
1 X m, points orthogonal to it in the direction —j (see Fig. 14.S.8).

Algebraically, 1 = (cosa)k — (sina)i and my, = —(sina)k — (cos )i, so
i j k
IXmy=| _ging 0 cosa |= —J(sin’a +cos’a)=—j. A
—cosa 0 -—sina

Now we apply formula (2) to get

. 2qt <y ainf 27t
r=(cosA)l + sm)\cos( de )m0 + s1n}\s1n< de )no,

where T, is the length of time it takes for the earth to rotate once about its
axis (with respect to the “fixed stars”—i.e., our i, j,k vectors).” Substituting the
expressions derived above for A, 1, m,, and n,, we get

r = sin/(cosak — sinai) + coslcos( 2t )(—sinak — cosai) — coslsin( 2t )j.
T, T,

Hence

_ . 2at \ |4 - [ 2t \,
r= —|sin/sina + cos/cosacos{ == | |i — cos/sin| === |j

T, T,
+[sinlc0sa - coslsinacos(%)]k. 3)
d

Example 5 What is the speed (in kilometers per hour) of a point on the equator due to the
rotation of the earth? A point at latitude 60°? (The radius of the earth is 6371
kilometers.)

Solution From Example 3, the speed is s = 7R/ T)sinA = 27R /T )cos], where R is
the radius of the earth and / is the latitude. (The factor R is inserted since r is
a unit vector; the actual vector from the earth’s center to a point P is Rr).

3 T, is called the length of the sidereal day. It differs from the ordinary, or solar, day by about 1
part in 365. (Can you explain why?) In fact, 7, ~23.93 hours.
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Using T, =23.93 hours and R = 6371 kilometers, we get s = 1673 cos/ ki-
lometers per hour. At the equator /=0, so the speed is 1673 kilometers per
hour; at / = 60°, s = 836.4 kilometers per hour. A

With formula (3) at our disposal, we are now ready to derive the sunshine
formula. The intensity of light on a portion of the earth’s surface (or at the top
of the atmosphere) is proportional to sin A, where 4 is the angle of elevation
of the sun above the horizon (see Fig. 14.5.9). (At night sin 4 is negative, and
the intensity then is of course zero.)

Sunlight

Figure 14.S.9. The intensity
of sunlight is proportional
to sinA. The ratio of area 1
to area 2 is sin 4.

Thus we want to compute sin 4. From Fig. 14.5.10 we see that sin4 =
—u-r. Substituting u = cos(27z/ T,)i + sin(27t/ T,)j and formula (3) into this
formula for sin 4 and taking the dot product gives

sinAd = cos( 2mt )[sinlsina + cos/cosa cos( M)}
7, T,

. Dt . [ 2at
+ sin| &= coslsm( == )}
= cos( 2T”;’)sinlsinoz

2mt 2mt \ 4 of 2 \gin( 27t
+cosl[cos(Ty)cosacos( T, )+sm( 7} )sm( T, ” @)

-
(VAVAVAN

Figure 14.S.10. The Sunlight

geometry for the formula
sin A4 = c0s(90° — A)
= —u-r.

Example 6 Set ¢ = 0 in formula (4). For what / is sin4 = 0? Interpret your result.
Solution With 7 = 0 we get

sind =sin/sina + cos/cosa = cos(! — a).

This is zero when / — a = + 7 /2. Now sin 4 = 0 corresponds to the sun on the
horizon (sunrise or sunset), when 4 = 0 or 7. Thus, at = 0, this occurs when
I'=a = (m/2). The case a + (7/2) is impossible, since / lies between — 7 /2
and 7 /2. The case / = a — (7/2) corresponds to a point on the Antarctic
Circle; indeed at ¢ = 0 (corresponding to noon on the first day of northern
summer) the sun is just on the horizon at the Antarctic Circle. 4
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Our next goal is to describe the variation of sin4 with time on a particular
day. For this purpose, the time variable ¢ is not very convenient; it will be
better to measure time from noon on the day in question.

To simplify our calculations, we will assume that the expressions
cos(2mt/ T,) and sinQ2wt/ T }) are constant over the course of any particular
day; since 7, is 365 times as large as the change in ¢, this is a reasonable
approx1mat10n On the nth day (measured from June 21), we may replace
27t/ T, by 27n /365, and formula (4) gives

sind = (sin/)P + (cosl)[ Qcos( 277,” ) + Rs m( 277,7’ )}, &)
d d
where P = cos(2mn/365)sina, Q = cos(2wn/365)cosa, and R = sin(27n /365).
We will write the expression Q cos(2wt/T,) + Rsin(2wt/T,) in the form
Ucos[27(t — t,)/ T,), where 1, is the time of noon of the nth day. To find U,
we use the addition formula to expand the cosine:

a2, Yt 2, 2t \ .. 2at,
— = + .
Ucos( T, T, ) U[cos( T, )cos( T, sn( T, )sm T,

Setting this equal to Qcos(2wt/T,) + Rsin(2wt/T,) and comparing coeffi-
cients of cos2xt/ T, and sin2xt/ T, gives

7t 7t,
Td Td

Squaring the two equations and adding gives

Ul=Q*+R? or U=yQ?+R* ]

while dividing the second equation by the first gives tan(2wt,/T,) = R/ Q. We
are interested mainly in the formula for Uj; substituting for Q and R gives

_ 2an 27n
U—\/COS(365 )cosa+s1n(365)
= 2( 270\ | _ gin? in2( 27n
—\/cos ( 365 )(1 sin“a) + sin ( 365 )
=\/1—cos(§g’51)sma.

Letting 7 be the time in hours from noon on the nth day so that (1 — 1,)/ T,
= 7/24, we may substitute into formula (5) to obtain the final formula:

sind = smlcos( %767;1 )sina + cosl\/r— cos ( %767{51 )sm o cos( 22727 ) (6)

which is identical (after some changes in notation) to formula (1) on page 301.

How high is the sun in the sky in Edinburgh (latitutde 56°) at 2 p.M. on
February 1?

We plug into formula (6): a = 23.5°, /=90 —56=34°, n= number of days
after June 21 = 225, and 7 = 2 hours. We get

sin4 = 0.5196,
soA=2313° A

6 We take the positive square root because sin 4 should have a local maximum when 7 =1,.
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Exercises for The Supplement to Chapter 14

. Let 1=(j+k)/y2 and ry=(i—j)/y2. (a) Find
mg and ny. (b) Find r = o(¢) if T =24. (c) Find
the equation of the line tangent to o(¢) at ¢ = 12
and T = 24.

2. From formula (2), verify that o(7/2)-n=0.
Also, show this geometrically. For what values of ¢
is o(¢)»n=0?

3. If the earth rotated in the opposite direction about
the sun, would 7, be longer or shorter than 24
hours? (Assume the solar day is fixed at 24 hours.)

4. Show by a direct geometric construction that r
= o(T;/4) = —sin/sinai — cos /j + sin / cos ak.
Does this formula agree with formula (3)?

5.

6.

Derive an “exact” formula for the time of sunset
from formula (4).

Why does formula (6) for sin A not depend on the
radius of the earth? The distance of the earth from
the sun?

. How high is the sun in the sky in Paris at 3 P.M. on

January 15? (The latitude of Paris is 49°N).

. How much solar energy (relative to a summer day

at the equator) does Paris receive on January 15?7
(The latitude of Paris is 49° N).

. How would your answer in Exercise 8 change if

the earth were to roll to a tilt of 32° instead of
23.5°7

Review Exercises for Chapter 14

Sketch the graphs of the conics in Exercises 1-8.

1. 4x2+9y2=36 2. )c-~~-12y2
3.x2—4?=16 4. 4x% + 16y = 81
5. 100x% + 100y% =1 6. y> =16 + 4x>
7. x*—y=14 8. 2x2+2y2=80

Sketch the graphs of the conics in Exercises 9—12.
9. 9x*—18x + y2— 4y +4=0.
10. 9x2 + 18x—y2+2y—8=0.
11. x2 + 2xy + 3y2 = 14.
12. x* = 2xy — 3y% = 14.
Sketch or describe the level curves for the functions and
values in Exercises 13-16.
13. f(x, y)=3x—2y; c=2
14.f(x,y)=x2—y2; c=—1
15. fx, y)=x*+xy; c =2
16. f(x, y) = xX+4;¢=85
Describe the level surfaces f(x, ¥,z) = c for each of the
functions in Exercises 17-20. Sketch for ¢ =1 and
c=25.
17. flx, y,2)=x—y—z
18. f(x, y,z2)=x+y—2z
19. f(x, p,2) = x*+ y> + 22+ 1
20. f(x, y,z) = x* + 2y + 322
Sketch and describe the surfaces in Exercises 21-28.

21. x2+4y2+22=1 22. x2+4y2—22=0
23.x2+4y2—zz=1 24.x2+4y2+22=0
25. 32+ 4yr -z =1 26. x2+4y2—z=0
27. 2+ 4y + 2 =1 28. x4+ 4y? +z=0

29. This exercise concerns the elliptic hyperboloid of
one sheet. An example of this type was studied in
Example 6, Section 14.4. A standard form for the

30.

31.

equation is

X 2

? 2 ? =1 (a, b, and ¢ positive).

(a) What are the horizontal cross sections ob-
tained by holding z constant?

(b) What are the vertical cross sections obtained
by holding either x or y constant?

(c) Sketch the surface defined by

2 2 2
L+y__ZT=1'

4 1

In a yz plane, sketch the cross-section curves
obtained from this surface when x is held
constantly equal to 0, 1, 2, and 3 (x =2 is
especially interesting).

(a) Describe the level surfaces of the function
flx, y,2) = x>+ y2 — 22 In particular, dis-
cuss the surface f(x, y,z) = ¢ when c is posi-
tive, when c is negative, and when ¢ is zero.

(b) Several level surfaces of f are sketched in
Fig. 14.R.1. Find the value of ¢ associated
with each.

(¢) Describe how the appearance of the level
surfaces changes if we consider instead the
function g(x, y,z) = x* + 2y? — 2%

Let f(x, y) = x? 4+ 2p? + 1

(a) Sketch the level curves f(x, y)=c for ¢ =
=10, —1,0, 1, 2, and 10.

(b) Describe the intersection of the graph of f
with the vertical planes x=1, x= —1,
x=2y=1lLy=2y=—-1

(c) Sketch the graph of f.
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(1)
(i)
(iif)

’/(iV)

)

X

Figure 14.R.1. Level

surfaces of x2 + y? — 2%

32. Do as in Exercise 31 for f(x, y)=y/x, and
describe the intersection of the graph of f with
the cylinder of radius R (that is, » = R in cylin-
drical coordinates).

In Exercises 33-38, fill in the blanks and plot.

Rectangular Cylindrical Spherical
coordinates coordinates coordinates
33, (1,-1LDH
34, (1,0,3)
35. (5,7/12,4)
36. 8,37/2,2)
37. 3, -w/6,7/4)
38. (10,7 /4,7 /2)

39. A surface is described in cylindrical coordinates
by 372 = z? + 1. Convert to rectangular coordi-
nates and plot.

40. Show that a surface described in spherical coor-
dinates by f(p,$) = 0 is a surface of revolution.

41, Describe the geometric meaning of replacing
(p,8,¢) by (0,6 + 7,6 + 7 /2) in spherical coor-
dinates.

42. Describe the geometric meaning of replacing
(0,8, ¢) by (4p, 8, ¢) in spherical coordinates.

43. Describe by means of cylindrical coordinates a
solenoid consisting of a copper rod of radius 5
centimeters and length 15 centimeters wound on
the outside with copper wire to a thickness of 1.2
centimeters. Give separate descriptions of the rod
and the winding.

44, A gasoline storage tank has two spherical cap
ends of arc length 56.55 feet. The cylindrical part

Review Exercises for Chapter 14 761

of the tank has length 16 feet and circumference
113.10 feet. Let (0,0,0) be the geometric center
of the tarik. See Fig. 14.R.2.

113.10 ft

\ =N
} 56.55 ft
/
\_/
L—lﬁft

(a) Describe the cylindrical part of the tank via
cylindrical coordinates.

(b) Describe the hemispherical end caps with
spherical coordinates. (Set up spherical coor-
dinates using the centers of the cap ends as
the origin.)

Sketch the curves or surfaces given by the equations in
Exercises 45-52.

45. z=x+y

46. x>+ 2xz+ 22 =0

47. o(t)=3sinti+ tj+ costk

48. o(f) =(sint,t + 1,2t — 1)

49. 2= —(x* + y¥/4)

50. z = —(x? +y2)

51, 22= —x?2—3y?+2

52. 2% = x*—4y?
Find the equation of the line tangent to each of the
curves at the indicated point in Exercises 53 and 54.

53. (£ + 1,e7 ", cos(mt /2)); t = 1

54, (12— l,cost?, ity 1=y
Find the velocity and acceleration vectors for the curves
in Exercises 55-58.

55. o(¢)=e'i+sintj+ cosrk.

t2
6. a:(1) = ~

Figure 14.R.2. The gasoline
storage tank for Exercise 44.

i+¢4+k

2

57. a(t) = o,(t) + o,(t), where o, and o, are given in
Exercises 55 and 56.

58. a(t) = o,(¢) X o,(t), where o, and o, are given in
Exercises 55 and 56. :

59. Write in parametric form the curve described by
the equations x — 1 =2y + 1 =3z + 2.
60. Write the curve x = y®= 22+ 1 in parametric

form.
61. Find the arc length of o(r) = ti+In¢j+ 2y2¢k;
<r<2.

62. Express as an integral the arc length of the curve
x?=y> =75 between x =1 and x =4. (Find a
parametrization.)

63. A particle moving on the curve o(f) =37 —
sintj — e'k is released at time 7 = 4 and flies off
on a tangent. What are its coordinates at time
t=1?7

64. A particle is constrained to move around the unit
circle in the xy plane according to the formula
(x,y,2)= (cos(t?), sin(1%),0), t > O.
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65.

66.

Chapter 14 Curves and Surfaces

(a) What are the velocity vector and speed of
the particle as functions of ¢?

(b) At what point on the circle should the parti-
cle be released to hit a target at (2,0, 0)? (Be
careful about which direction the particle is
moving around the circle.)

(c) At what time ¢ should the release take place?
(Use the smallest 7 > 0 which will work.)

(d) What are the velocity and speed at the time
of release?

(e) At what time is the target hit?

A particle of mass m is subject to the force law

F = — kr, where & is a constant.

(a) Write down differential equations for the
components of r(z).

(b) Solve the equations in (a) subject to the
initial conditions r(0) = 0, r'(0) = 2j + k.

Show that the quantity
mi|dr ), k
5 ' il Fr°r

is independent of time when a particle moves

under the force law in Exercise 65.

. Find the curvature of the ellipse 4x? + 9y = 16.

* 68.

69.

70.

Let r=0a(¢) be a curve in space and N be its

principal normal vector. Consider the “parallel

curve” r = p(f) = o(2) + N(¢), where a(t) is the

displacement vector to P(¢) from a fixed origin.

(a) Under what conditions does p(f) have zero
velocity for some t,? [Hint: Use the Frenet
formulas, Exercise 25, Section 14.7]

(b) Find the parametric equation of the parallel
curve to the ellipse (4cosz,4sin¢, 0).

Find a formula for the curvature of the graph

» = f(x) in terms of f and its derivatives.

The contour lines on a topographical map are

the level curves of the function giving height

above sea level as a function of position. Figure

14.R.3 is a portion of the U.S. Geological Survey

map of Yosemite Valley. There is a heavy con-

tour line for every 200 feet of elevation and a

lighter line at each 40-foot interval between

these.

(a) What does it mean in terms of the terrain
when these contour lines are far apart?

(b) What if they are close together?

(c) What does it mean when several contour
lines seem to merge for a distance? Is eleva-

o

; LhdGaeife sy
\W"C"’?F‘: o 05‘5; ),
4 . i

2l
opl

TR geRe

/ V: M%ia

Figure 14.R.3. Yosemite
Valley (portion). (U.S.
Department of Interior
Geological Survey.)
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tion really a function of position at such
points? (Look at the west face of Half
Dome. Does this seem like a good direction
from which to climb it?)

Sketch a cross section of terrain along a
north—south line through the top of Half
Dome. ,

A hiker is not likely to follow the straight
north—south path in part (d) and is probably
more interested in the behavior of the ter-
rain along the trail he or she will follow. The
3-mile route from the Merced River (alti-
tude approximately 6100 feet) to the top of
Half Dome (approximately 8842 feet) along
the John Muir and Half Dome Trails has
been emphasized in Fig. 14.R.3. Show how a
cross section of the terrain along this trail
behaves by plotting altitude above sea level
as a function of miles along the trail. (A
piece of string or flexible wire may be of aid
in measuring distances along the trail.)

*71. Find the curvature of the “helical spiral”
(t,tcost, tsint) for t > 0. Sketch.

Describe the level curves f(x, y) = ¢ for each of
the following functions. In particular, discuss any
special values of ¢ at which the behavior of the
level curves changes suddenly. Sketch the curves
forc=—1,0, and 1.

*72.

*73.

(a)
(b)
©
(d
(®
®
(2)

(®)
©

fx, y)=x+2p;
fGe, py=x2 =y
flx y)=y*— x%
G, p) = X2+ y%
f(x, ) = xp;

fx, »)y=y— 2x2.

Write in parametric form the curve which is
the intersection of the surfaces x% + p2 + 722
=3andy=1

Find the equation of the line tangent to this
curve at (1,1, 1).

Write an integral expression for the arc
length of this curve. What is the value of
this integral?

Review Exercises for Chapter 14 763

*74. Let n be a positive integer and consider the curve

(a)

(b)

(©)
(d

*75.

x = cos cos(4nt)
= I -7 <t < E
y = costsin(4nr) 3 <t 7

z =sint

Show that the path traced out lies on the
surface of the sphere of radius 1 centered at
the origin.

How many times does the curve wind
around the z axis?

Where does the curve cross the xy plane?
Sketch the curve when n=1 and when
n=2,

Let u; and u, be unit vectors, and define the

curve o(¢) by

()
(b)
©
@

©

*76 ()

(b)
©

W COS ¢ + uysin ¢
0<t<

(ST

o) = —— |
® |{mycos £ + uysin ¢}

Find o(0) and o (7 /2).

On what surfaces does a(z) lie for all ¢?
Find, by geometry, the arc length of the
curve o(?) for 0 < ¢ < w/2.

Express the arc length of the curve o(¢) for
0 < ¢ < 7/2 as an integral.

Find a curve o(¢) which traverses the same
path as o(¢) for 0 < ¢ < #/2 and such that
the speed [|a7(?)}| is constant.

Show that the hyperboloid x? + y? — 22 =4
is a ruled surface by finding two straight
lines lying in the surface through each point.
[Hint: Let (xq, yg,zo) lie on the surface;
write the equation of the line in the form
x=xq+at, y=yo+ bt, z=1zy+t; write
out x* + y? — 22 =4 using x3 + y} — z2=4
to obtain two equations for @ and b repre-
senting a line and a circle in the (a, b) plane.
Show that these equations have two solu-
tions by showing that the distance from the
origin to the line is less than the radius of
the circle.]

Is the hyperboloid x?+ y?~ 22=—4 a
ruled surface? Explain.

Generalize the results of parts (a) and (b).
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Chapter 15

15.1

Partial
Differentiation

A function of several variables can be differentiated with respect to one variable
at a time.

The rate of change of a function of several variables is not just a single
function, since the independent variables may vary in different ways. All the
rates of change, for a function of n variables, are described by » functions
called its partial derivatives. This chapter begins with the definition and basic
properties of partial derivatives. Methods for computation, including the chain
rule, are presented along with a geometric interpretation in terms of tangent
planes. The next chapter continues the development with topics including
implicit differentiation, gradients, and maxima and minima.

Introduction to
Partial Derivatives

The partial derivatives of a function of several variables are its ordinary deriva-
tives with respect to each variable separately.

In this section we define partial derivatives and practice computing them. The
geometric significance of partial derivatives and their use in computing
tangent planes are explained in the next section.

Consider a function f(x, y) of two variables. If we treat y as a constant, f
may be differentiated with respect to x. The result is called the partial
derivative of f with respect to x and is denoted by f,. If we let z = f(x, y), we
write

= 0z
f= dx
These symbols' are analogous to those we used in one-variable calculus:
f(x)=dy/dx.

The partial derivative with respect to y is similarly defined by treating x as a
constant and differentiating f(x, y) with respect to y.

! The symbol 3 seems to have first been used by Clairaut and Euler around 1740 to avoid
confusion with d. The notation D, f or D, f for f, is also used.
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766 Chapter 15 Partial Differentiation
Example 1 (a) If f(x, y) = xy + e”cos y, compute f, and .
(b) For f as in (a), calculate f (1,7 /2).

— 23 4 34 ot 0z dz
(©) If z=x%?+ x¥* — e, calculate o and 3y

Solution (a) Treating y as a constant and differentiating with respect to x, we get
- f(x, y)=y + e cos y. ‘
Differentiating with respect to y and considering x as a constant gives
Jy(x:y)=x —e’sin y.
(b) Substituting x = 1 and y = 7/2, we get
fe(L,w/2)=a/2 + e'cos(n/2) = 7 /2.

(c) Here we again hold y constant and calculate the x derivative:

08z _ 3 4_ 2 x?
e 2xy +3x7y yev.

Similarly,

g—; =3x%% + 4x%® — 2yxe™’. A

In terms of limits, partial derivatives are given by
f(x +Ax, y) — f(x, »)

x, y)= lim
fex ) Ax—0 Ax
and
(% y) = lim f(xy +4y) — f(x, )
YA Y Ay—0 A_y ’
See Fig. 15.1.1.
y y
Figure 15.1.1. The partial
A
derivatives f, and f, are yrayt Gy +hy)
limits of difference y+ veaese (x +AX,y) Y+ (x,»)
quotients along the x,)
horizontal and vertical — ;
paths shown here. x xthx X x x

Partial derivatives of functions f(x, y,z) of three variables are defined
similarly. Two variables are treated as constant while we differentiate with

respect to the third.

Example 2 (a) Let f(x, y,z) = sin(xy/z). Calculate f,(x, y,z) and f,(1,2,3).
(b) Evaluate

o 1
ay \/xz +y2 + 722
at (0,1, 1).

(c) Write the result in (b) as a limit.

Solution (a) We differentiate sin(xy/z) with respect to z, thinking of x and y as
constants; the result is

f.(x, p,2) = cos(xp/z)(— xy/z%) = —(xp/z%)cos(xy/ z).
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Substituting (1,2, 3) for (x, y,z) gives

__1-2 1-2y__2 2
fz(1,2,3)— ——éz—'COS(T)—- 9COS(3).
(b) Treating x and z as constants, and using the chain rule of one-variable
calculus,
d 1 _ ai(x2+y2+zz)_l/2

oy Vx2+ yr+ 22
I

= -y .
(+y*+ 22)3/2

At (0,1, 1) this becomes
-1 _ -1 )
0+ 12+1377 22

(c) In general,

Sy +By,2) = f(x, p,2)
m

Al)f—m Ay = fy(x’ y,z).
In case (b), this becomes
. 1 1 1 1
lim —| ——— - — = - — . &
A
YOV o raprer 2 22

Partial Differentiation

If fis a function of several variables, to calculate the partial derivative
with respect to a certain variable, treat the remaining variables as
constants and differentiate as usual by using the rules of one-variable
calculus.

If z = f(x, y) is a function of two variables, the partial derivatives
are denoted f, = 9z/dx and f, = 3z/3y.

If u= f(x, y,z) is a function of three variables, the partial deriva-
tives are denoted f, = du/dx, f, = du/dy, and f, = du/9z.

As in one-variable calculus, the letters for the variables do not always have to
be x, y,z.
Example 3 If & = rs’sin(r? + s?), find 9k /3.
Solution Holding r constant, we get
dh

Y 2rs sin(r2 + s2) + rs?-2s- cos(r2 + s2)

= 2rs[sin(r2 + s%) + s*cos(r” + sz)]. A
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768 Chapter 15 Partial Differentiation

Partial derivatives may be interpreted in terms of rates of change, just as
derivatives of functions of one variable.

Example 4 The temperature (in degrees Celsius) near Dawson Creek at noon on April 15,
1901 is given by T'= —(0.0003)x? + (0.9307)p, where x and y are the latitude
and longitude (in degrees). At what rate is the temperature changing if we
proceed directly north? (The latitude and longitude of Dawson Creek are
x =55.7° and y = 120.2°))

Solution  Proceeding directly north means increasing the latitude x. Thus we calculate

9T — —(0.0003)- 2xy = —(0.0003) -2 - (55.7) - (1202) ~ —4.017.

So the temperature drops as we proceed north from Dawson Creek, at the
instantaneous rate of 4.017°C per degree of latitude. A

Since the partial derivatives are themselves functions, we can take their partial
derivatives to obtain higher derivatives. For a function of two variables, there
are four ways to take a second derivative. If z = f(x, y), we may compute

_ 8 (dz)_ 9% _ 9 (0z\_ =
f“(x’y)“ax(ax)_axz’ f”(x’y)_ay(ay)—ayz’

_ 9 (dz\_ 0% _ 0 (dz)_ %
fxy(x’y)_ay(ax)_ayax’ 5x(x’y)_ax(ay)_axay'

Example 5 Compute the second partial derivatives of z = xy? + ye ™ + sin(x — y).

Solution We compute the first partials:

_g}ZZ = y% — ye ™ + cos(x — y)

and
g—; =2xy + e " —cos(x — y).

Now we differentiate again:
{?—)2:2 = ye ™ —sin(x — y), 582% =2x —sin(x — y),
a?czgy = %(g—;) =2y—e “+sin(x—y). A

Example 6 (a) If u = ycos(xz) + xsin(yz), calculate 3%u/dx 9z and 0%u/0z9dx. (b) Let
f(x,y,2)=e? + zcosx. Find f,, and f,.

Solution (a) We find 0u/dx = —yzsin(xz) +sin(yz) and du/9dz = — xysin(xz) +
xy cos( yz). Thus

2
83 gx = —ysin(xz) — xyz cos(xz) + y cos( yz).
Differentiation of du/dz with respect to x yields
2
ai gz = —ysin(xz) — xyz cos(xz) + y cos( yz).

(b) f.(x, y,2) = ye™ — zsinx; f,(x, y,z) = cosx; f,.(x, y,z) = (3/dx)(cos x) =
—sinx; f,(x, y,z)=(9/9z)(ye™ — zsinx) = —sinx. A
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15.1 Introduction to Partial Derivatives 769

In the preceding examples, note that the mixed partials taken in different
orders, like 9% /9xdy and 9% /dydx, or f, and f, , are equal. This is no
accident.

partial derivatives are equal; that is,

Theorem: Equality of Mixed Partial
Derivatives

If u = f(x, y) has continuous second partial derivatives, then the mixed

u _ du _
8x8y—8y8x or Jj’x_fxy'

Similar equalities hold for mixed partial derivatives of functions of three
variables.

D,-(X(),J/o)

Figure 15.1.2. The disk
D,(xq, yo) consists of the
shaded region (excluding
the solid circle).

Example 7

Solution

L. Euler discovered this result around 1734 in connection with problems in
hydrodynamics. To prove it requires the notions of continuity and limit for
functions of two variables.?

Let us write d((x, y), (xg, yo)) =V/(x — xo)2 +(y - y0)2 for the distance

between (x, y) and (x,, y,), with a similar notation d((x, Y,2),(Xgs Y9, 2g)) In
space. The disk D,(x,, y,) of radius r centered at (x,, y,) is, by definition, the
set of all (x, y) such that d((x, y),(x,, yo)) < r, as shown in Fig. 15.1.2. The
limit concept now can be defined by the same ¢, 8 technique as in one variable
calculus.

The ¢, Definition of Limit

Suppose that f is defined on a region which includes a disk about
(xq> yo)» but need not include (x,, y,) itself. We write

(x 7)’)1—13260»)’0) f(x’ 7) !
if, for every & > 0, there is a 6 > 0 such that | f(x, y) — I < e whenever
0 < d((x, y),(xg, ¥o)) < 8. A similar definition is made for functions of
three variables.

The ¢,6 definition of limit may be rephrased as follows: for every ¢ > 0,

there is a 6 > 0 such that | f(x, y) ~ /| < e if (x, y) lies in Dy(x,, yo)-

The similarity between this definition and the one in Chapter 11 should

be evident. The rules for limits, including rules for sums, products, and
quotients, are analogous to those for functions of one variable.
Prove the “obvious™ limit, lim, ) 5, yoX = Xo» Using &’s and 8s.

Let £ > 0 be given and let f(x, y) = x and /= x,. We seek a number § > 0
such that | f(x, y) — /| < & whenever d((x, y),(x, ¥o)) < 8, that is, such that

x — xo| < € whenever 1/(x — x4)% + (y — y,)* < 8. However, note that
0 0 Y =X

[ = x| =y(x = x0)? <Y(x = )2+ ()

so if we choose & = ¢, d((x, y),(x,, yo)) < 8 will imply |x — Xol <& A

21f you are not interested in the theory of calculus, you may skip to p. 772. Consult your
instructor.
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Example 8

Solution

Example 9

Solution

Exampie 10

Solution

X3+ 2x% + xp? + 2)?
x2 4+ y? ’

Find lim, ) (0,

The numerator and denominator vanish when (x, y) = (0,0). The numerator
factors as (x% + y?)(x + 2), so we may use the replacement rule and algebraic
rules to get

(2 +))(x+2) _

lim = lim (x+2)=0+2=2.
(x)>(0.0) x2+ y? <x,y)—>(0,0)( ) 4
Show that
lim L x?+ 2
(x)->0,0) Ix Y

does not exist. [Hint: Look at the limits along the x and y axes.]
@/3x)Yx>+ 2 = x/x? + y? if (x, y) # (0,0). Thus
a 2 2

im +y?= lim —* .
(x:)~>(0,0) 9x =00 [ +_y2

If we approach (0,0) on the y axis—that is, along points (0, y)—we get zero.
Thus the limit, if it exists, is zero. On the other hand, if we approach (0,0)
along the positive x axis, we have y =0 and x > 0; then x/yx* +y2 =]

because x/yx*> =1, so the limit is 1. Since we obtain different answers in
different directions, the actual limit cannot exist. &

We can base the concept of continuity on that of limits, just as we did in Sec-
tion 1.2.

Definition of Continuity
Let f be defined in a disk about (xg, y,). Then we say f is continuous at
(o> yo) if
lim  f(x, y) = f(xo, yo)-

(. p)>(x0.70)
There is a similar definition for functions of three variables.

Most “reasonable” functions of several variables are continuous, although this
may not be simple to prove from the definition. Here is an example of how to
do this.

(a) If f(x) and g(y) are continuous functions of x and y, respectively, show
that A(x, y)= f(x)g(y) is continuous. (b) Use (a) to show that e*cos y is
continuous.

(a) We must show that for any (x,, y), lim, ) —>(Foro) f(x)g(y) = f(x)g(yy).
To this end, we manipulate the difference:

|f(x) &(») = f(x0) (Mol
=1f(x)8(») = f(x0) 8(») + f(x0) 8(») = f(%0) (o)
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Proof of the
equality of
mixed partial

15.1 Introduction to Partial Derivatives 771

<(f(x) = f(xo) g + [ f(x0)(8(») — g(ya))l
=1£(x) = f(xo)l g + | f(xo)l | () — (W)l
<) = f(xo)l(l g(o)l + 18() = 8(yo)l) + [ f(x0)l 1 8(») — (o)l
=[£(x) = f(xoll | g(yo)l + | f(xo)l | £(¥) — g(¥o)l
+ (%) = f(xo)l | g(») — g(»o)l-

Now let £ > 0 be given. We may choose ¢, > 0 so small that we have the
inequality &,(] g(vo)| + | f(yo))) + € < &, by letting ¢, be the smaller of

and 1.

lg(o)l + | f(po)l + 1

Since f and g are continuous, there exists §, > 0 such that, when |x — x| < &,
| f(x) = f(x)] < €, and there exists §, such that when |y — y| < §,, we have
the inequality | g(x) — g(xo)| < &,. Let & be the smaller of §, and §,.

Now if d((x, y),(xq, yo)) < 8, we have |x — xo| < 8 < 8, and |y — yo| < &
< ¢,. 80

| f(x) g(») = f(x0) (Vo) < 1f(x) = f(xo)l| g(yo)l + | f(x0)| | () — &( o)l
+1f(x) = f(xo)l1g(¥) — &( o)l
< 51|g(}’0)| + |f(x0)|51 +e g <e

Thus we have proven that lim, ) ,, ,, = f(x0)g(»o), so f(x)g(y) is continu-
ous.

(b) We know from one-variable calculus that the functions f(x)=e” and
g(y) = cos y are differentiable and hence continuous, so by part (a), f(x)g(y)
is continuous. A

Using the ideas of limit and continuity, we can now give the proof of the
equality of mixed partials; it uses the mean value theorem for functions of one
variable.

Consider the expression
f(xo+ Bx, yo+ Ay) = f(xo + Ax, yo) = f(*0, yo + Ay) + f(x05 o) (1)
We fix y, and Ay and introduce the function

derivatives
g(x) = f(x, yo + &y) = f(x, yo),
so that the expression (1) equals g(x,+ Ax) — g(x,). By the mean value
theorem for functions of one variable, this equals g'(X)Ax for some ¥ between
xo and x, + Ax. Hence (1) equals
[E(’—“’ Yo+ dy) - (3, yo)}Ax.
Applying the mean value theorem again, we get, for (1),
0% = -
ﬁ (%, 7)Ax Ay.
Since 9% /3y dx is continuous and (X, §)—(x,, yo) as (Ax,Ay)—(0,0), it
Y Y 0 Yo Y
follows that
oy ax( 0> o)
_ [ f(xo+ Ax, yo+ Ap) = f(xo + Ax, yo) = f(X0, Yo + AY) + f(%05 yo) ]
(Ax,Ap)—>(0,0) Ax Ay ’

2
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(b)

Figure 15.1.3. Moving
water in a narrow tank
shown at two different
instants of time.

Figure 15.1.5. The
derivative g'(y,) of the
function g(y) = f(t,. y)
represents the slope of the
water’s surface at time ¢,
and position yj.

The right-hand side of formula (2) is symmetric in x and y, so that in this
derivation we can reverse the roles and x and y. In other words, in the same
manner we prove that 9% /dx dy is given by the same limit, and so we obtain
the desired result: the mixed partials are equal. B

Supplement to Section 15.1:
Partial Derivatives and Wave Motion

Two of the most important problems in the historical development of partial
differentiation concerned wave motion and heat conduction. Here we concen-
trate on the first of these problems. (See also Exercises 71 and 72.)

Consider water in motion in a narrow tank, as illustrated in Fig. 15.1.3.
We will assume that the motion of the water is gentle enough so that, at any
instant of time, the height z of the water above the bottom of the tank is a
function of the position y measured along the long direction of the tank; this
means that there are no “breaking waves” and that the height of water is
constant along the short direction of the tank. Since the water is in motion, the
height z depends on the time as well as on y, so we may write z = f(¢, y); the
domain of the function f consists of all pairs (¢, y) such that ¢ lies in the
interval of time relevant for the experiment, and a < y < b, where a and b
mark the ends of the tank.

We can graph the entire function f as a surface in (¢, y,z) space lying
over the strip.a < y < b (see Fig. 15.1.4); the section of this surface by a plane

A slice at

t=1ty
Figure 15.1.4. The motion
of the water is depicted by
a graph in (¢, y, z) space;
sections by planes of the
form ¢ = ¢, show the

configuration of the water ‘
at various instants of time,
t

of the form ¢ = 1, is a curve which shows the configuration of the water at the
moment £, (such as each of the “snapshots” in Fig. 15.1.3). This curve is the
graph of a function of one variable, z = g(y), where g is defined by g(y)
= f(ty, y). If we take the derivative of the function g at a point y, in (a, b), we
get a number g'( y,) which represents the slope of the water’s surface at the
time ¢, and at the location y,. (See Fig. 15.1.5.) It could be observed as the
slope of a small stick parallel to the sides of the tank floating on the water at
that time and position.

z

The slope of this
line is g' ()

z=g(y)=flty,y)
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This number, g'(y,), is obtained from the function f by:
1. Fixing ¢ at the value ¢,.
2. Differentiating the resulting function of y.
3. Setting y equal to y,.
The number g'(y,) is just f, (45, o)

We can also define the partial derivative of f with respect to ¢ at (¢y, yy);
it is obtained by:
1. Fixing y at the value y,.
2. Differentiating the resulting function of «.
3. Setting ¢ equal to z,.
The result is f,(¢, o). In the first step, we obtain the function A(7) = f(z, y),
which represents the vertical motion of the water’s surface observed at the
fixed position y,. The derivative with respect to ¢ is, therefore, the vertical
velocity of the surface at the position y,. It could be observed as the vertical
velocity of a cork floating on the water at that position. Finally, setting ¢ equal

to 7, merely involves observing the velocity at the specific time £,

Exercises for Section 15.1

Compute f, and f, for the functions in Exercises 1-8
and evaluate them at the indicated points.

L f(x, y)=xy; (LL1)

2. flx, y)y=x/y; (1,1

3. f(x, yy=tan"'(x — 3»?); (1,0)

4. f(x, y)=yx? +y2 ; (1, =1

5. f(x, y) = esin(x + y); (0,0)

6. f(x,y)=1In(x*+ y? + 1); (0,0)

7 106, ) = 1/G3+ %) (= 1,2)

8. fx,y)=e "7 (1, -1
Compute f,, f,, and f, for the functions in Exercises
9-12, and evaluate them at the indicated points.

9. f(x, y,z)=xyz; (1,1,1)

10. f(x, y,z) = sz +y2 +22;(3,0,4)

1. f(x, y,2)= cos(xyz) + 3% (7, 1,1)

12. f(x, y,z) = x¥*; (1, 1,0)
Find the partial derivatives dz/dx and 0z/9y for the
functions in Exercises 13-16.

13. z=3x%+2)? 14. z = sin(x? — 3xy)

15. z=Q2x*+ 7x%)/3xy 16, z = x}%*¥
Find the partial derivatives du/dx, du/dy, and du/9z
in Exercises 17-20.

17. u=e 2 (xy + xz + yz)

18. u= sin(xy2z3)

19. u= excos(yzz)

20. u=(xy*+ e?)/(x*y — &%)
Compute the indicated partial derivatives in Exercises
21-24.

21. %(%) 2. a‘)—u(uvw — sin(uow))
d 28 0 28
2. 2 (mx + 1) 2. L mx+ 5

In Exercises 25-28, let
f(x, y) =3x2+ 2sin(x/p*) + p*(1 — &*)
and find the indicated quantities.
25. £.(2,3) 26. (0, 1)
27. f(1, 1) 28. f,(—=1, -1
29. Let z = (sinx)e ™.
(a) Find 3z/9y.
(b) Evaluate 9z /9y at the following four points:
0,0), (0,7/2), (7/2,0), and (7 /2,7 /2).
30. Let u = (xy/z)cos(yz).
(a) Find du/9z.
(b) Evaluate du/9z at (1,#,1), (0,7/2,1), and
(1,7,1/2).
Let g(f,u,v) = In(t + u + v) — tan(tuv) and find the in-
dicated quantities in Exercises 31-36.

31. £,0,0,1) 32. £,(1,0,0)
33. £.(1,2,3) 34, 2,(2,3,1)
35. g,(—1,3,5) 36. g,(—1,5,3)

In Exercises 37-40, compute the indicated partial deriv-
atives

a stu? i l 2
3. e 38. ar(3'nrh)
9 cosAp P
39, | — .
Y ( TTa+ ) 40 32 (bed)

41. If f(x, y,z) is a function of three variables, ex-
press f, as a limit.

42. Find
3+(x+y+Ay)2z—(3+(x+y)zz)

lim
Ay—0 A_y
43. In the situation of Example 4, how fast is the
temperature changing if we proceed directly
west? (The longitude y is increasing as we go
west.)
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44,

45.

46.

Chapter 15 Partial Differentiation

Chicago Skate Company produces three kinds
of roller skates. The cost in dollars for producing
x, y, and z units of each, respectively, is

c(x, y,2) = 3000 + 27x + 36y + 47:.

(a) The value of dc/dx is the change in cost
due to a one unit increase in production of
the least expensive skate, the levels of pro-
duction of the higher-priced units being held
fixed. Find it.

(b) Find 9c/9z, and interpret.

If three resistors R, R,, and R; are connected in

parallel, the total electrical resistance is deter-

mined by the equation

(a) Whatis 3R/9R,?

(b) Suppose that R,, R,, and R, are variable
resistors set at 100, 200, and 300 ohms,
respectively. How fast is R changing with
respect to R;?

Consider the topographical map of Yosemite

Valley in Fig. 14.R.3. Let r represent the east—

west coordinate on the map, increasing from

west to east. Let s be the north—south coordinate,

increasing as you go north. (East is the positive 7

direction, north the positive s direction.) Let 4 be

the elevation above sea level.

(a) Explain how 94/dr and 9h/ds are related

to the distances between contour lines and

their directions.

At the center of the letter o in Half Dome,

what is the sign of dk/3r? of 9k /3s?

)

In Exercises 47-50, find the partial derivatives 8% /9x?,
3% /dx dy, 3% /3y dx and 9% /3y? for each of the func-
tions in the indicated exercise.

47.
49.

51.

52.

Exercise 13 48, Exercise 14
Exercise 15 50. Exercise 16

Let f(x, y,2) = x% + xy? + yz2. Find f,, f,z+ fix>

and f,,,.

Let z = x%°% — x84 4

(2) Compute 9%z/dydxdx, 8% /dxdydx, and
3% /3xdx dy.

(b) Compute 3’z/9xdydy, 3%/3ydxdy, and
9% /0y dy ox.

Compute 8% /3x?, 9% /3y dx, 0% /dy% and d%u/dx ay
for each of the functions in Exercises 53-56. Check
directly the equality of mixed partials.

53.
54.

55.
56.

57.

58.

u=2xy/(x*+ y??

u = cos(xy?)

u=e +y3x4
u=1/(cos’x + e ™)

Prove, using &’s and &8s, that

lim(-*v)’) —>( -fogyo)y =Jo-
Prove, using €’s and §°s, that

B ) ey (X + 1) = X0 + yo.

In- Exercises 59-66, evaluate the given limits if they
exist (do not attempt a precise justification).

59.

60.

61.

62.

63.

64.
65.
66.

67.

69.

70.

71.

xhy +y?
(x2)=00) x?2 + »?
x+y

lim —
)= (x =D+ 1
xﬁz +y3 + x? +y2

lim

()= (23) 2 /“xz'j_yz N
. 4x°+ 3y° +
lim X T T Xy

)00 x?+ p?+ xbh?
lim
(xp)=(L1)
lim
(x)=(0.1)

lim  sin(xy)
(x,)>(0,0)

e*cos(my)

ecos(mxy)

lim !
FP=00 1 +In(1+ 1/(x? + y?))

Let f(x, y)= x>+ y? and suppose that (x, »)

moves along the curve (x(¢), y(#)) = (cost,e’).

(a) Find g(#) = f(x(¢), (1)) and use your for-
mula to compute g'(ty).

(b) Show that this is the same as

Se(x (1), y(20)) - x'(20) + f,(x(20), y (1)) - y'(t0)-
68.

Let f(x, y,z)=x*+ 2y — z and suppose the
point (x, y,z) moves along the parametric curve
(1t 1.
(a) Let g(#)=f(1,¢,1%) and compute g'(r).
(b) Show that your answer in (a) is equal to
dx dy dz
fr i +£ 7 +f, 7
A function u = f(x, y) with continuous second
partial derivatives satisfying Laplace’s equation
Pu oy Pu_
ox?  ay?
is called a harmonic function. Show that the func-
tion u(x, y) = x> ~ 3xy? is harmonic.
Which of the following functions satisfy La-
place’s equation? (See Exercise 69).
@ flx, ) =x>=y%
(B) flx, p)= x>+ y%
© f(x, )= xp;
(A fx, y) =y +3x%;
(¢) f(x,y)=sinxcosh y;
@ f(x, y)=e*sin y.
Let f and g be differentiable functions of one
variable. Set ¢ = f(x — 1) + g(x + 1).
(a) Prove that ¢ satisfies the wave equation:
/012 = 3% /x>
(b) Sketch the graph of ¢ against ¢ and x if
f(x)=x" and g(x) = 0.
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72. (a) Show that function g(x,f)=2+ e 'sinx
satisfies the heat equation: g, = g,,.. (Here
g(x, ) represents the temperature in a rod at
position x and time ¢.)

(b) Sketch the graph of g for ¢t > 0. [Hint: Look
at sections by the planes + =0, 1t =1, and
t=2] _

() What happens to g(x, ) as t— o0o? Interpret
this limit in terms of the behavior of heat in
a rod.

73. The productivity z per employee per week of a
company depends on the size x of the labor force
and the amount y of investment capital in mil-
lions of dollars. A typical formula is z(x, y)
= 60xy — x2 — 4y2.

(2) The value of 9z/0x at x =35, y=3 is the
marginal productivity of labor per worker at
a labor force of 5 people and investment
level of 3 million dollars. Find it.

(b) Find 9z/0y at x =5, y = 3, and interpret.

74. The productivity z of a company is given by
z(x, y) = 100xy — 2x2 — 6y2 where x X 10° peo-
ple work for the company, and the capital invest-
ment of the company is y million dollars.

(a) Find the marginal productivity of labor
9z /0x. This number is the expected change
in production for an increase of 1000 staff
with fixed capital investment.

15.2 Linear Approximations

15.2 Linear Approximations and Tangent Planes 775

(b) Find 3z/9y when x =5 and y = 3. Inter-
pret.
*75. Show that
0 2 2 2 1/3
1m —(x+y+
(x,5,2)->(0,0,0) Bz( yo+zo)
does not exist.
*76. Let

xp(x* = y?)
[ =1"3+,7 (x, ) #(0,0),

0, (x, y)=1(0,0).

(@) If (x, p) # (0,0), compute f, and f,.
(b) What is the value of f(x,0) and f(0, y)?
(c) Show that £.(0,0) = 0= £,(0,0).
%77 Consider the function f in Exercise 76.
(a) Show that £,.(0, y) = —y when y 0.
(b) What is f,(x,0) when x = 0?
(¢) Show that f,(0,0)=1 and f,(0,0)= — 1.
[Hint: Express them as limits.]
(d) What went wrong? Why are the mixed
partials not equal?
*78. Suppose that f is continuous at (xo, yo) and
f(xg, yo) > 0. Show that there is a disk about
(x9, yo) on which f(x, y) > 0.

and Tangent Planes
The plane tangent to the graph of a function of two variables has two slopes.

In the calculus of functions of one variable, the simplest functions are the
linear functions /(x)= mx + b. The derivative of such a function is the
constant m, which is the slope of the graph or the rate of change of y with
respect to x. If f(x) is any differentiable function, its tangent line at x, is the
graph of the linear approximation y = f(x,) + f'(x)(x — x).

To extend these ideas to functions of two variables, we begin by looking
at linear functions of the form z = I(x, y) = ax + by + ¢, whose graphs are
planes. Such a plane has two “slopes,” the numbers a and b, which determine
the direction of its normal vector —ai— bj+ k (see Section 13.4). These
slopes can be recovered from the function / as the partial derivatives [, = a
and /, = b. By analogy with the situation for one variable, we define the /inear
approximation at (x,, y,) for a general function f of two variables to be the
linear function

I(x, y) = f(x0, o) + fx(X0> Yo) (X — X0) + f,(X05 oWV = Vo)
which is of the form ax + by + ¢ with

a=f.(%o, ¥o)» b=f(x0,¥0), and

¢ = f(xo0, ¥o) = Xo fx(Xo> Yo} = Yo J,(¥05 Yo)-
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Figure 15.2.1. The tangent
plane at (xg, yo) to the
graph z = f(x, y) has the
equation z = f(xg, yo) +

fe(x0s yo)(x = x0) + f(x0, yo)(¥ — o)

A vector normal to the
plane is

The function / is the unique linear function which has at (x,, y,) the same
value and the same partial derivatives as f. The graph

z = f(x0, y0) + fe(Xo05 Yo)(X — Xo) + f,(X05 Vo)V = Yo) O
of the linear approximation is a plane through (x,, v, f(xo, o)), With normal

vector —fi(xo, Yo)i — f(xo,¥0)j + k; it is called the tangent plane at (xq, yo) to
the graph of f (see Fig. 15.2.1).

Normal vector

z=f(x,y)

n = —f{xo,0)i — f,(x0,¥0)i + k. X

Example 1

Solution

Find the equation of the plane tangent to the hemisphere z =1 — x? - y2 at
a point (x,, yo). Interpret your result geometrically.

Letting f(x, y) =y1 — x> —y*, we have f.(x,y)= —x/yl—-x>—)* and

LG =—y/y1- x? — y* . The equation of the tangent plane at (x,, y,Zo)

is obtained from (1) to be

X Y
=l = e (5 0) - = ()
V1= x2—y¢ 1= x5 =5

X Y
or z=z0—z—z(x—x0)—z—0(y—yo).

A normal vector is thus —1 + 295 j + k. Multiplying by z,, we find that

Zp Zo
another normal vector is xi + y,j + zgk. Thus we have recovered the geomet-
ric result that the tangent plane at a point P of a sphere is perpendicular to the

vector from the center of the sphere to P. A

The linear approximation may be defined as well for a function of three
variables. We include its definition in the following box.

Linear Approximation and Tangent Plane
The linear approximation at (x,, y¢) of f(x, y) is the linear function:
I(x, ) = f(x05 yo) + fe(¥0> Yo)(X = Xo) + f,(X0, Yo)( ¥ = ¥0)-  (2)

The graph z = [(x, y) is called the tangent plane to the graph of f at
(%9, yo)- It has normal vector — f, (xq, yo)i — f,(xo, yo)j + k.
The linear approximation at (x,, y,2y) to f(x, y,z) is the linear
function:
I(x, y,z) = f(X0> Yo, 20) *+ fe(X0: Vo> Zo)(X — Xo)
+ £3(X05 Y0, 20) (¥ — Yo) + f2(x0, Yo, 20)(Z — Zo)- 3)
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Example 2

Solution

Example 3

Solution

15.2 Linear Approximations and Tangent Planes 777

Find the equation of the plane tangent to the graph of
fx,y)=(x*+5°)/xp
at (xg, yo) = (1,2).
Here x, = 1, yo =2, and f(1,2) = 3. The partial derivative with respect to x is
oy = ()Y xHy—yd x2— )2
() N
which is — 2 at (1,2). Similarly,

2

fi(x ) =

y2x — %3 y2 — X2

()’ xy?
which is 2 at (1,2). Thus the tangent plane is given by the equation (1)
r=—3(x= D) +3(y-2)+5,

ie,4z=—6x+3y+10. A

L(xp)=

5

Find a formula for a unit normal vector to the graph of the function
f(x, y) = e’y at the point (-1, 1).

Since a normal vector is — f,(xg, ol — f,(Xg. yo)j + k., a unit normal is
obtained by normalizing:

— f (%0, Yo)i — f,(%05 Yo)i + k

VUG 30T+ [0 )T+ 1

In this case, f.(x,y)=e’y and f(x,y)=e" Evaluating the partial
derivatives at (—1,1), we find a normal to be —e 'i— e~ 'j+k, and so a
unit normal is

—e'li—e_1j+k_ —e! - e ! i+ 1 k. A

\/e’2+ e 2+ 1 \/Ee_2+1 \/Ze_2+1 2e 24+ 1

Just as in one-variable calculus, we can use the linear approximation for
approximate numerical computations. Suppose that the number z = f(x, y)
depends on both x and y and we want to know how much z changes as x and
y are changed a little. The partial derivative f, (x,, y,) gives the rate of change
of z with respect to x at (x,, yo). Thus the change in z which results from a
change Ax in x should be about

Je(%0> yo) Bx.
Similarly, the change in z caused by a shift in y by Ay should be about -

fy (x05 Yo) Ay.
Thus the total change in z should be approximately

Az~ f(x¢, yo)Ax +fy(x0 , Vo) Ay. 4
Notice that the change in z is obtained by simply adding the changes due to

Ax and Ay. If we write Ax = x — x, and Ay = y — y,, then the expression for
Az is the linear approximation to f(x, ¥) — f(x,, yo) at (xg, yo)-
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Example 4
a calculator.

Calculate an approximate value for (0.99¢%%)®. Compare with the value from

Let z = f(x, y) = (xe”)? and let x, = 1 and y, =0, so f(1,0) = 1. We get
which is 8 at (1,0),

which is 8 at (1,0).

Thus if we let x =0.99 and y = 0.02 so that x — xy= —0.01 and y — y, =
0.02, the linear approximation is (by (2) or (4))

The value for (0.99¢%%)® obtained on our calculator is 1.082850933. A

Find an approximate value for sin(0.01) - cos(0.997).

Let f(x, y) =sinxcos y and x, =0, yo = 7. Then if x =0.01 and y = 0.997,

Jo p)= (O m)(x = 0) + £,(0,m)(y — m) + f(0,7)

(The value of f(x, y) computed on our calculator is —0.009994899.) A

A multiplication problem is altered by taking a.small amount from one factor

and adding it to the other. How can you tell whether the product increases or

Solution
9z _ g 7,8
o 8x'e®,
and
9z = 8 x 8
3 8x%e®,
I +8(—0.01) + 8(0.02) = 1.08.
Example 5
Solution
=—1(0.01)+0+0
= —0.01.
Example 6
decreases?
Solution

Let f(x, y) = xy. If the amount moved from y to x is h, we must look at

fG+ by — k)= f(x ),
which may be approximated by
(6 y) + (= h) (%, »)-

The partial derivatives are f,(x, y) = y and J,(x, y) = x, so the linear approxi-
mation to the change in the product is A(y — x). Thus, the product increases
when the increment 4 is taken from the larger factor. A

Exercises for Section 15.2

Find equations for the planes tangent to the surfaces in
Exercises 1-4 at the indicated points.
Lz=x>+p3—6xp; (1,2, -3)
2. z ={cosx)(cos y); (0,7/2,0)
3. z =(cosx)(sin y); (0,7/2,1)
4. z=1/xy; (1,1, 1)
Find the equation of the plane tangent to the graph of
z=f(x,y)=x>+2y°+1 at the points in Exercises
5-8.
1,1,4)
—-1,-1,0)

Find the equation of the tangent plane of the graph of f
at the point (xq, g, f(xg, yo)) for the functions and
points in Exercises 9-12.
9. fx, ) =x—y +2; (x0, yo) = (1, 1)
10. f(x, y) = x2 + 4y?%; (x0, yo) = (2, = 1).
1. f(x, ) = 295 (0, yo) = (1, 1),
12. f(x, y) = x/(x + y); (x0, yo) = (1,0).
For each of the indicated functions and points in Exer-
cises 13-16, find a unit normal vector to the graph at
(XO! Jo» f(xO’ )’o))
13. fand (xg, yo) as in Exercise 9.
14. f and (xy, yo) as in Exercise 10.
15. f and (xq, yp) as in Exercise 11.
16. f and (x,, yo) as in Exercise 12.
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Find an appropriate value for each of the quantities in
Exercises 17-22 using the linear approximation.

26.

15.3 The Chain Rule 779

Let g(u, v) be the gas mileage if you drive u miles
and use v gallons of gasoline. How does g(u,v)

17. (1.01)[1 - y1.98 ] [Hint: 1.96 = (1.4)4] change if you go'Au extra m.iles on Av extra
7+ 0.01 gallons? (Use the linear approximation.)
18. tan( "?"9—7_) 27. Sl;ppFo§edtl$at/.za='f(x, = x2 + y2.
3+ (2.01)° — 6(0.99)(2.01 (@) Find 92/9y.,, ~ .
19. (0.99)° + (2.01) (0.99X ) (b) Describe the curve obtained by intersecting
. (099 the graph of f with the plane x = 1.
. (0.98 —) . .
20. ¢ )sm( 1.03 (c) Find a tangent vector to this curve at the
21. (0.98)(0.99)(1.03) point (1, 1, f(1, D).
28. Repeat Exercise 27 for z = f(x, y) = e¥.
2. \/(4.01)% + (3.98) + (2.02)° p Y
22. (401)"+ (3.98)"+ (2.02) 29. Let f(x, y)= —(1 — x*— y»'/2 for (x, y) such
23. In the setup of Example 4, Section 15.1, at Dawson that x? + y? < 1. Show that the plane tangent to
Creek, is the temperature increasing or decreasing the graph of f at (xg, yo, f(Xo, yo)) is orthogonal
as you proceed south? As you proceed east? South- to the vector with components (xq, yg, f(xo, yo))-
cast? Interpret this geometrically.
24. Refer to Exercise 45, Section 15.1. If, in part (b), *30. (a) Let k& be a differentiable function of one

R, is increased by 1 ohm, R, is decreased by 2
ohms, and R; is increased by 4 ohms, use the
linear approximation to calculate the change in

variable, and let f(x, y) = k(xy). Suppose that x
and y are functions of ¢: x = g(¢), y = h(¢), and
set F(t) = f(g(1), h(r)). Prove that

R. Compare with a direct calculation on a calcu-
lator.

25. Let f(a, v) be the length of a side of a cube whose
surface area is a and whose volume is v. Find the
linear approximation to f(6 + Aa, 1 + Av).

f ax U &

dx dt  dy dr’

(b) If f(x, y) = k(x)I(y), show that the formula
in (a) is still valid. (These are special cases of the
chain rule, proved in the next section.)

Fi(t) =

15.3 The Chain Rule

The derivative of a composite function with several intermediate variables is a
sum of products.

In Chapter 2 we developed the chain rule for functions of one variable: If y is
a function of x and z is a function of y, then z also may be regarded as a
function of x, and

dz _dz dy

dx dy dx’
For functions of several variables, the chain rule is more complicated. First we
consider the case where z 1s a function of x and y, and x and y are functions
of 7; we can then regard z as a function of ¢. In this case the chain rule states

that

dz _ 9z dx [ 32 &

dt  9x dt  dy dt’

The chain rule applies when quantities in which we are interested depend in a
known way upon other quantities which in turn depend upon a third set of
quantities. Suppose, for example, that the temperature 7" on the surface of a
pond is a function f(x, y) of the position coordinates (x, y). If a duck swims
on the pond according to the parametric equations x = g(¢), y = A(¢), it will
feel the water temperature varying with time according to the function
T = F(t)= f(g(1),h(2)). The rate at which this temperature changes with
respect to time is the derivative dT/dt. By analogy with the chain rule in one
variable, we may expect this derivative to depend upon the direction and
magnitude of the duck’s velocity, as given by the derivatives dx /dr and dy / dt,
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Example 1

Solution

as well as upon the partial derivatives 7 /dx and 07 /dy of temperature with
respect to position. The correct formula relating all these derivatives is given
in the following box. The formula will be proved after we see how it works in
an example.

The Chain Rule

To find dz/dt, when z = f(x, y) has continuous partial derivatives and
x = g(?) and y = h(¢) are differentiable, muitiplying the partial deriva-
tives of z with respect to each of the intermediate variables x and y by
the derivative of that intermediate variable with respect to ¢, and add the
products: If F(r) = f(g(2), k(1)) then

F'(1) = f(g(0), k(1)) &' (1) + £(8(): R ().
In Leibniz notation,

dz _ 0z dx+aZd_}’

dt  dx dt ' dy dt’

For three intermediate variables, if u depends on x, y, and z, and x, y,
and z depend on ¢, then

du _ du dx O dy | du ds

dt  9x dt  dy dt 0z dr’

Suppose that a duck is swimming in a circle, x = cos?, y = sinz, while the
water temperature is given by the formula T = x%r — xy3. Find dT/dt: (a) by
the chain rule; (b) by expressing T in terms of ¢ and differentiating.
(@) 9T/dx =2xe” —y% 3T/dy = x%’ —3xy?; dx/dr= —sint; dy/dt =
cos?. By the chain rule, dT/dt = (3T /0x)(dx /dt) + (3T /dy)(dy/dt), so
dT _
=

= (2cost e — sin’f)(—sint) + (cos’t e"™ — 3 cost sin’f)cos ¢

(2xe” — y*)(—sint) + (x%” — 3xp?)cost

= —2costsinze™ + sin*t + cos’t e’ — 3 cos sin’.
(b) Substituting for x and y in the formula for T gives

T = cos¥e™ — costsin’t,
and differentiating this gives
dr

= 2cost(—sint)e™ " + cos’t e cost + sint sin® — (cos )3 sin’ cos
= —2costsinte ™ + cos’t e + sin*t — 3 cos* sin’,
which is the same as the answer in part (a). A

An intuitive argument for the chain rule is based on the linear approximation
of Section 15.2. If the position of the duck changes from the point (x, y) to the
point (x + Ax, y + Ay), the temperature change AT is given approximately by
(@T/3x)Ax + (3T/3y)Ay. On the other hand, the linear approximation for
functions of one variable gives Ax =~ (dx /dt) At and Ay ~ (dy/dt)At. Putting
these two approximations together gives

LOT dx 5, L AT &
AT ~ 5 i Ar+ oy Ar.
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Hence

AZ ~ oT dx + a_T d_y (1)

At T 0x dt Ay dr’
As Ar— 0, the approximations become more and more accurate and the ratio
AT/At approaches dT/dt, so the approximation formula (1) becomes the
chain rule. The argument for three variables is similar.

In trying to make a proof out of this intuitive argument, one discovers
that more than differentiability is required; the partial derivatives of 7' should
be continuous. The technical details are outlined in Exercise 20.

Example 2 Verify the chain rule for ¥ = xe”* and (x, y,z) = (e’, t,sint).

Solution  Substituting the formulas for x, y, and z in the formula for u gives

U= et.etsmt= et(1+smt)’

du

_ . L+si
SO E—[tcost+(l+s1nt)]e'( tsing

The chain rule says that this should equal

du dx | du & |, du dz t
Ao, vt oo o+ = = =% + xze” - | + xpe’icost
ox dr " oy dr ' 3z di Y

— etsintet+ etsintetsint+ el ‘- etsintcost

= e 1" (] + sinz + tcost),

which it does. A

Example 3 Suppose that v = rcos(st) — e’sin(r¢) and that r, s, and ¢ are functions of x.
Find an expression for dv/dx. ‘

Solution We use the chain rule with a change of notation. If v = f(r;s,t) and r,s,¢t are
functions of x, then

_@_8vdr+avds dv dt

dx 9dr dx = 9s dx = Of dx
In this case we get

dv _ R d ] .. d
&= [cos(st) — te cos(rt)] 7;- - [tr sin(st) + e sm(rt)] ﬁ

- [rs sin(st) + rescos(rt)} a% . A

Example 4 What do you get if you apply the chain rule to the case z = xy, where x and y
are arbitrary functions of 1?

Solution If z = xy, then 3z/8x =y and 9z/3y = x, so the chain rule gives dz / dt
= y(dx/dt) + x(dy/df), which is precisely the product rule for functions of
one variable. 4

The chain rule for the case of two intermediate variables has a nice geometric
interpretation involving the tangent plane. Recall from Section 15.2 that the
tangent plane to the graph z = f(x, ») at the point (x,, y,) is given by the
linear equation z = f(x,, yo) + f.(x,, Yolx — xp) + 1, (x0, yo)(y = yy). For this
formula to be consistent with the definition of the tangent line to a curve, we
would like the following statement to be true.
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Figure 15.3.1. If a curve
lies on the surface

z = f(x, y), then the
tangent line (with direction
vector v) to the curve lies in

the tangent plane of the
surface.
Example 5
Solution
Example 6
Solution

Tangents to Curves in Graphs

If (x, y,z) = (g(2), h(?), k(2)) is any curve on the surface z = f(x, y) with

(g(t0), h(t)) = (x4, yo), then the tangent line to the curve at f, lies in the

tangent plane to the surface at (xg, yo). (In this statement, all derivatives
. are assumed to be continuous.)

To verify the above statement, we start with the fact that (g(0), h(2), k(1)) lies
on the surface z = f(x, y), i.e.,
k(1) = f(g(1),h(1))-
Differentiate both sides using the chain rule and then set ¢ = #;:
K (to) = f(%o0> ¥0) &' (to) + f,(X0» Yo)k'(%0);
but this shows that the tangent line
z—zo=1tk'(1g), X —Xg=1g"(t), ¥ = yo=1h(t)

satisfies z — zo="f,(xg, Yo)(x — Xo) + £,(x0, YoX ¥ = yo)s that is, the tangent
line lies in the tangent plane.

You may think of the preceding box as the “geometric statement” of the
chain rule. It is illustrated in Fig. 15.3.1.

(xg,¥0,f(x0,¥0))

(x,y,2) = (g(t), h(2),k()
z=f(x,»)

x (x,¥) = (g(1), h(1))

Show that for any curve o(?) in the upper hemisphere z = Vyi- x%— y2 , the
velocity vector o’(?) is perpendicular to o(#).

Let (x, y,z) = e(?). By the preceding box, o’(¢) is perpendicular to the normal
vector to the hemisphere at (x, y,z). From Example 1 of the previous section,
this normal vector is just xi + yj + zk = &(z). Thus, o'(?) is perpendicular to
o(t). A

Show that the tangent plane at each point (xy, y9,2o) of the cone
z=vx*+ y? ((x, y) # (0,0)) contains the line passing through (x,, yo,2o) and
the origin.

The line / through (x4, o, 2o) and the origin has parametrization (x, y,z) =
(Xot» Yol Zof)- Since this line lies in the cone for all 7>0, (22=z =
(x3 + y2)1* = x? + y?), the geometric interpretation of the chain rule implies
that the tangent plane to the cone contains the tangent line to /; but the
tangent line to / is [ itself, so / is contained in the tangent plane. A
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Exercises for Section 15.3

1

. Suppose that a duck is swimming in a straight
line x =3 + 81, y = 3 — 24, while the water tem-
perature is given by the formula T = x%cos y—
y*sinx. Find dT/dt in two ~ways: (a) by the
chain rule and (b) by expressing T in terms of ¢
and differentiating.

. Suppose that a duck is swimming along the curve
x =3+ 1% y=2— % while the water tempera-
ture is given by the formula T = e*(p? + x?).
Find dT/dt in two ways: (a) by the chain rule
and (b) by expressing 7 in terms of ¢ and differ-
entiating.

Verify the chain rule for the functions and curves in
Exercises 3-6.

3

oS

5
6
7

10.

11.

12.

13.

14.

15.

O )= (2 + pIlnGx? + 2 ); o) = (e',e 7).
- f(x, ) = xe** ¥ (D) = (1, —1).

fx, y,z)=x +y2 + 2% a(f) = (cos t,sin ¢, 1).
fCe pz) = e 3 (yE = xB); 6(8) = (1, €', 12).

. Verify the chain rule for u=x/y+y/z+ z/x,
x=e,y= e’ z=e”.
. Verify the chain rule for u = sin(xy), x = 2+,
y= 2.
. Show that applying the chain rule to z=x/y
(where x and y are arbitrary functions of ) gives
the quotient rule for functions of one variable.
(a) Apply the chain rule to u = xyz, where x, y,
and z are functions of ¢, to get a rule for
differentiating a product of three functions of
one variable.
(b) Derive the rule in (a) by using one-variable
calculus.

Let z = yx? + »? + 2xy?, where x and y are func-

tions of u. Find an expression for dz/du.

If u = sin(a + cos b), where a and b are functions

of t, what is du/dr?

Describe the collection of vectors tangent to all

possible curves on the paraboloid z = x2 + y?

through the point (1,2, 5).

Show that if a surface is defined by an equation

f(x, y,2)=0, and if (x(?), y(),2(2)) is a curve

in the surface which passes through the point

(X0, yo,zo) when t = t;, then the two vectors

X'(t)i + y'(29)j + 2'(1p)k and

Fx(X05 Yo, zo)i + £,(X0, Yo, 20)i + f.(x0, Yo, zo)k

are perpendicular.

(a) Use the chain rule to find (d/dx)(x*) by
using the function f(y,z) = y°.

(b) Calculate (d/dx)(x™) by using one-variable

calculus.

(¢) Which way do you prefer?

16.

17.

18.
*19.

*20.

2&

*21.

*22.

Suppose that the temperature at the point (x, y, z)

in space is T(x, y,z) = x>+ y? + z% Let a parti-

cle follow the right circular helix o(f) =

(cost,sint, r) and let T(f) be its temperature at

time f.

(a) What is T'(z)?

(b) Find an approximate value for the tempera-
ture at r = (7 /2) + 0.01.

Use the chain rule to find a formula for the

derivative (d/de)(f()g(2)/ h(2)).

Use the chain rule to differentiate f(z)/[ g(£)A(?)].

A bug is swimming along the surface of a wave as

in the Supplement to Section 15.1. Suppose that

the motion of this wave is described by the func-

tion f(¢, y) = e cost +sin(y + 12). At t =2, the

bug is at the position y =3 and its horizontal

velocity dy/dt is equal to 5. What is its vertical

velocity dz /dt at that moment?

Prove the chain rule by filling in the details in the

following argument. Let z = f( g(¢), (1)), where g

and h are differentiable and f has continuous

partial derivatives.

(a) Show that

i {[f(g(t+ AD), h(t + Ap)) — flg(0),h(z + AD)]

+Lf(g(0), k(e + A0D) — f(g(2), (]}

Apply the mean value theorem for functions
of one variable to each of the expressions in
square brackets.

Take the limit as Az—>0. (You will use the
continuity of partial derivatives at this point.)
Suppose that z = f(x, y) is a surface with the
property that if (xg, yg,2o) lies on the surface,
then so does the half-line from the origin through
(x0, Yo, Zo). Prove that this half-line also lies in the
tangent plane to z = f(x, y) at (xq, yo). Give an
explicit example of such a surface.

The differential - equation u,+ u o+ uu, =0,
called the Korteweg—de Vries equation, describes
the motion of water waves in a shallow channel.
Show that for any positive number ¢, the function

u(x,t) =3¢ sechz[ 1(x— ct)\/c_]

is a solution of the Korteweg—de Vries equation.
This solution represents a travelling “hump” of
water in the channel and is called a soliton. How
do the shape and speed of the soliton depend on
¢? (Solitons were first discovered by J. Scott Rus-
sell around 1840 in barge canals near Edinburgh.
He reported his results in the Transactions of the
Royal Society of Edinburgh, 1840, Vol. 14, pp.
47-109.)

)

(©)
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15.4 Matrix Multiplication
and the Chain Rule

The derivative matrix of a composite function is the product of two matrices.

The chain rule of Section 2.2 enabled us to differentiate a function which
depended on one independent variable through one intermediate variable. In
Section 15.3, this result was extended to the case of two or three intermediate
variables. When we allow the number of functions and independent variables
to grow to two or three, the chain rule may be expressed in terms of matrix
multiplication.

An m X n matrix is a rectangular array of mn numbers, called the entries
of the matrix, arranged in m rows and n columns. The entry in the ith row and
jth column is called the (i, ;) entry. (See Fig. 15.4.1.)

First Second  Third
column  column  column

First row ay ayp 13

Figure 15.4.1. The (i, j)

entry of this matrix is a;

j - Second row ay ay, ayq

The chain rule of Section 15.3 involves both the partial derivatives of one
function of three variables and the derivatives of three functions of one
variable. We may assemble the derivatives of one function of three variables
as a 1 X 3 matrix or row vector which we denote

Qu du du]_ __du _ 0
dx dy 9z o(x, y,2)

and the velocity vector of three functions of one variable as a 3 X 1 matrix or
column vector which we denote

dx
dt
dy | _ (x, »,2) )
@ |\T T @)
dz
L E— i
(If there are only two intermediate variables, our row and column vectors will
be 1 X 2 and 2 X 1 matrices.) ’
To express the chain rule in this new notation, we define a product

between row and column vectors of the same length.

Multiplication of Row and Column Vectors
Let

b,
b,
A=[aa,...a,] and B=
bm
be a row vector and a column vector, respectively. If m = n, we define
the product 4B to be the number a,b, + a,b, + - - - a,b, = X7_a;b;. (If
m = n, the product AB is not defined.)
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In terms of this definition, the chain rule for three intermediate variables

becomes
[ dx ]
dt
du _[u dudul| & |___du %02 ; )
dt 0x dy 9z dt a(x, y,2) at ’
dz
| dr

which looks very much like the chain rule of one-variable calculus.
The product of row and column vectors has many other applications. For
example, every linear function f(x, y,z) = ax + by + ¢z + d can be written as

f(x,y,2y=[a b c]

x
y

z

+ d.

Your bill at the fruit market can be expressed as a product PQ, where

P=[P1 P Pn]
is the price vector whose ith entry is the price of the ith fruit in dollars per
kilogram, and

9
2=
9n
is the guantity vector whose ith entry is the number of kilograms of the ith fruit
purchased.

Example 1 Find 4B if

~1

A=[1 2 3 4] and B=| !
-1

1

Solution AB=(I)-1)+ QD+~ D+ @)= —1+2-3+4=2. a

Having described the derivative of m functions of one variable by an m X 1
matrix, and the derivative of one function of n variables by a 1 X n matrix, it
is natural for us to describe the derivative of m functions of  variables by an
m X n matrix. For example, if x = f(u,v), y = g(u,0), and z = h(u,v), we may
put all six partial derivatives into a 3 X 2 matrix:

[ ox dx
du  dv
dy Oy _8(x,y,z)
du o | d(uv)
0z oz

| du dv |

The rows of this matrix are the derivative vectors of f, g, and 4. The columns
are the “partial velocity vectors” with respect to u and v of the vector-valued
function r(u,v) = (f(u,v), g(u,v), h(u,v)).

In general, we may define the derivative matrix of m functions of n
variables, as in the box on the following page.
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Example 2

Solution

Derivative Matrix

Let ;= fi(x1, %5, - -« X))y Uy = fo(X1, X0, o5 X,)s - - ., and u, =
fou(X15%,5 « . ., X,) be m functions of the n variables x,, ..., x,. The
derivative matrix of the u;’s with respect to the x;’s is the m X n matrix:

du,  Ou, du,

dx, Ox, 9x,

ou ou ou

a(ul"”’um) 8—2 __2. 2

bt Tl ] 0x, dx, 9x,

(Xys .5 Xy)
du,,  ou, du,,
L dx,  0x, dx,

whose (i, j) entry is the partial derivative du,/9x;.

The entries of the derivative matrix are functions of (x, ..., x,). If we fix
values (x?, ..., x0) for the independent variables, then the derivative matrix
becomes a matrix of numbers and is denoted by

Uy, -y Uy)

Xy, e s Xy) 0

Let u= x>+ y% v= x> — )% and w = xp. Find 9(u, v, w)/9(x, y) and evalu-
ate

o(u,v,w)
3(x, y)

(=2.3)

Applying the definition, withm =3, n=2, uy=u, u =0, U3 = w, X, = X, and
x, =y, we get

o(u,v,w) 2x 2y

==l -2
x|

Substituting x = —2 and y = 3, we get

—4 6

=i —4 -6
(-23) 3 =2
Notice that the derivative matrix of one function u = f(f) of one variable is a

1 X 1 matrix d(u)/3(¢) whose single entry is just the ordinary derivative du /dt.
Thus the chain rule (3) can be rewritten as

o(u) 0(u) a(x, y,2)
)  B(x,yz) ()
In the remainder of this section, we will show how to multiply matrices of

all sizes and, thereby, to generalize the chain rule (4) to several independent
and dependent variables.

o(u, v, w)

A(x, ») A

4)
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(a) Suppose that u=ax + by + cz+d and v=ex + fy + gz + h, where aq,
b, ..., h are constants.

(i) Express u and v by using products of row and column vectors.
(i) Find the derivative matrix d(u,v)/d(x, y,z).
{b) Suppose that x, y, and z in (a) are linear functions of ¢:
x=mt+n,y=pt+q,andz=rt+s.
(i) Express u and v in terms of z and find the derivative matrix d(u, v}/ 9(?).

(i) Express the elements of 9(u,0)/9(¢) as products of row and column
vectors.

x
(a) @) Wehaveu=J[abc]| y|+d
z
x
ando=[efgll y|+h
z

(ii) The derivative matrix is

(u,0) _la b ¢
o(x, y2) [ e f g}’

all of whose entries are constants.

(b) (i) Substituting for x, y, and z their expressions in ¢, we get
u=a(mt+n)+b(pt+q)+c(rt+s)+d,
v=e(mt+n)+ f(pt+q)+g(rt+s)+h

We can find the derivative matrix without multiplying out:

du
d(u,v) _| dr |_|am+bp+ecr
(1) dv em+fp+gr|
dt

(i) The entries of d(u, v)/9d(¢) are
m

[a b c]{p} and [e f g][ﬂ.

’
Notice that they are obtained by multiplying the rows of d(u,v)/3(x, y,z) by
the (single) column of 3(x, y,z)/3(¢). A

The preceding example and the multiplication of row and column vectors
suggest how we should multiply m X n matrices.

Matrix Multiplication

Let 4 and B be two matrices and assume that the number of columns of
A equals the number of rows of B. To form C = AB:

1. Take the product of the first row of 4 and first column of B and let it
be the (1, 1) entry of C.

2. Take the product of the first row and second column of B and let it
be the (1,2) entry of C.

3. Repeat. In general, the product of the ith row of 4 and jth column of
B is the (i, j) entry of C.
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Example 4 Let

[1
A=|2

-1

-3

0| and B={2 0]
| 8
Find AB and BA.

Solution (5
20 =
18 —3] i I ]
(going across the first row of 4 and down the first column of B). Moving to
the second column of B:
{2
8 -3t | I
Moving to the second and third rows of 4, we fill in the remaining entries:
BA is not defined since the number of columns of B is not equal to the
number of rows of 4. A
Example 5 Find:
Loy 20 49 (1 241 14
2 0410 1 0 1|2 0
Solution PoI)[ 1 2] 3] ana [0 2700 17_[5 1) 4
2 0]10 1 2 4 0 1}{2 0 2 0/

Example 5 shows that even if AB and BA are defined, they may not be equal.
In other words, matrix multiplication is not commutative.

Example 6 For 2 X2 matrices 4 and B, verify that |[4B| = |A4||B|, where |4| denotes
the determinant of 4 (Section 13.6).

Solution Let
A=|° b and B= € f
¢ d g h
Then |A| = ad — be, |B| = eh — gf, and

14B| = ae + bg af+ bh
ce +dg cf+dh

= (ae + bg)(cf + dh) — (ce + dg)(af + bh)

= aecf + aedh + bgcf + bgdh — aecf — adgf — cebh — bgdh
— aedh + bgef — adgf — cebh

(ad — be)(eh — gf)

=4[-1B]. &
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The result of Example 3(b) may be written in the following way in terms of
derivative matrices:

d(u,v) _ d(u,v) 9(x, y,z)
a(?) o(x, y,z) a(t)

This suggests a similar formula for the general chain rule.

The General Chain Rule

Let uy = fi(xy, ..., %) ..., u,=f,(x,...,x,) be m functions of n

variables, and let x, =g(¢;,...,4),..., x,=g(t;,...,4) be n

functions of k variables, all with continuous partial derivatives.
Consider the u,’s as functions of the 1’s by

ul=f,(g1(t1,...,tk),...,gn(t,,...,tk)).

Then
ouys ...yt oty - vy Uyy) (xy5 0.5 X,)
0trr s f)  8(Xps %) 3t oonld)
In other words,
du;  du; dx, N du; 9x, du; Ox,
TR AR TR A T

(Note that there are as many terms in the sum as there are intermediate
variables.)

We will carry out the proof for the “typical” case m=2, n=3, k=2. We
must prove that

d0x;  0x,
du, du du, du, ouw, || 0, 3t
E T _ 9x, Ax,  Ox, dx,  9x,
du, du, | | du, du, du, || 94, 01,
W | | T w0 || ey ox
ED T

This matrix equation represents four ordinary equations. We will prove a
typical one: '

duy  duy Oxy | Ouy Ox,  Qu, 0xs 5
o, " 9x, a5, T o, 31, o, a1, )
In taking the partial derivatives with respect to ¢,, we hold ¢, fixed and take
ordinary derivatives with respect to #,. With this understood, we may rewrite

(5) as
du,  du, dx, N du, dx, Ou, dx, 6
@ " ax, d, hw, @, i, ©)
We are now in the situation of Section 15.3—we have the independent
variable #,, the dependent variable u,, and intermediate variables (x,, x,, x;);

but the chain rule for this case is just formula (6), so (6) is true and hence (5)
is proved.
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Example 7 Verify the chain rule for 9p/dx, where

— Xz

p=f(u,u,w)=u2+02—w, u=x7y, v=y2, and w=e

Solution  f(u,0,w) = (xﬁi)2 +y*— e ¥ = x%? + y* — ¢7*. Thus

P _ 4,32
E—4xy + ze

On the other hand,

—XZ

a—Pﬂ+a—P@+8—P—a—w-=2u(2xy)+2v-0+ze_”

du dx Jdv dx Ow Ox
= (2x%y)(2xy) + ze ¥,
which is the same. A

Example 8 Let (x, y) be cartesian coordinates in the plane and let (r,#) be polar
coordinates. (a) If z = f(x, y) is a function on the plane, express the partial
derivatives 9z/dr and 9z/98 in terms of 9z/dx and dz/dy. (b) Express
0%2/9r* in cartesian coordinates.

Solution (a) By the general chain rule, using x = rcos and y = rsiné,

9x  dx
9z 9z |_[9z 2dz]| ar 30
[ar 80]_[8x By} dy
r a8

9z 9z |[cosd —rsinﬂ]
| sind rcosf

Multiplying out,

3z _ 8z
3 = Bx cosH+ ay Z §in @,
9z _ az
20 r[ I sinf + -= 8y cosHJ
(b) By (a),
dz _ 0z
3 = B cos0+ By Z sin#. ™
Pz _ a7z [z
Thus 02 = [ pp ]cosﬂ+ ar[ ay ]smﬂ Applying equation (7) with
0z/0x and 9z/dy replacing z, we get
2 32 2 2 )
9z ( 9%z cosf + sin0)cos€+ 9%z cosﬂ+ﬂsin0 sin 8
ar? ox? a)’ a dxdy 8))2
8 Z cos?d + 2 0%z sinfcosf + 2=< sin%
ax? dydx ay2
1

2 2 2
R OZ yoxy 024202
)c2+y2 9x? yaxay Y 8y2 A

Example 9 Suppose that (£,5) = (f(x, y), g(x, ¥)), x = u — 20, and y = u + 3v. Express
the derivative matrix 8(z,s)/0(u,v) in terms of 9(z,5)/d(x, p).
Solution By the chain rule,
a(t,5) a(t,5) 9(x, )
d(u,v) = d(x, y) o(u,v) °
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a(x, y) _J1
o(u, v) [ 1
SO

sy (L)
d(u,0)  (x, )

3
e

3
ﬁ +

15.4 Matrix Multiplication and the Chain Rule

K

at
dy
3s
dy
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Exercises for Section 15.4

Find the matrix products in Exercises 1-4.

1
1 1 1

L1 2 3]s 2,[_ 1 _}2
6 4 2 47

) 1
13 2

3202 2 6|4 401 2 3 4 5)|3
5] 4

Find the derivative matrices in Exercises 5-8 and evalu-
ate at the given points.
5. 3(x, y)/0(u,v); x = usinv, y = e"’; at (0, 1).
6. dx, y,z)/3(r,0,¢); where x = rsin¢coséb,
y=rsingsinb, z = rcos¢; at 2,7/3,7/4).
7. Hu,0)/3(x, y,2); u=xpz,v=x+y+ z;
at (3,3,3).
8. 9(x, y)/3(r,8); x = rcosf, y = rsind; at (5,7/6).
Compute the matrix products in Exercises 9-20 or
explain why they are not defined.

1 27[2 3 (1 07[0 0
9. 10.
0 1|4 5} L0 o]_o 1]
[0 1[a b (1 0[a b
1. 12.
1 0]l d} L0 l][c d]
_ I BRI
13. g; 2 14. (2|5
L 13 13]16]
_ 121
15. |0 0][“] i6. |3 4|[9 90 0]
[0 1]ib 5 6 13 2 1
'1 0 0]la b ¢
17.[(1) g“a Z] 18.10 1 0||d e f
¢ 00 1|g h i
19, ([1 0l[2 4 ) 11
2 341 —1])jo 1]
20, [1 0(2 471 1)
2 3\t —1]lo 1

Compute 3z/9x and 3z/3y in Exercises 21-24 using
matrix multiplication and by direct substitution.

21. z=u? + 0% u=2x+T7,v=3x+y+7
22. z=u?+3up — 0% u=sinx,
U= —COSX + Cosy.

23. z =sinucosv; u=3x>—2y, v=x — 3.

4. z=u/vu=x+y, v=xp.

25. (a) Compute derivative matrices 9(x, y)/0(t,s)

and 9(u, v)/9(x, y) if
x=1+s, y=tr—sy,
u=x2+y2, v=x2—y2.
(b) Express (u,v) in terms of (¢,s) and calculate
a(u, v)/0(1,s).
(¢) Verify that the chain rule holds.

26. Do as in Exercise 25 for the functions
x=t2——sz,y=ts,u=sin(x+y),
v = cos(x — y).

27. Do as in Exercise 25 for x =1ts, y=1ts; u= x,
v=—y.

28. Do as in Exercise 25 for x = £2 + s2,y =12 - 5%
z=2s; U= Xy, v=XZ, W= XZ.

29. Suppose that a function is given in terms of
rectangular coordinates by u = f(x, y,z). If

x = rcosfsing,

y = rsinfsin ¢,

Z = rcoso,
express du/dr, du/38, and du/0¢ in terms of
du/dx, du/dy, and du/dz.

30. Suppose that x, y,z are as in Exercise 29 and
u=x>+y?+ z% Find 3u/dr, du/36, and
du/9¢.

31. Express the polar coordinates r and 8 in terms of

the cartesian coordinates x and y, and find the
derivative matrix 9(r,8)/3(x, y).
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792 Chapter 15 Partial Differentiation

32. Let A4 be the derivative matrix 9(x, y)/d(r,8) for
x =rcosfl, y=rsinfl. Let B be the derivative
matrix 9(r,8)/9(x, y) of Exercise 31, with its
entries expressed in terms of r and §. Find 4B
and BA.

33. Let B be the m X 1 column vector

- -
1
m
1
m
1
L™ ]
If A ={[a,---a,]is any row vector, what is 4B?
Exercises 34-38 form a unit.
34. Let
1 0 1 2
I= d A= .
Lo ] e a=[o 1]

Find a matrix B such that AB = I.
35. In Exercise 34, show that we also have

Ba=|1 0}
‘ 0 1
36. Show that the solution of the equation

=5 = D=5

where A and B are as in Exercises 34 and 35.
37. Find a matrix B such that

I 2]_]1 O
B [ 2 5} a [ 01 ]

38. Using the results of Exercises 36 and 37, solve
each of the following systems of equations:
(a) x+2y=1,2x+5y=2;

(b) x+2y=0,2x+5y=0.
Exercises 39-42 form a unit.

39. If (fi(xy, - oo X))y oo i fu(xy, ooy X))
= (uy, ..., u,) are n functions of n variables,
then the (square) matrix of partial derivatives is
called the jacobian matrix. Its determinant is
called the jacobian determinant and is denoted by

a(ul,...,u,,)
a('xl"~-’xn)

(a) Suppose that n = 2. Show that the absolute
value of

A(uy , uy)
a(x, »)

is the area of the parallelogram spanned by

(a,b)

( aul au2 )

dx (a’b)’ ax @p)
and

( du,y du, )

W wry Y lan

(b) Suppose that n = 3. Show that the absolute
value of

(uy,uy,u3)

a(xl 5 X2 5 X3)

(a,b,c)

is the volume of the parallelepiped spanned
by the vectors

aul
3x;
fori=1,2,3.

40. Compute the following jacobian determinants:
(a) (x, y)=(rcosd,rsinf). Find

a(x, y)
a(r,0) |

(b) Let (x, y,z) = (rcos8,rsind,z). Find

(x, y,z)
9(r,8,2)

(c) Let (x,y,z)=(rcosfsin¢,rsin# sin¢, rcosq
Find

' o(x, y,z)

au:;

X (a,b,c))

(a,b,c) 9 i

auz

(a,b,c) 3x;

s

a(r,0,9)

41. Compute the jacobian determinants (see Exercise
39) of the following functions at the indicated
points:

@) (x,p)=(+s%12— sD;(t,5) = (1,2).

d) (wo)y=(x+y,x);(x y)=(06,-3)

(¢) Compute the jacobian determinant of (u,v)
with respect to (¢, s) from parts (a) and (b) at
(t,5) = (1,2). Verify that your answer is the
product of the answers in (a) and (b).

42. Prove the following equations (notation from Ex-
ercise 39) in light of the chain rule and the
multiplicative property of determinants found in

Example 6:
0(u,v) || 8(x, y) B d(u,v) ]
@ la(;c,y) ( 3(t,5) ”’ 3(t,5) |’
A(x, ) || 3(ts) | _
®) ’am) i |

43. Let v, v,, v3 be the components of a vector func-
tion v, u a scalar function, a, b, p constants. Ex-
press in matrix notation the equations of elastic-

ity:

82 82 82 aZ
pﬂ =(g+b)(§y_)+b l_}‘i.p_vl;
012 dx dx? ay2 922

92 92 0% 92
of 22 =(a+b)(a—”)+b R T
3 dy ax2 9 9z

9% 32 32 2
p(—;)=(a+b)(%)+b s 005, O
at dz %2 ayZ 972
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44,

45.

46.

A rotation of points in the xy plane (relative to
fixed axes) is given by

X| [cos® —sinf][x
Y| | sinf cosf ||y

where # is the angle of rotation of

5] = [3]

Show by means of matrix multiplication that a
rotation of 8, followed by a rotation of 8, is the
same as a rotation of §, followed by a rotation of
9,.

The coordinates u,¢,8 are defined by x =
ausinpcosf, y = busingsinf, z = cucosgp for
u>0,0< <7, 0<0<27.

(a) Show that the surfaces u = constant are the

ellipsoids

x \2 y 2 z 2_
() () (&)=
Show that the surfaces ¢ = constant are el-
liptical cones.
(c) Show the surface # = constant is a plane.
(d) Volume calculations involve the determi-
nant of d(x, y,z)/d(u,p,8). Show that it
equals abcu’sin ¢.
The matrix equation

(b)

X cosf —sinf 0 }|x
Y [=[sin@ cosf# 0]y
1 0 0 1]]1

can be viewed as a rotation in the xy plane through
the angle €. (See Exercise 4.4). Similarly, the equa-
tion

X 1 0 —al|x
Yi=|0 1 =p|]y
1 0 0 1|1

can be viewed as a translation in the xy plane.
(a) Use a matrix multiplication to find the ma-
trix equation for a rotation followed by a
translation.

Is a rotation followed by a translation the
same as a translation followed by a rota-
tion?

)

*47,

*48.

| l‘\y 1/ 2\ y /‘/7X4

*49

*50.

Review Exercises for Chapter 15 793
Verify the formula {4B]| =|4]|B| for 3 X 3 ma-
trices A and B, where [A4] denotes the determi-
nant of 4.

Public health officials have located four persons,
Xy, X3, X3, and x4, known to be carrying a new
strain of flu. Three persons, y,, y,, and y;, report
possible contact, and a first-order contact matrix
A is set up whose I, jth entry is 1 if there was
contact between x; and y;, and zero otherwise.
Five other people, z,, z,, 23, z4, and zg, are
questioned for possible contact with y,, y,, and
3, and another first-order contact matrix B is set
up whose /, jth entry is 1 if y, has contacted z
and zero otherwise.

(a) Show that the product matrix C = AB
counts the number of second-order contacts.
That is, the , jth entry of C is the number of
possible paths of disease communication
from x; to z;.

Write down the three matrices for the situa-
tion shown in Fig. 15.4.2. Check the conclu-
sion of part (a).

(b)

Vs Figure 15.4.2. Contacts

between three groups of
PN

z s Za 2 people.

. Express Simpson’s rule (Section 11.5) by using a

product of row and column vectors.

Suppose that f is a differentiable function of one
variable and that a function u = g(x, y) is de-
fined by

x+y
w)'
Show that u satisfies a (partial) differential equa-
tion of the form

o= £ =

20u _ p0u
ax y ay G('X’ y)ll

and find the function G(x, y).

Review Exercises for Chapter 15

Calculate all first partial derivatives for the functions in
Exercises 1-10.

1.

2.

© NOo LA W

sin(7x)
u=g(x, y)= -
I+y
. X
U= = R
el
u=k(x,z)= xz?— cos(xz>).
U= m(y,z)=yz.

u=h(x, y,z)=zx + y> + yz.
u=n(x, y,z)=x".

- u=f(x, y,z) = In[l + e ~*cos(xp)].
u= h(x,y,z) = Cos(e—xz_zyz).

9. u=g(x, y,z)=xz + ez(fxtze’dt).
0

10. u = f(x, y) = cos(xp?) + exp[fx\/t_cos(ty) dt].
o

Check the equality of the given mixed partials for the
indicated functions in Exercises 11-16.

11

12.
13.
14.
15.
16.

. 9°u/0x 3y = 8% /dy dx for u in Exercise 1.
9°u/dx 3z = 0% /dz dx for u in Exercise 2.
3% /9x 3z = 0% /dz dx for u in Exercise 3.
du /9y 9z = 9% /dz dy for u in Exercise 4.
9% /09x 3z = 3% /dz dx for u in Exercise 5.
9% /3x 3z = 0% /dz dx for u in Exercise 6.
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794 Chapter 15 Partial Differentiation

17. Find (8/8x)e* 0|, _, _,.

18. Find (3/9s)exp(rs® — r’s)|,= 1, s=1-

19. Find £,(1,0) if f(x, y) = cos(x + &**).

20. Find f,(— 1, 2) if f(r,s) = (r + s3) /(1 = r* = 5?).

21. The possible time 7 in minutes of a scuba dive is

given by T =32V /(x + 32), where V is the vol-

ume of air in cubic feet at 15 psi (pounds per

square inch) which is compressed into the air

tanks, and x is the depth of the scuba dive in

feet.

(a) How long can a 27-foot dive last when
V =657

(b) Find 97/9x and 0T/dV when x =27,
V = 65. Interpret.

22. The displacement of a certain violin string placed
on the x axis is given by u =sin(x — 6¢) +
sin(x + 6¢). Calculate the velocity of the string at
x =1 when t=4.

Find the limits in Exercises 23-26, if they exist.

23. lim (x*=2xy+4)
(x)>(0,0)

24, lim  (x*—y*+15)
(x.p)>(0,0) 4 .3

25. im —

(x)~(00) x2 + 32

26, lim P FTXAx-2
(x,)=(0,0) m

Find the equation of the tangent plane to the given
surface at the indicated point in Exercises 27-30.

27. z=x2+y2; x=1y=1

28. z=xsiny; x=2, y=mn/4.

29. z=eY;x=0,y=0.

30. z=\/m;x=3,y=4n
Use the linear approximation to find approximations
for the quantities in Exercises 31-34.

31 y(1.01)? + (4.01)% + (8.002)°

32. (2.004)In(0.98)

33. (0.999)!-00t

34. (1.001)°-°°°

35. Find an approximate value for the hypotenuse of
a right triangle whose legs are 3.98 and 3.03.

36. The capacitance per unit length of a parallel pair

" of wires of radii R and axis-to-axis separation D

is given by
_ 7€y
D +yD?—-4R*
In R

The capacitance between a wire and a plane
parallel to it is

C* = 27T€0

(h+m)’
o S —

where & = distance from the wire to the plane.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

(a) Find the expected change in capacitance for
two parallel wires, -separated by 2 centime-
ters, with radius 0.40 centimeter, due to a
radius increase of 0.01 centimeter.

(b) A wire of 0.57 centimeter radius has its
central axis at a uniform distance of 3 centi-
meters from a conducting plane. Due to
heating, the wire increases 0.02 centimeter in
radius, but due to bowing of the wire, it can
be assumed that the axis of the wire was
raised to 3.15 centimeters above the plane.
What is the expected change in capacitance?

At time =0, a particle is ejected from the

surface x2 + 2y? + 322 = 6 at the point (1, 1,1) in

a direction normal to the surface at a speed of 10

units per second. At what time does it cross the

sphere x? +y2 + z? = 103? [Hint: Solve for z].

At what point(s) on the surface in Exercise 37 is

the normal vector parallel to the line x = y = 2?

Verify the chain rule for the function f(x, y,z)

=In(l + x? +2z%)/(1 + y?) and the curve o(z)

= (1,1 — 1% cos ).

Verify the chain rule for the function f(x, y)

= x2/(2 + cos y) and the curve x =e’, y = e~ ".

(a) Let ¢ be a constant. Show that, for every
function f{(x), the function u(x, ) = f(x — ct)
satisfies the partial differential equation
u, +cu, =0.

(b) With u as in (a), consider for each value of ¢
the graph z = u(x, t) in the xz plane. How does
this change as ¢ increases?

(a) Show that, if u(x, t) is any solution of the equa-
tion u, + cu, =0, then the function g(y,1)
defined by g(y,t) = u(y + ct,t) is independent
of t.

(b) Conclude from (a) that u must be of the form
u(x,t) = f(x — ct) for some function f.

(¢) What kind of wave motion is described by the
equation u, + cu, = 0?

A right circular cone of sand is gradually collaps-

ing. At a certain moment, the cone has a height

of 10 meters and a base radius of 3 meters. If the

height of the cone is decreasing at a rate of 1

meter per hour, how is the radius changing,

assuming that the volume remains constant?

A boat is sailing northeast at 20 kilometers per

hour. Assuming that the temperature drops at a

rate of 0.2°C per kilometer in the northerly direc-

tion and 0.3°C per kilometer in the easterly
direction, what is the time rate of change of
temperature as observed on the boat?

Use the chain rule to find a formula for

(d/ dryexpl f(1)g(1)].

Use the chain rule to find a formula for

(d/ di( f(H=).
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47.

48.

49.

50.

Find

If x and y are functions of ¢,

dx

ay
haiad =1 h'd =
i , and t'z . 1,

=0

in terms of x and y.

. d
f x+2xp
ind —-t e o

If x, y, and z are functions of ¢ and
dx dy

7{ ,=()— ’ E t=0= 0
dz . d .
d = = - d — 2
an &, 1, fin 7 cos(xyz*) o in

terms of x, y, and z.

The tangent planc to z=x>+ 6y at x = 1, y =1
meets the xy plane in a line. Find the equation of
this line.

The tangent plane to z = e Yat x = 1, y = 2 meets
theline x = ¢,y = 2t — 1, z = 5t in a point. Find it.
the products AB of the matrices in Exercises

51--60.

5L

56.

57.

58.

59.

60.

61.

Z =

62.

63.

2
A=[1 2 4,B=|_]
1
3/2
111 17, |32
A“[? 3 2 5}3— 2
2
0 -1 1 0
A= ,B=
1 0 0 —1]
A=[1 2] g=[-11
2 1 1 1
1 2 2 -1
A= ,B=
I S F
2 -1 1 2
A= B =
> e=ls i
1 2
1 1,B=[_21 _11 ﬂ
2 1

3 0 1 1 0 -
4=112 —-1|.B=|2 0
I 0 1 01 o
1 0 -1 30 I
4=12 0 1,B=|1 2 -1
01 0 1 0 1
Compute 9z/9x and 9z /3y if
24 .2
:2t52’ u=e *7V, p=e¥

by (a) substitution and (b) the chain rule.

Do as in Exercise 61 if z = uv, u=x + y, and
v=Xx—y.

Suppose that z = f(x, y), x=u+ v and y = u—vo.
Express 9z/9u and 9z/3v in terms of dz/dx
and 9z /dy. ‘

64.

65.

66.

67.

68.

Review Exercises for Chapter 15 795

‘In the situation of Exercise 63, express dz/0x

and dz/dy in terms of 9z /9u and 9z /dv.

The ideal gas law PV = nRT involves a constant

R, the number n of moles of the gas, the volume

V, the Kelvin temperature T, and the pressure P.

(a) Show that each of n, P, T, V is a function of
the remaining variables, and determine ex-
plicitly the defining equations.

(b) The quantity 9P/3T is a rate of change.
Discuss this in detail, and illustrate with an
example which identifies the variables held
constant.

(c) Calculate 8V /0T, 8T/dP,9P/3V and show
that their product equals — 1.

The potential temperature 8 is defined in terms of

temperature T and pressure p by

0.286
0= T( 1000) '
P

The temperature and pressure may be thought of
as functions of position (x, y,z) in the atmo-
sphere and also of time ¢.

(a) Find formulas for 06/0x,38/3y,30/3z,
06/0¢ in terms of partial derivatives of T
and p.

(b) The condition d8/0z < 0 is regarded as un-
stable atmosphere, for it leads to large verti-
cal excursions of air parcels from a single
upward or downward impetus. Mete-
orologists use the formula

9 _6 (9T, &
a9z T\ oz Cp’

where g=32.2. C, = constant > 0. How
does the temperature change in the upward
direction for an unstable atmosphere?

The specific volume V, pressure P, and tempera-

ture T of a Van der Waals gas are related by

P=[RT/(V— B)]— a/V? where a, 8,R are

considered to be constants.

(a) Explain why any two of V, P, or T can be
considered independent variables which de-
termine the third variable.

(b) Find aT/9P,9P/3V,0V/3T. Identify
which variables are constant, and interpret
each partial derivative physically.

(c) Verify that (37/3P)OP/OVY3V/AT)=
—1 (not + 1!).

Dieterici’s equation of state for a gas is

P(V — b)e®/RT = RT,

where a, b, and R are constants. Regard volume
V as a function of temperature T and pressure P
and show that

o=

a RT _ a\!
+7;7)(—V-b ﬁ) '

Copyright 1985 Springer-Verlag. All rights reserved



796

69.

70.

71.

72.

73.

74.

Chapter 15 Partial Differentiation

What is wrong with the following argument?
Suppose that w = f(x, y) and y = x% By the
chain rule,

9x  dx ax 9y ax  ax T ay

Hence 0=2x(9w/dy), so 9w /dy = 0.

What is wrong with the following -argument?
Suppose that w= f(x, y,z) and z = g(x, y).
Then by the chain rule,

ow _ dw 8x+8w a)’_'_E)w 0z

ow _ 0w 0x away=8w+2 8_w

9x 0x ox oy ox 9z 9x
= 9w 3w 3z
dx dz Ox
Hence
w0z
0 9z ox’

s0 0w/dz = 0 or 3z /dx = 0, which is, in general,
absurd.
For a function u of three variables (x, ¥,2), show
that 8% /9x 9y 9z = 9% /3y 3z ox.
For a function u of three variables (x, y, z), show
that 3% /9x dy 9z = 9%/dz dx dy.
Prove that the functions
@) f(x, y)=lIn(x*+ )’2),1
b X, Yy2)= ——————— |
®) g, »,2) T
I S
x2+y2+22+w2,
satisfy the respective Laplace equations:
@ fotf,=0,
(®) 8xx T O 0,
(©} A+ by + b, +h,, =0,
where f,, = 9%f/0x?, etc.
If z = f(x — y)/y, show that

z+y(@z/0x) + y(3z/dy) = 0.

© h(x,y,z,w)=

*76. (a) A function u = f(x, ...

5. Given w = f(x, y) with x=u+0v, y=u— o,

show that

O _ dw  ow
0udv g2 ayz'

s xm) is called homo-
geneous of degree n if

SQxy, oo ) = f(x, ..., x,).
Show that such a function satisfies Euler’s differ-
ential equation

du du du _
18—x]+x28—g+ +xma—)—c;——nf(xl,...,xm).
(b) Show that each of the following functions
satisfies a differential equation of the type in part
(), find n, and check directly that f is homoge-
neous of degree n.

) flx, p) = x>+ xp + %

(i) f(x, y,z)=x+3y —yxz; xz2 >0;

(i) f(x, y,z)=xpz+ x> — xﬁz.

*77. In Exercise 77 on page 775 we saw that the

mixed partial derivatives of
xp(x? = y%)
o
at (0,0) are not equal. Is this consistent with the
graph in Fig. 15.R.1?

Y
SRy

S e 5%
20554
TELTHARS

%

Figure 15.R.1. Computer-
generated graph of

xy(x? = y?)
z= S

)c2+y2
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Chapter 16

16.1

Example 1

Solution

Gradients, Maxima,
and Minima

The gradient of a function of several variables vanishes at a maximum or a
minimum.

The gradient of a function f is a vector whose components are the partial
derivatives of f. Derivatives in any direction can be found in terms of the
gradient, using the chain rule. The gradient will be used to find the equations
for tangent planes to level surfaces. The last two sections of the chapter extend
our earlier studies of maxima and minima (Chapter 3) to functions of several
variables.

Gradients and
Directional Derivatives

The directional derivative is the dot product of the gradient and the direction
vector.

The right-hand side of the chain rule
du _ du dx , du d}’+8u dz

dt ox dt dy dt 9z dr

has the appearance of a dot product—in fact it is the dot product of the
vectors

dx. Ay, dz du du au

=i+ =j+=k and —i+ "j+ —k

a' T dN @ ox oyl oz

We recognize the first vector as the velocity vector of a parametric curve; if
o(?) is the vector representation of the curve, it is just o’(¢). The second vector
is something new: it depends upon the function u = f(x, y,z) and contains in
vector form all three partial derivatives of f. This is called the gradient of f and

is denoted V. Thus

Vi(x 2) = fo (%, s )+ [(%, 35 20 + f (%, p, 2k
(a) Find Vfif u = f(x, y,z) = xy — z°.
(b) Find V{ for the function f(x, y,z) = e — x cos(yz?).

(a) Substituting the partial derivatives of finto the formula for the gradient of

S, we find Vf(x, y,z) = yi + xj — 2zk.
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Chapter 16 Gradients, Maxima, and Minima

Example 2

Solution

Figure 16.1.1. The gradient
vector field Vf, where

[, )

= (x2/10) + (»*/6).

(b) Here f.(x,y,2)= ye"y — cos(yz?), L(x, y,2) = xe™ + xz %sin(yz?), and
f.(x, y,z) = 2xyz sin( yz?), so
Vi(x, y,z)= [yexy — cos(yzz):]i + [xexy + xzzsin(yzz)]j
+[2xpzsin( yz°) |k. A

Notice that the vector Vf(x, y,z) is a function of the point (x, y,z) in space;
in other words, Vf is a function of the point in space where the partial
derivatives are evaluated. A rule @ which assigns a vector ®(x, y,z) in space
to each point (x, y,z) of some domain in space is called a vector field. Thus,
for a given function f, Vf is a vector field. Similarly, a vector field in the xy

plane is a rule @ which assigns to each point (x, y) a vector ®(x, y) in the
plane.

The Gradient

If z = f(x, y) is a function of two variables, its gradient vector field V{ is
defined by

VS5 7) = £ 2+ S0 )i = g1+ 2

If u = f(x, y,z) is a function of three Variables, its gradient vector field
Vfis defined by

Vi(x. y.2) = felx, y,Z)i + L0 2+ L p,2)k
= M1 + ——_| +

du
ay k.

Az

We may sketch a vector field @(x, y) in the plane by choosing several values
for (x, y), evaluating ®(x, y) at each point, and drawing the vector ®(x, y)
with its tail at the point (x, y). The same thing may be done for vector fields
in space, although they are more difficult to visualize.

Sketch the gradient vector field of the function f(x, y) = x2/10 + y*/6.

The partial derivatives are f.(x, y) = x/5 and fy(x, y) = y/3. Evaluating these
for various values of x and y and plotting, we obtain the sketch in Fig. 16.1.1.
For instance, f,(2,2) = 2 and f,(2,2) = ; thus the vector 2i+ 1j is plotted at
the point (2,2), as indicated in the figure A

Y 4
2., 2.
2,2 Vf(2,2)='5‘i+§,l

NN Y

NNN S

77 T NN

ST T ANN
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Example 3

Solution

Figure 16.1.2. The vector
field 3yi — 3xj is not the
gradient of a function.

Example 4

Solution

16.1 Gradients and Directional Derivatives 799

In sketching a vector field ®(x, y), we sometimes find that the vectors are so
long that they overlap one another, making the drawing confusing. In this
case, it is better to sketch e®(x, y), where ¢ is a small positive number. This is
illustrated in the next example.

(a) Hlustrate the vector field ®(x, y) = 3yi — 3xj by sketching 1 d(x, y).
(b) Using the law of equality of mixed partial derivatives, show that the vector
field in (a) is not the gradient vector field of any function.

(a) If we sketched ®(x, y)=3yi— 3xj itself, the vectors at different base
points would overlap. Instead we sketch 1®(x, y) =1 yi — 1xj in Fig. 16.1.2.

y

]If‘

“Il :

(b) If ®(x, y)=3yi— 3xj were the gradient of a function z = f(x, y), we
would have 9z/dx = 3y and 9z/0y = —3x. By the equality of mixed partial
derivatives, 3% /9x 9y = —3 and 9% /3y dx = 3 would have to be equal; but
3 # —3, so our vector field cannot be a gradient. A

In a number of situations later in the book, the vector r from the origin to a
point (x, y,z) plays a basic role. The next example illustrates its use.

Let r=xi+ yj+ zk and r = ||r|| =x*+ »* + z*. Show that

V(%)=_r_r3’ r#0.

What is ||V(1/r)||?
By definition of the gradient,
()= e

Now

\ulx

bly-b( 1 ). x -
ax \r 9x 2 > p) (x2+y2+ 22)3/2
and, similarly,

i(l)=_l ﬁ.(l):-i

3)/ r r ’ az \ r 3 ’
Thus

1 . . | .
V(7)=—;xgl—%j—%k=—;5(x1+yj+zk)=—

~
~
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Chapter 16 Gradients, Maxima, and Minima

Example 5
Solution

Example 6

Solution

as required. Finally,
V( 1 ) =
P

In the next box we restate the chain rule from Section 15.3 in terms of
gradients.

1 1

r
Th=—= = —_—
H H r3 r2 x2+y2+ ZZ

L
3

The Chain Rule for Functions and Curves

Let f be a function of two (three) variables, o(¢) a parametric curve in
the plane (in space), and i(¢) = f(o(¢)) the composite function. Then

H(D)=Vf(e()-o'(0);  thatis, <L f(a(1)) =Vf(a(1)-o'(1).

In this form, the chain rule looks more like it did for functions of one
variable:

2 (f(g(1) = F(8(1))g'1).

Verify the chain rule for u = f(x, y,z) = xy — z* and o(t) = (sint, cost,e").

The gradient vector field of f is yi + xj — 2zk; the velocity vector is given by
o'(1) = costi — sintj + e’k. By the chain rule,

D4 _9f- o = (yi+ xj—22K) (costi —sintj + ')

= ycost — xsint — 2ze' = cos’t — sin’t — 2¢*.

To verify this directly, we first compute the composition as f(e(7))
= sintcost — e*. Then by one-variable calculus, we find

% f(o (1)) = —sin’ + cos’t — 2.
Thus the chain rule is verified in this case. A

Suppose that f takes the value 2 at all points on a curve o(¢). What can you
say about V{(e(r)) and o'(¢)?

If f(e(?)) is always equal to 2, the derivative (d/dr) f(o(t)) is zero. By the
chain rule, 0 =Vf(a(?)) - 6/(¢), so the gradient vector Vf(a()) and the veloc-
ity vector o’(¢) are perpendicular at all points on the curve. A

Let u = f(x, y, z) be a function (with continuous partial derivatives) and o(?) a
parametrized curve in space. The derivative with respect to ¢ of the composite
function f(o(7)) may be thought of as “the derivative of [ along the curve
o(1).” According to the chain rule, the value of this derivative at ¢ = ¢, is
Vf(o(ty)) - o'(t;). We may write this dot product as

IVf(o (1))l 0" (2)llcos b,

where 6 is the angle between the gradient vector Vf(a(1,)) and the velocity
vector o'(¢) (Fig. 16.1.3). If we fix the function f and differentiate it along
various curves through a given point r (here, as usual, we identify a point with
the vector from the origin to the point), the derivative will be proportional to
the speed ||6(1,)|| and to the cosine of the angle between the gradient and
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Vi(e(t)

the curve @

X

Figure 16.1.3. The
derivative of f along the
curve (1) is

4 fa()=V(o(1) - a'(1)
= [V ()] 0/(1)[cos.

Example 7

Solution

16.1 Gradients and Directional Derivatives 801

velocity vectors. To describe how the derivative of f varies as we change the
direction of the curve along which it is differentiated, we fix r and choose
o(f) =r + d for d a unit vector. (Note that since d is a unit vector, the speed
of the curve o(¢) is 1, so 1 unit of time corresponds to 1 unit of distance along
the curve.)

We make the following definition: Let f(x, y,z) be a function of three
variables, r a point in its domain, and d a unit vector. Define the parametric
curve o(f) by a(t) =r + rd. The derivative (d/dt) f(o(1))|,_, 1s called the
directional derivative of f at r in the direction of d.

Since o’(f)=d and |d|| =1, we see that if f has continuous partial
derivatives, the directional derivative at r in the direction of d is

Vi(r)-d=|Vf(r)|jcosd.

Notice that the directional derivatives in the directions of i, j, and k are just
the partial derivatives. For instance, choosing d =i, Vf-i=(fi+ fj+ fk)-i
= f,. Similarly, Vf-j=f and Vf-k=f,.

As we let d vary, the directional derivative takes its maximum value when
cosf = 1, that is, when d points in the direction of Vf(r). The maximum value
of the directional derivative is just the length ||V f(r)]].

The following box summarizes our findings.

Gradients and Directional Derivatives

The directional derivative at r in the direction of a unit vector d is the rate
of change of f along the straight line through r in direction d; i.e., along
o()=r+ud

The directional derivative at r in the direction d equals Vf(r)-d. It
is greatest (for fixed r) when d points in the direction of the gradient
V/(r) and least when d points in the same direction as — V f(r).

Compute the directional derivatives of the following functions at the indicated

points in the given directions.

(@) f(x, p)=x +2x% = 3xp; (xq, yo) = (1, ); d = (1,%).

(b) f(x, ) =In(yx> + y*); (x0, yo) = (1,0); d = (25 /5,/5 /5).

(©) fx, p:2) = xyz; (%o, yor20) = (1, 1, s d = (1/¥2)i + (1/V2 )k

(d) f(x, y,2) = €™ + yz; (%o, o, 20) = (1, 1, 1); d = (1/3)i = j + k).

(@) Vf(x,y)=(1 +4x -3y, —3x). At (1,1} this is equal to (2, —3). The
directional derivative is Vf(xy, yo):d= (2, =3)-(3,4)= - £.

() Vf(x, y)=(x/(x*+ yD, y/(x* + p?)), so V£(1,0) = (1,0). Thus, the direc-
tional derivative in direction (2y5 /5,45 /5) is 2¢5 /5.

(©) Vf(x, y,2) = (yz,xz,xy), which equals (1,1,1) at (1,1,1). For d equal to
(1/42,0,1/42), the directional derivative is 1/y2 + 0+ 1/y2 =y2.

(d) Vf(x, y,z) = (e*%,z, y), which equals (e,1,1) at (1,1,1). For d equal to
(1/{3)+ (i —j+Kk), the directional derivative is e(1/y3)+ 1(—1y3)+
1(1/Y3)=¢/\3. A

If one wishes to move from r = (x, y,z) in a direction in which f is increasing

most quickly, one should move in the direction Vf(r). This is because

Vf(r)-d = ||Vf(r)|icosf is maximum when § =0, i.e, cosf = 1, so d is in the

direction of Vf(r). Likewise, — Vf(r) is the direction in which f is decreasing at

the fastest rate.
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Example 8

Solution

Example 9

Solution

Figure 16.1.4. The slope at
the point P of the curve C
in the plane & is the
directional derivative at
(xg, yo) of fin the
direction d.

Let u= f(x, y,z) = (sinxy)e*zz. In what direction from (1,#,0) should one
proceed to increase f most rapidly?

We compute the gradient:

vi= iy g—’y‘ j+ %k
=y cos(xy)e_zzi + x cos (xy)e_zzj + (—2zsin xy)e_zzk.
At (1,7,0) this becomes
7 cos(m)i + cos(m)j = —7i — j.

Thus one should proceed in the direction of the vector —7i —j. A

Captain Astro is drifting in space near the sunny side of Mercury and notices
that the hull of her ship is beginning to melt. The temperature in her vicinity is
given by T=e * + e ¥ + &%, If she is at (1,1, 1), in what direction should
she proceed in order to cool fastest?

In order to cool the fastest, the captain should proceed in the direction in
which T is decreasing the fastest; that is, in the direction —VT7T(1,1,1).
However,
AT T, AT ) _ i _ 9 i 4+ 3%

vT 8xl+8yj+azk e *i—2e Yj+ 3ek.
Thus,

—-VT(1,1,1)=e"'i+2e % -3k
is the direction required. A

Directional derivatives are also defined for functions of two variables. In this
case, we have a geometric interpretation of the directional derivatives of
f(x, y) in terms of the graph z = f(x, y). Given a point (x,, y,) in the plane
and a unit vector d = ai + bj, we can intersect the graph with the plane & in
space which lies above the line through (x,, y,) with direction d. (See Fig.
16.1.4.)

z=f(x,y)

The result is a curve C which may be parametrized by the formula
(x, y,2) = (xy + at, yo + bt, f(xy+ at, yo+ br)). The tangent vector to this

curve at P = (xg, yo, f(Xq, yo)) is
v=gqai+ bj+ —ad'_t f(xO + at, yo + bt)|,=0k

= ai + bj + [afx(xo,yo) + bf),(xo,yo)]k.
The slope of C in the plane & at P is the ratio of the vertical component
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Figure 16.1.5. Starting from
(0, 1), moving in along the y

Example 10

Solution

axis makes the graph rise

the steepest.

Example 11

Solution

16.1 Gradients and Directional Derivatives 803

af.(xo, yo) + bf,(xq, yo) of v to the length ya® + b> of the horizontal compo-

nent; but ya? + b* = 1, since d = ai + bj is a unit vector. Hence the slope of
C in the plane & is just af.(xq, yo) + bf,(xg, yo) = d+ Vf(x,, yy), which is
precisely the directional derivative of f at (x,, y,) in the direction of d.

If we let the vector d rotate in the xy plane, then the plane & will rotate
about the vertical line through (x,, y,) and the curve C will change. The
slopes at P of all these curves are determined by the two numbers f,(x,, o)
and f,(xo, yo), and the tangent lines to all these curves lie in the tangent plane
to z = f(x, y) at P.

Let f(x, y) = x> — y. In what direction from (0,1) should one proceed in
order to increase f the fastest? Illustrate your answer with a sketch.

The required direction is

Vf(0,1)=%i+g—§j at (0, 1)

=2xi—2)j  at(0,1)
= -2j.

Thus one should head toward the origin along the y axis. The graph of f,
sketched in Fig. 16.1.5, illustrates this. A

Our final example concerns the “position vector” r; see Example 4.

Let r = xi + yj + zk and r = ||r|. Compute Vr. In what direction is r increas-
ing the fastest? Interpret your answer geometrically.

We know that r =+x? + y>+ z2, so

—Ory 0rs Ory_ x5, 0,z
Vr 8xl+8yj+82k rl+r"+rk’

since 9r/dx =1 +2x/yx*+ y? + z> = x/r and so forth. Thus
i l i i 3 -[
Vr—r(xl+yj+zk) P

Thus r is increasing fastest in the direction of r/r, which is a unit vector
pointing outward from the origin. This makes sense since r is the distance
from the origin. A
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Exercises for Section 16.1

Compute the gradients of the functions in Exercises 1-8.

L f(x, p,z) =yx?+ p? + 2%,
2. f(x, y,2) = xy + yz + xz.

3. f(x, p2)=x+y> + 23

4. f(x, y,z2)= xy2 +yz2 + zx°.

5. f(x, y) = In(yx* + y*).

6. f(x, y)= (x? +yz)ln\/x2 +y2 .
7. f(x, y) = xe**7.

8. f(x, y) = xexp(xy® + 3).

9. Sketch the gradient vector field of f(x, y)=
x2/8+ y2/12 + 6.

10. Sketch the gradient vector field of f(x, y)=
x2/8 — y?/12.

11. (a) Hlustrate the vector field ®(x, y) = xj — yi by
sketching 1®(x, y) instead. (b) Show that @ is
not a gradient vector field.

12. (a) Sketch the vector field ®(x, y)=Li+
[1/(9 + x* + y3)j. (b) Explain why @ is or is not
a gradient vector field.

13. Show that V(1/r%) = —2r/r* (r = 0).

14. Find V(1/7%) (r = 0).

Verify the chain rule for the functions and curves in
Exercises 15-18.
15. f(x, y,2) = xz + yz + xy; o(¢) = {e’, cost,sin ).
16. f(x, y,z) = e¥?; a(t) = (61,312, 1%).

17. f(x, y,z) =yx* + y? + 2% ; 6() = (sint, cost, 1).

18. f(x, y,z) = xy + yz + xz; a(t) = (1, 1,1).

19. Suppose that f(a(?)) is an increasing function of
t. What can you say about the angle between the
gradient Vf and the velocity vector ¢'?

20. Suppose that f(o(?)) attains a minimum at the
time 7,. What can you say about the angle be-
tween Vf(o(1,)) and o’'(4,)?

In Exercises 21-28, compute the directional derivative
of each function at the given point in the given direc-
tion.

21 f(x, p) = % + 2 = 3xp%; (x0, yo) = (1,2);
d=(1/2,y3 /2).

22. f(x, y) = e*cos y; (xq, yo) = (0,7/4);

d =i+ 3j)/V10.

23. f(x, y) = 17x7; (x4, yo) = (1, 1);
d=G+))/V2.

24. f(x, p) = €77 (x0, yo) = (1,m/2);

d = (3i + 4j)/5.

25. f(x, y,z) = x? — 2xy + 32% (0, Vo, 20) =
(1LL2yd=(+j—-Kk/3.

26. f(x, y.2) = e—(x2+y2+z2); (X0> Yos 20) =
(1,10,100); d= (1, — 1, — 1) /3.

27. f(x, y,z) = sin(xyz); (xq, yo.20) = (1, L,w/4);
d= (]/\/2_’0’ - l/\/i)

28. f(x, y,2) = 1/(x*+ y* + z%); (X0, ¥, Z0) =
2,3, 1);d=(G—-2k+1i)//6.

In Exercises 29-32 determine the direction in which
each of the functions is increasing fastest at (1, 1).

29. fix, )= x?+2y?

30. g(x, y) = x* = 2y?

31, h(x, y)=e*sin y

32. I(x, y)=e"siny — e *cos y

33. Captain Astro is once again in trouble near the
sunny side of Mercury. She is at location (1, 1, 1),
and the temperature of the ship’s hull when she
is at location (x, y,z) will be given by T(x, y,z)
=e "%’ where x, y and z are measured
in meters.

(a) In what direction should she proceed in
order to decrease the temperature most rap-
idly?

(b) If the ship travels at ¢® meters per second,
how fast will be the temperature decrease if
she proceeds in that direction?

(c) Unfortunately, the metal of the hull will
crack if cooled at a rate greater than {14 ¢?
degrees per second. Describe the set of pos-
sible directions in which she may proceed to
bring the temperature down at no more than
that rate.

34. Suppose that a mountain has the shape of an
elliptic paraboloid z = ¢ — ax? — by?, where a, b,
and ¢ are positive constants, x and y are the
east-west and north-south map coordinates, and
z is the altitude above sea level (x, y, and z are all
measured in meters). At the point (1, 1), in what
direction is the altitude increasing most rapidly?
If a marble were released at (1, 1), in what direc-
tion would it begin to roll?

35. An engineer wishes to build a railroad up the
mountain of Exercise 34. Straight up the moun-
tain is much too steep for the power of the
engines. At the point (1, 1), in what directions
may the track be laid so that it will be climbing
with a 3% grade—that is, an angle whose tangent
is 0.03. (There are two possibilities.) Make a
sketch of the situation indicating the two possible
directions for a 3% grade at (1, 1).

36. The height & of the Hawaiian volcano Mauna
Loa is (roughly) described by the function
h(x, y) = 2.59 — 0.000242 — 0.00065x2, where h
is the height above sea level in miles and x and y
measure east-west and north-south distances in
miles from the top of the mountain.

At (x, y)= (-2, —4):

(a) How fast is the height increasing in the
direction (1, 1) (that is, northeastward)? Ex-
press your answer in miles of height per mile
of horizontal distance travelled.

(b) In what direction is the steepest upward
path?
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37.

38.

39.

40.

41.

42.

43.

44.

16.2 Gradients, Level Surfaces, and Implicit Differentiation

(¢) In what direction is the steepest downward
path?

(d) In what direction(s) is the path level?

(e) If you proceed south, are you ascending or
descending? At what rate?

(f) If you move northwest, are you ascending or
descending? At what rate?

(g) In what direction(s) may you proceed in
order to be climbing with a grade of 3%?

In what direction from (1,0) does the function

flx, y)y= x? —yz increase the fastest? Illustrate

with a sketch.

In what direction from (—1,0) does the function

f(x, ) = x* — y* increase fastest? Sketch.

In what direction is the length of r + j increasing

fastest at the point (1,0, 1)? (r = xi + yj + zk).

In what direction should you travel from the

point (2,4,3) to make the length of r+ Kk de-

crease as fast as possible?

Suppose that f and g are real-valued functions

(with continuous partial derivatives). Show that:

(a) Vf=0if fis constant;

®) V(f+g=Vf+Vg

(© V(c¢f)=cVfif cis a constant;

(d) V(fe)=fVg+gVy,

(©) V(f/8)=(gVf—fVg)/e at points where
g#0.

What rate of change does Vf(x, y,z)(—j) rep-

resent?

(a) In what direction is the directional deriva-
tive of f(x, y) = (x> — y?)/(x* + yH at (1, 1)
equal to zero?

(b) How about at an arbitrary point (xy, ) in
the first quadrant?

(¢) Describe the level curves of f. In particular,
discuss them in terms of the result of (b).

Suppose that f(x, y) is given (and has continuous

partial derivatives). At (1, 1) the directional deriv-

ative in the direction toward (2,4) is 2 and in the
direction toward (2,2) it is 3. Find the gradient

16.2 Gradients, Level Surfaces,

45.

46.

47.

48.

*49.

*50.
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of f at (1,1) and the directional derivative there

in the direction toward (2, 3).

A function f(x, y) has, at the point (1, 3), direc-

tional derivatives of +2 in the direction toward

(2,3) and —2 in the direction toward (1,4). De-

termine the gradient vector at (1, 3) and compute

the directional derivative in the direction toward

3,6).

In electrostatistics, the force P of attraction be-

tween two particles of opposite charge is given

by P = k(r/|r|®) (Coulomb’s law), where k is a

constant and r = xi + yj + zk. Show that P is the

gradient of f= —k/||r|. ,

The potential V' due to two infinite parallel fila-

ments of charge of linear densities A and —A is

V = (A/27e)in(r,/ ry), where r? = (x — xo)?* + y?

and r3 = (x + x)’ + y2. We think of the fila-

ments as being in the z direction, passing

through the xy plane at (— xg,0) and (xg, 0).

(a) Find V V(x, y), using the chain rule.

(b) Verify the flux law 92V /3x? + 3*V /9y = 0.

For each of the following find the maximum and

minimum values attained by the function f along

the curve a(1):

(@) f(x,y)=xy; a(f) = (cost,sin?);
0< <27

(d) f(x, y)=x2+ y% &(r) = (cost,2sint);
0<1t<2a.

What conditions on the function f(x, y) hold if

the vector field k X Vfis a gradient vector field?

(a) Let F be a function of one variable and f a
function of two variables. Show that the
gradient vector of g(x, y)= F(f(x, y)) is
parallel to the gradient vector of f(x, y).

(b) Let f(x, y) and g(x, y) be functions such
that Vf=AVg for some function A(x, y).
What is the relation between the level curves
of f and g? Explain why there might be a
function F such that g(x, y) = F(f(x, y)).

and Implicit Differentiation

The gradient of a function of three variables is perpendicular to the surfaces on
which the function is constant.

Recall that the tangent plane to a graph z = f(x, y) was defined as the graph
of the linear approximation to f. We found (Section 15.3) that the tangent
plane at a point could also be characterized as the plane containing the
tangent lines to all curves on the surface through the given point. For a
general surface, we take this as a definition.
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806 Chapter 16 Gradients, Maxima, and Minima

Figure 16.2.1. The gradient
of f atr, is perpendicular to
the tangent vector of any
curve in the level surface.

Example 1

Solution

Definition: Tangent Plane to a Surface

Let S be a surface in space, ry a point of S. If there is a plane which

contains the tangent lines at r, to all curves through r, in S, then this

plane is called the tangent plane to S at ry. A normal to the tangent plane
_ is sometimes said to be perpendicular to S.

The next box tells how to find the tangent plane to a level surface.

Gradients and Tangent Planes

Let r, lie on the level surface S defined by f(x, y,z) = ¢, and suppose
that Vf(ry) # 0. Then V{f(r;) is normal to the tangent plane to S at r,.
(See Fig. 16.2.1.)

Vi)

o (o)

0

To prove this assertion, first observe that f(o()) = ¢ if the curve a(?) lies in S.
Hence

d
4 f(o(1)) = 0.
By the chain rule in terms of gradients, this gives
Vi(e()-o'(1)=0.
Setting 7 = ¢y, we have Vf(ry) - o'(¢,) = 0 for every curve o in S, so Vf(ry) is

normal to the tangent plane. (We required Vf(ry) # 0 so there would be a
well-defined plane orthogonal to Vf(r,).)

Letu = f(x, y,z) = x*> + y*> — z2. Find V(0,0 1). Plot this on the level surface
flx, y,z)=—1
We have

_dugp Bugy Buy o
vf_axl+8y‘l+8zk 2xi + 2yj — 2zk.

At (0,0,1), V£(0,0,1) = —2k.
The level surface x*>+ y?— z>= —1 is a hyperboloid of two sheets

(Section 14.4). If we plot V£(0,0, 1) on it (Fig. 16.2.2), we see that it is indeed
perpendicular to the surface. A
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Figure 16.2.2. Vf(0,0,1) is
perpendicular to the
surface.

Example 2

Solution

Example 3

Solution

Example 4

Solution

Example 5

16.2 Gradients, Level Surfaces, and Implicit Differentiation 807

24002 .2 o

<

AR0,0,1)

Find a unit normal to the surface sin(xy) = e at (1,7/2,0).

Let f(x, y,z) =sin(xy) — e, so the surface is f(x,y,z)=0. A normal is
Vf = ycos(xy)i + xcos(xp)j — e’k. At (1,7/2,0), we get —k. Thus —k (or k)
is the required unit normal. (It already has length 1, so there is no need to
normalize.) A

The gravitational force exerted on a mass m at (x, y,z) by a mass M at the
origin is, by Newton’s law of gravitation,

GMm

r3

Write F as the negative gradient of a function ¥ (called the gravitational
potential) and verify that F is orthogonal to the level surfaces of V.

F=—

T, where r=xi+yj+:zk and r=|r|.

By Example 4, Section 16.1, V(1/r) = —(r/r*). Therefore we can choose
V=—GMm/r to give F = —V V. The vector F points toward the origin. The
level surfaces of ¥ are 1/r = c—that is, r = 1 /¢, a sphere. Therefore, F is
orthogonal to these surfaces. A

The gradient enables us to compute the equation of the tangent plane to the
level surface S at ry. Indeed, Vf(ry) will be a normal to this plane, which
passes through r,. Therefore its equation can be read off immediately. (See
Section 13.4.)

Compute the equation of the plane tangent to. the surface 3xy + z2=4 at
(1, 1,1).

Here f(x, y,z) = 3xy + z? and Vf = (3y,3x,2z), which at (1,1, 1) is the vector
3i + 3j + 2k. Thus the tangent plane is

3(x—1D)+3(y-1H+2(z-1)=0 or 3x+3y+2z2=8 A

(a) Find a unit normal to the ellipsoid x* + 2y? + 32> =10 at each of the
points (10 ,0,0), (—10,0,0), (1,0,y3), and (— 1,0, —y3).

(b) Do the vectors you have\found point to the inside or outside of the
ellipsoid?

(c) Give equations for the tangent planes to the surface at the two points of
the surface with x;, = y, = 1.
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808 Chapter 16 Gradients, Maxima, and Minima
Solution (a) Letting f(x, y,z) = x> + 2y? + 32% = 10, we find Vf(x, y,z) = (2x,4y,62).
At (10 ,0,0), a unit normal to the ellipsoid is

V£(J10,0,0) (210 ,0,0)
1V£(/10.,0,0)) ((Nﬁ)2 +0°+0°)
At (—10,0,0), it is (—1,0,0). At (1,0,/3), it is

v/(1,0,3) =( I 036)
IVALO3) \ V28 V28 )

and at (—1,0, —3) it is (—1/v28,0, —3y3 /28).

(b) The vectors are pointing to the outside of the ellipsoid.

(c) The two points are (1, 1,\/7/73 ), and (1,1, —\/7/—3_ ). Evaluating the gra-
dient, Vf(1,1,/7/3) = (2,4,2/21) and Vf(1,1,—7/3) = (2,4, —2/21),
so the tangent planes to the surface at the points (1, 1,\/7/_3 ) and
(1,1, —\/%) are given by 2(x—1D)+4y—1)+ 2@(2 — \/7/—3) =0 and
2x—-1)+4(y—1)— 2‘/2_1(2 + ﬁ/_3) = 0, respectively. A

— =(1,0,0)

There is also a connection between gradients and tangents for functions of
two variables: the tangent line to a level curve of a function f(x,y) is
perpendicular to the gradient of f at each point. Combining this fact with the
box on p. 801, we see that the direction in which the function f is increasing or
decreasing most rapidly is perpendicular to the level curves of f. For example,
to get down most directly from the top of a hill, one should proceed in a
direction perpendicular to the level contours. (See Fig. 16.2.3.)

n h =300

Curve of steepest
descent

(a) Steepest descent of a hill (b) Contour map of hill 2000 feet high
Figure 16.2.3. The curve of
steepes(ti,delscent i; - Gradients, Level Surfaces,
perpendicular to the leve
curves. (a) Steepest descent and Level Curves
of a hill. (b) Contour map The normal to the tangent plane at ry = (xg, yy,2o) of the level surface
of hill 2000 feet high. f(x, y,z) = ¢ is Vf(ry). The equation of the plane is

fe(X05 Y0, 20)(X = Xo) + f,(X05 Yo, 20)(¥ = Yo) + f:(Xo0» Yo, Z0)(2 = 20) = 0.
The equation of the tangent line at (x,, y,) to the curve f(x, y) = c is

Fe(X05 Yo)(x — Xo) + f,(X0> Yo)(¥ = ¥o) = 0.
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Example 6

Solution

Example 7

Solution

16.2 Gradients, Level Surfaces, and Implicit Differentiation 809

Find the equation of the tangent line to xy =6 at x =1, y = 6.

With f(x, y) = xy, we have f,(x, y) = y and f,(x, y) = x. Then f,(1,6) = 6 and
£,(1,6) =1, so from the preceding box, the equation of the tangent line
through (1,6) is

v6(x—1)+1(y~6)=0 or y=—6x+12. A

In the next example we check that the equation given in Section 15.2 for the
tangent plane to a graph is consistent with that given here.

Let z = g(x, y). The graph of g may be defined as the level surface f(x, y,z)
= 0, where f(x, y,z) = z — g(x, y). Compute the gradient of f and verify that
it is perpendicular to the tangent plane of the graph z = g(x, y) as defined in
Section 15.2.

With f(x, y,z) = z — g(x, y),
V(X 3,2) = [l 3: 2+ f (%, 3, 2)i + (. p,2)K
= —g.(x, - gy(x, itk
This is exactly the normal to the tangent plane at (x, y) to the graph of g. A

Many functions of several variables are built by combining functions of one
variable. We actually found partial derivatives of such functions in our earlier
work on implicit differentiation and related rates. For instance, suppose that
y = f(x) and that x and y satisfy the relation

x*+ 8xsin y = 0.

Then differentiating with respect to x, using the chain rule for functions of one
variable, gives

3x? +85my+8xcosyg)—} =

which we can solve for dy /dx to obtain
dy _ 3x’+8siny
dx 8xcosy

From the point of view of multivariable calculus, we may say that the
graph y = f(x) lies on the level curve F(x, y) = 0, where

F(x, y)= x>+ 8xsin y.
A normal vector to this curve at (x, y) is

oF . OF.
vr=9F ™ i+ —yj =(3x*+ 8sin y)i + (8x cos y)j,

0 a tangent vector is given by any vector perpendicular to VF, such as
(—8xcos y)i + (3x* + 8sin y)j.
Thus dy/dx, the slope of the tangent line, is
3x%+ 8sin y
—8xcosy

The general procedure is indicated in the following box.
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Example 8

Solution

Example 9

Solution

Implicit Differentiation
and Partial Derivatives

If y = f(x) is a function satisfying the relation z = F(x, y) =0, then

dy  0z/0x
dx  09z/dy’ O
ie.
Fx >

Indeed, differentiating F(x, y) = 0 with respect to x using the chain rule gives

OF dx | OF dy _
ox dx Ty dx O
ie.,

OF L OF by _
ox "y dx O

Solving for dy/dx gives the result in the box. Notice that in (1) it is incorrect
to “cancel the 9z’s,” because the minus sign would be left.

Suppose that y is defined implicitly in terms of x by e* ™ + x?—y=1. Find
dy/dx at x =0, y = 0 using formula (1).

Here z = F(x, y)=e* 7+ x*—y — 1,50

9z =e¢* 7/ +2x and 9z ve0=1
0x |,
y
Likewise
82 x—y aZ
= =—e"7-1 and =], _,=-2
ay 1320
Therefore
9z/dx
- =L~ =1/2
dz/dy /

and so, by (1), dy/dx = 1/2. A

Formula (1) makes sense as long as 3z /3y # 0. In fact there is a result called
the implicit function theorem' which guarantees that F(x, y) =0 does indeed
define y as a function of x, provided that 9z/9y = 0. The values of x and y
may have to be restricted, as we found when studying implicit differentiation
in Section 2.3 (see Figure 2.3.1).

Discuss what happens to y as a function of x if dz/dy =0 in (1) for the
example x — y3 = 0.

The equation z= F(x, y)=x — y> =0 implicitly defines the function y
= f(x)= Yx. We have 9z/9x =1 and 3z/9y = —3y% so dz/dy vanishes

! For a proof based on the mean value and intermediate value theorems, see J. Marsden and
A. Tromba, Vector Calculus, Second Edition, Freeman (1981), Section 4.4.
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when y = 0; this is just the point on the graph y = ¥x where the cube-root
function is not differentiable and the tangent line becomes vertical. A

In related rate problems, we have a parametric curve (x, y) = (g(1), k(1))
which lies on a level curve F(x, y) = 0. Differentiating with respect to ¢ by the
chain rule, we get
- dx dy k
O0=F(x0) g4 tE&x»N 3 2

which is a relation between the rates dx/dt and dy/dt. Such relations were
obtained in Section 2.5 using one variable calculus.

Example 10  Suppose that x = g(¢) and y = h(¢) satisfy the relation x*> — y*> = xy. Find a
relation between dx /dt and dy/dt:
(a) by one-variable calculus;
(b) by formula (2).
Solution (a) Differentiating the relation x* — y* = xy with respect to ¢ by one-variable
calculus, we obtain 2x(dx/dt) —2y(dy/dt) =y (dx/dt) + x (dy/dt) or,
equivalently, 2x — y)(dx/dt) — 2y + x)(dy/dt) = 0.
(b) To apply formula (2), we set F(x, y)= x?— y>— xy. Then F,(x,y)
=2x —y and F,(x, y) = —(2y + x), so (2) gives the same relation between
dx/dt and dy/dt: 2x — y)(dx/dt) — 2y + x)(dy/dt) = 0. A
Example 11  Suppose that x = g(¢) and y = h(?) satisfy the relation x” = 2. Find a relation
between dx /dt and dy/ dr.
Solution Let z = F(x, y)= x” — 2. Then 0z/3x = yx”~! and 9z/dy = x’Inx, so the
relation is
y—1dx y d_y =
yxr et Inx 7 0.
Using the fact that x» = 2, we can simplify this to
) dx @ _
el +Inx dt 0. A

Exercises for Section 16.2

In Exercises 1-4, find V£(0,0, 1) and plot it on the level
surface f(x, y,z) = c¢ passing through (0,0, 1).

. f(x, y,z)= x>+ y*+ 22

2 f(x, y,2) =z — x?—~y?

3. flx,y,2)=z—x+y

4. f(x, y,2)=22—x -y
In Exercises 5-8, find a unit normal to the given
surface at the given point.

5. xyz=28; (1, 1,8).

6. x5/2+y—z+1=0at(0,0,1).

7. cos(xy)=e® —2 at (1,7,0).

8. e =c¢at(l,1,1)

9

. Coulomb’s law states that the electric force on a
charge ¢ at (x, y,z) produced by a charge Q at
the origin is F= Qgr/r*. Find V so that F =
~— V¥V and verify that F is orthogonal to the level
surfaces of V. .

10. Joe Perverse has invented a new law of gravita-
tion. In this theory, the force exerted on a mass
m at (x, y,z) by a mass M at the origin is
F=—JMmr/ >, where J is Joe’s constant. Find
V such that F= —VV and verify that F is or-
thogonal to the level surfaces of V.
In Exercises 11-16, find the equation for the tangent
plane to each surface at the indicated point.
11, x2+2y? +322=10; (1,y3, 1.
12. xy22 =1; (I, L, 1).
13. x% + 2p? + 3xz = 10; (1,2,1).
14. y2 — x2=3; (1,2, 8).
15. xyz=1; (1,1, 1).
l6. xy/z=1; (1,1, 1).
Find the equation for the tangent line to each curve at
the indicated point in Exercises 17-20.
17. x2+ 2% =3; (1, D).
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812 Chapter 16 Gradients, Maxima, and Minima

18. xy = 17; (x4, 17/ xp).

19. cos(x + y)=1/2; x=w/2, y =0.

20. e? =2; (1, In2).
Find the equation of the line normal to the given
surface at the given point in Exercises 21-24.

21 e~ PR = o730 (1 1, 1)

22. 2x2+ 3%+ 22 =9; (1,1,2)

2. x/yz=1; (1,1, 1)

24. xy22 =4;(1,1,2)
In Exercises 25-30, suppose that y is defined implicitly
in terms of x by the given equation. Find dy/dx using

fogmula (1).
25

26. x2—y*=

27. x/y =10

28. y —sinx® + x?— yr=1

29. x*—sin y + y*=4

30. e* 4+ 3 =0
In Exercises 31-34, find dy/dx at the indicated point
using formula (1).

31. 3x2+y2—e"=0; x=0,y=1

32. x2+y4=1;x=l,y= 1.

33. cos(x+p)=x+1/2;x=0,y=w/3.

34. cos(xy)=1/2; x=1,y==/3.
In Exercises 35-38, discuss what happens to y as a
function of x if 3z /3y = 0 in (1) for the given equation.

35. x—p?=0 36. x —cos y=0

37. x—y°=0 38. x —sin y =0
In Exercises 39-42, suppose that x and y are functions
of ¢ satisfying the given relation. Find a relation be-
tween dx /dt and dy/dt using formula (2).

39. xIny=1 40. sin{xy) + cos(xy) =1

41 x* 4yt =1 42. x2+3y?=2

43. (a) Derive a formula like (1) for dx/dy when x
and y are related by F(x, y) =0. (b) Use your
result in (a) to find dx/dy for the functions in
Exercises 29 and 30.

44. Let y be a function of x satisfying F(x, y,x + y)
=0, where F(x, y,z) is a given function. Find a
formula for dy/dx.

16.3 Maxima and Minima

Suppose that x = g(r) and y = h(?) satisfy the equations
in Exercises 45 and 46. Relate dx /dt and dy/ dr.

45. In(xcos y) = x

46. cos(x — 2y2+ y¥) =y

47. (a) Find the plane which is tangent to the surface
zZ= x? +y2 at the point (1, —2,5).

*(b) Letting f(x, y) = x> + p?, define the “slope”
of the tangent plane relative to the xy plane
and show that it equals ||Vf(1, —2)]|.

48. (a) Show that the curve x2—y?=c, for any
value of ¢, satisfies the differential equation
dy/dx =x/y.

(b) Draw in a few of the curves x2 —y2 = ¢, say
for ¢ = x£1. At several points (x, y) along
each of these curves, draw a short segment of
slope x/y; check that these segments appear
to be tangent to the curve. What happens
when y = 0? What happens when ¢ = 0?

49. Suppose that a particle is ejected from the sur-

face x? + y? — z? = —1 at the point (1, 1,/3) in

a direction normal to the surface at time =0

with a speed of 10 units per second. When and

where does it cross the xy plane?

%50. Let V' be a function defined on a domain in
space. The force field associated with V is F
=®(x, y,z)= —VV(x, y,z); we call V the po-
tential of ®. Let a point with mass m move on a
parametric curve o(¢) and satisfy Newton’s sec-
ond law ma =F, where a is the acceleration of
the curve. Use the chain rule to prove the law
of conservation of energy: E = !m|e' ()] +
V[e(t)] is constant, where o(¢) is the position
vector of the curve.

*51. The level surfaces of a potential function V are
called equipotential surfaces.

() What is the relation between the force vec-

tor and the equipotential surfaces?

(b) Explain why “sea level” is approximately an

equipotential surface for the earth’s gravita-
tional field. What spoils the approximation?

First and second derivative tests are developed for locating maximum and
minimum points for functions of two variables.

In studying maxima and minima for functions of one variable, we found that
the basic tests involved the vanishing of the first derivative and the sign of the
second derivative. In this section we develop tests involving first and second
partial derivatives for locating maxima and minima of functions of two

variables.

The definitions of maxima and minima for functions of two variables are
similar to those in the one-variable case, except that we use disks instead of
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intervals. Recall that the disk of radius r about (xg, yo) consists of all (x, y)
such that the distance \/(x ~ xg)* + () — yo)* is less than r. (See Fig. 15.1.2.)

Definition of Maxima and Minima

Let f(x, y) be a function of two variables. We say that (xg, o) 1s a local
minimum point for f if there is a disk (of positive radius) about (x4, o)
such that f(x, y) > f(x,, y,) for all (x, y) in the disk.
Similarly, if f(x, y) < f(xq, yo) for all (x, y) in some disk (of posi-
tive radius) about (x4, yo), we call (xq, yo) a local maximum point for f.
A point which is either a local maximum or minimum point is
called a local extremum.

We may also define global maximum and minimum points to be those at
which a function attains the greatest and least values for all points in its
domain.

Example 1  Refer to Fig. 16.3.1, a computer-drawn graph of z = 2(x? + yz)e_"lﬁy " Where
are the maximum and minimum points?

Figure 16.3.1. The volcano: z =2(x? + yhexp(— x2 — 3. (a) Coordinate grid lifted to the surface.
(b) Level curves lifted to the surface.
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Solution

Example 2

Solution

Example 3

Solution

There is a local (in fact, global) minimum at the volcano’s center (0, 0), where
7z =0. There are maximum points all around the crater’s rim (the circle

2+y*=1). A

The following is the analog in two variables of the first derivative test for one
variable (see Section 3.2).

First Derivative Test

Suppose that (x, o) is a local extremum of f and that the partial
derivatives of f exist at (xo, yo)- Then f,(xo, yo) = f,(%o, yo) = 0

We consider the case of a local minimum; the proof for a local maximum is
essentially the same.

By assumption, there is a disk of radius r about (x,, ¥o) on which
f(x, ») > f(xo, yo)- In particular, if |x — xo| <, then f(x, Vo) > f(x0, yo) SO
the function g(x) = f(x, y,) has a local minimum at x,. By the first derivative
test of one-variable calculus, g'(x) = 0; but g’(x,) is just £, (xg, yo)- Similarly,
the function A(y) = f(x,, y) has a local minimum at y,, so £ (o> yo)=0.

The first derivative test has a simple geometric interpretation: at a local
extremum of f, the tangent plane to the graph z = f(x, y) is horizontal (that is,
parallel to the xy plane.)

Points at which f, and f, both vanish are called critical points of f. As in
one-variable calculus, finding critical points is only the first step in finding
local extrema. A critical point could be a local maximum, local minimum, or
neither. After looking at some examples, we will present the second derivative
test for functions of two variables.

Verify that the critical points of the function in Example 1 occur at (0,0) and
on the circle x* + y*= 1.

Since z = 2(x2 + y»)e ™", we have

% = 4x(e_"2_)’2) +2(x? +y2)e_x2_y2(—2x)
= dx(e )1 - = )

and

9 —x2ey?

gy =Y 0= x*=y?).

These vanish when x = y =0 or when x>+ y*=1. A

Let z = x2 — y2. Show that (0,0) is a critical point. Is it a local extremum?

The partial derivatives 9z/3x = 2x and 9z/dy = —2y vanish at (0,0), so the
origin is a critical point. It is neither a local maximum nor minimum since
fx, )= x*— y2 is zero at (0,0) and can be either positive (on the x axis) or
negative (on the y axis) arbitrarily near the origin. This is also clear from the
graph (see Fig. 16.1.5), which shows a saddle point at (0,0). A

If we know in advance that a function has a minimum point, and that the
partial derivatives exist there, then we can use the first derivative test to locate
the point.
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Solution

Figure 16.3.2. The point
nearest to the origin on the
planez=x + 3y —61is
6/11,18/11, —6/11).

Example 5

Solution

16.3 Maxima and Minima 815

(a) Find the minimum distance from the origin to a point on the plane
x+3y—z=6.
(b) Find the minimum distance from (1,2,0) to the cone 2% = x? + y.

(a) Geometric intuition tells us that any plane contains a point which is closest
to the origin. To find that point, we must minimize the distance d=

Vx? + y*+ z?, where z = x + 3y — 6. It is equivalent but simpler to minimize
d*=x*+ Y+ (x+3y— 6)°. By the first derivative test, we must have

3(d?) .
ix =0 thatis, 2x+2(x+3y—6)=0
and
9(d?) .
5 =0 thatis, 2y + 6(x + 3y —6)=0.
Solving these equations gives y =18, x = & . Thusz=x+3y — 6= — &, and

so the minimum distance is d = \x* + y* + z? = 611 /11. (See Fig. 16.3.2.)

V4

¥y

(b) We minimize the square of the distance: d?=(x — 1)+ (y — 2)* + z°.
Substituting z? = x* + »2, we have the problem of minimizing

f(ey)=(x=1)7+(y =2+ x>+
=2x2+2y2—2x—4y+5.
Now

fi(x,y)=4x—2 and fy(x, y)y=4 -4
Thus the critical point, obtained by setting these equal to zero, isx =4,y = 1.
This is the minimum point. The minimum distance is

d=v(1/2- 17+ (1 -2+ (1/27 +1
=VI/4+1+1/4+1=y5/2~1581. A

A rectangular box, open at the top, is to hold 256 cubic centimeters of cat
food. Find the dimensions for which the surface area (bottom and four sides)
is minimized.

Let x and y be the lengths of the sides of the base. Since the volume of the box

is to be 256, the height must be 256/xy. Two of the sides have area
x(256/xy), two sides have area y(256/xy), and the base has area xy, so the
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Example 6

Solution

total surface area is 4 = 2x(256/xy) + 2y(256/xy) + xy = 512/y + 512/x +
xy. To minimize 4, we must have

_ 34 _ 512 _ 94 _ 512
=L =-224y, 0=2C=-"2+

0x x ay »?
The first equation gives y = 512/ x?; substituting this into the second equation
gives 0= —512(x?/512)> + x = —x*/512 + x. Discarding the extraneous
root x =0, we have x*/512 =1, or x = {512 = 8. Thus y = 512/x* =8, and
the height is 256/ xy = 4, so the optimal box has a square base and is half as
high as it is wide. (We have really shown only that the point (8, 8) is a critical
point for f, but if there is any minimum point this must be it.) A

X.

We now turn to the second derivative test for functions of two variables. Let
us begin with an example.

Captain Astro is being held captive by Jovians who are studying human
intelligence. She is in a room where a loudspeaker emits a piercing noise.
There are two knobs on the wall, whose positions, x and y, seem to affect the
loudness of the noise. The knobs are initially at x = 0 and y = 0 and, when the
first knob is turned, the noise gets even louder for x < 0 and for x > 0. So the
captain leaves x = 0 and turns the second knob both ways, but, alas, the noise
gets louder. Finally, she sees the formula f(x, y) = x* + 3xy + p* + 16 printed
on the wall. What to do?

First of all, she notices that f(x,0)= x>+ 16 and f(0, y) = y* + 16, so the
function f, like the loudness of the noise, increases if either x or y is moved
away from zero. But look! If we set y = —x, then the “3x)” term becomes
negative. In fact, f(x, —x) = x? — 3x? + x* + 16 = — x> + 16. Captain Astro
rushes to the dials and turns them both at once, in opposite directions. (Why?)
The noise subsides (and the Jovians cheer). A

The function f(x, y) = x* + 3xy + y*>+ 16 has a critical point at (0,0), and
the functions g(x)= f(x,0) and h(y)= f(0, y) both have zero as a local
minimum point; but (0,0) is not a local minimum point for f, because
flx, —x) = —x?+ 16 is less than f(0,0)= 16 for arbitrarily small x. This
example shows us that to tell whether a critical point (x,, y,) of a function
f(x, y) is a local extremum, we must look at the behavior of f along lines
passing through (x,, o) in all directions, not just those parallel to the axes.

The following test enables us to determine the nature of the critical point
(0,0) for any function of the form Ax>+ 2Bxy + Cy>.

Maximum-Minimum Test
for Quadratic Functions

Let g(x, y) = Ax*+ 2Bxy + Cy?, where 4, B, and C are constants.

1. If AC— B?>0, and 4 > 0, [respectively 4 < 0], then g(x, y) has a
minimum [respectively maximum] at (0, 0).

2. If AC — B? <0, then g(x, y) takes both positive and negative values
for (x, y) near (0,0), so (0,0) is not a local extremum for g.

To prove these assertions, we consider the two cases separately.

1. IfAC - B2 > 0, then A cannot be zero (why?), so we may write
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_ 2, 2B C 2\ _ 2 Bﬁz 2 36’2
g(x,y)—A(x +—A xy+Zy)—A(x+ xy + Ay— PP

- B V., 1

—A(x+zy)+Z(AC—Bz)y2. (1)

Both terms on the right-hand side of (1) have the same sign as 4, and they
are both zero only when x + (B/A)y =0 and y = 0—that is, when (x, y)
= (0,0). Thus (0,0) is a minimum point for g if 4 > 0 (since g(x, y) > 0 if
(x, ) #(0,0)) and a maximum point if 4 <0 (since g(x, y) <0 if (x, y)
# (0,0)).

2. f AC — B> < 0and 4 # 0, then formula (1) still applies, but now the terms
on the right-hand side have opposite signs. By suitable choices of x and y
(see Exercise 49), we can make cither term zero and the other nonzero. If
A =0, then g(x, y) = y(2Bx + Cy), so we can again achieve both signs. B

In case 2 of the preceding box, (0,0) is called a saddle point for g(x, y). (See
Exercises 49 and 50 for a further discussion of this case and the case
AC— B*=0)

(a) Apply the maximum-minimum test to f(x, y) = x*+ 3xy + y*+ 16.
(b) Determine whether (0, O) i a maximum point, a minimum point, or
neither, of g(x, y) =3x*—5xy + 3y

(a) We may write this as g(x, y) + 16, where g(x, y) = x* + 3xy + y* has the
form used in the test, with 4 =1, B=3,and C=1. Since AC — B*=1—2is
negative, there exist choices of x and y making g(x, y) both positive and
negative, so f has a saddle point at (0,0). (Equation (1) gives g(x, y)
= (x+2y)* — 2»% so moving along the line x = — 3y makes g negative,
while moving along y = 0 makes g positive.)

(b) A=3, B=—3,and C=3,s0 A=3>0 and AC— B*=9-2 >0.
Thus (0,0) is a minimum point by part 1 of the maximum-minimum test. A

Note that for the quadratic function g(x, y) in the preceding box, the
constants 4, B, and C can be recovered from g by the formulas
2 2 2
a1 51 ¥ _109%
2 9x2 2 dx oy 2 ayz
so that the signs of 4 and AC — B? are the same as those of d%/0x? and
¥%g/dx*)(d%/dy?) — (8%g/0xdy)>. The second derivative test for general
functlons involves just these combinations of partial derivatives.

Second Derivative Test

Let f(x, y) have continuous second partial derivatives, and suppose that
(x4, yo) is a critical point for f:

fe(x0>0)=0 and S (X0, 10) =0
Let 4 = f,,.(xo, yo), B = S (X0, yo), and C = f (xq, yo).

If: then:
A>0,4C—- B*>0 (x9, yg) is a local minimum;
A<0,AC—B*>0 (xg, ¥p) is a local maximum;
AC - B?<0 (xg, yo) is a saddle point;
AC—B?=0 the test is inconclusive.
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Figure 16.3.3. The
point (x, y) is
(xo+ rcosf, yo+ rsinf).

Example 8

Solution

To prove these assertions, we look at f along straight lines through (xg, ¥o)-
Specifically, for each fixed § in [0,27], we will consider the function A(r)
= f(xo + rcosf, yo + rsinf), which describes the behavior of f along the line
through (x,, y,) in the direction of cos#i + sin 8j. (See Fig. 16.3.3.)

For each 8, h(r) is a function of one variable with a critical point at r = 0.
To analyze the behavior of #(r) near r = 0 by using the second derivative test
for functions of one variable, we differentiate 4(r) using the chain rule of
Section 15.3. Let x = xo + rcosf and y = y, + rsinf; then

n(r)=f.(x, y)% +fy(x, ») %yr_ = f.(x, y)cosf +fy(x,y)sin0.

We differentiate again, applying the chain rule to f, and f,:

TPy = dx dy
h"(r) _fxx(-x,_y)cosgz; +fxy(x,y)cosﬁﬁ

. dx Ay
+fyx(x,y)s1n0?17 +fyy(x,y)sm05 .

Since f,, = f,. by equality of mixed partials, this becomes
h(r) = fo (X, y)cos™ + 2f, (x, y)cosfsind + f, (x, y)sin’f
or
R"(r) = fu(Xo + rcosb, yo + rsinf)cosd
+2f,,(xo + reost, yo + rsinf)cos@sin 8
+ £, (o + rcosf, yo+ rsinf )sin’f. 2)
Setting r = 0, we get
B"(0) = fou(Xq, Y0)c0s™ + 2f,, (X, yo)cosdsind + f (xo, Yo)sin’d,

which has the form Ax?+ 2Bxy + Cy?, with x = cosf, y =sinf, and with
A = fi (X0, Yoh B = [, (X0, yo)s C = fy (x5 yo)- Let AC — B*=D.

Now suppose that D >0 and f,, (xq, yo) > 0. By the maximum-
minimum test for quadratic functions, £”(0) > 0, so 4 has a local minimum at
r = 0. Since this is true for all values of 4, f has a local minimum along each
line through (x,, yo)- It is thus plausible that f has a local minimum at (xo, yo),
so we will end the proof at this point. (Actually, more work is needed; for
further details, see Exercises 51 and 52.)

If D >0 and f,,(xg, po) <O, then f has a local maximum along every line
through (x4, yo); if D <0, then f has a local minimum along some lines
through (x,, y,) and a local maximum along others. M

Find the maxima, minima, and saddle points of z = (x* — yz)e(*"z_yz)/ 2

First we locate the critical points by setting 9z /3x = 0 and 9z /dy = 0. Here

0z _ . 2 N (—xP—D)/2
E—Px x(x*=y?)]e y

and

0z _ [ _~, _ 2 N (—xE-yD /2
ay‘[ 2y = y(x* =y |e T,
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so the critical points are the solutions of
x|:2—(x2—y2):|=0, y[—2—(x2—y2)]=0.

This has solutions (0,0), (£+v2,0), and (0, =2).
The second derivatives are

2
% = [2 —5x7 4+ x}(x* = »?) +y2]e(-x2_y2)/2,

x

9%z 22

axdy xp(x? = y?)e 02,

0% _rc.2_ 202 .2 27 (—x2—y) /2
ﬁ—[Sy 2+ yi(x y)—x}e rre

Using the second derivative test results in the following data:

Point A B C AC — B? Type
(0,0) 2 0 -2 -4 saddle
(2,0 —4/e 0 —-4/e 16/ maximum
(=2 ,0) —-4/e 0 —4/e 16/ ¢* maximum
0,/2) 4/e 0 4/e 16/ ¢* minimum
0, —2) 4/e 0 4/e 16/ ¢* minimum

819

The results of this example are confirmed by the computer-generated graph in

Fig. 16.3.4. A

<2

o
[ - R =S SRR N

Figure 16.3.4. Computer-

generated graph of
z=(x2— yHel~¥ /2,

Example 9 Let z = (x?+ y*)cos(x + 2y). Show that (0,0) is a critical point. Is it an

extremum?

Solution We compute:

g—)zc = 2xcos(x + 2y) — ()c2 + yz)sin(x + 2y),
0z _ 5 +2y) — 2(x* + y?)sin(x + 2
9y P eos(x +2p) = AxT+ yTsin(x + 2y).

These vanish at (0, 0), so (0,0) is a critical point.
The second derivatives are:
¥
9x?

2cos(x + 2p) — dxsin(x + 2y) — (x + y*)cos(x + 2p),
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9%z
dxdy

2
8_22 = 2cos(x + 2y) — 8ysin(x + 2y) — 4(x* + y*)eos(x + 2y).

= —4xsin(x + 2y) — 2y sin(x + 2p) — 2(x* + yp*)cos(x + 2y),

Evaluating at x =0, y =0, we get 4 =2, B=0, and C=2, so 4>0,
AC — B? >0, and thus (0,0) is a local minimum. A

Example 10 Find the point or points on the elliptic paraboloid z = 4x? + y* closest to
(0,0, 8).

Solution The typical point on the paraboloid is (x, y, 4x? + y?); its distance from

0,0,8) is \/)c2 + 74 (4x7 + - 8)2 . It is convenient to minimize the

square of the distance:

f(x, )= x?+ yr+ (4)c2 +y? — 8)2.
We begin by locating the critical points of f. The partial derivatives of f
are

X, ) =2x + 2(4x* + 2_8)-8x =2x(32x%+ 8y? — 63),
(%)) y Y

jg,(x y)=2+ 2(4x2 +y2 —8)-2y= ?.y(8x2 + 2y2 — 15).
For f.(x, y) to be zero we must have x =0 or 32x? + 8y? — 63 =0. For

/,(x, y) to be zero we must have y =0 or 8x%+ 2y* — 15 = 0. Thus there are
four possibilities:

CaseI. x =0and y =0.
Case II. x = 0and 8x> +2y*> — 15=0. Then 2y> — 15=0o0ry = = y15/2.
Case III. 32x>+8y*—63=0 and y=0. Then 32x2-63=0 and so
x = *63/32.
Case 1V. 32x>+8y?—63 =0 and 8x”+ 2y>— 15 =0. Subtracting four
times the second equation from the first gives —3 = 0, which is
impossible, so case IV does not occur.

A simple way to see which of the points in cases I, II, and III minimizes the
distance is to compute f(x, y) in each case and choose the smallest value. We
leave this method to the reader and, instead, use the second derivative test.
The second derivatives are

for = 2(32x7 + 8y% — 63) + 2x - 64x = 192x? + 16p* — 126,
fy= 2(8)(2 + 2y2 —15)+2y-4y = 16x% + 12y2 — 30,
fxy = fyx = 32xy.

Case 1. f,, = —126, f,,= =30, f,, =0. Thus f_f, —fxzy =126-30> 0, so
this point is local maximum for f
Case 1. f,, = —126 <0, f, =12-4 —=30>0, f, =0 Therefore
fx f fx < 0, so these two pomts are saddles for f.
Case 1II. f,, =192-% — 126 >0, f,=16-9% —30>0, f,, =0. Therefore

Sy = fx > 0, so these two points are local minima for f. Thus the
closest points to (0,0, 8) on the paraboloid are

(%\/%_,0,5—83) and (_%\/%"Q%)-A
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Supplement to Section 16.3:
Astigmatism

The visual problem called astigmatism results from a deviation from circular
symmetry in the shape of the lens in your eye. Correcting astigmatism requires
a compensating eyeglass or contact lens with the “opposite” deviation.

A piece of the lens surface may be described by a function z = fx, »)
= Ax> + 2Bxy + Cy?, for x and y small. The lens is symmetric about the z
axis when B =0 and 4 = C. In general, if we slice the lens by a plane of the
form — xsinf + y cos@ = 0, which contains the z axis and the vector cos#i +
sin §j, the slice is bounded by a curve through the origin whose curvature there
is 2(A cos®f + 2Bsinf cos# + Csin?d) (see Section 14.7 and Exercise 56). The
maxima and minima of curvature occur when tan28=2B/(4 — C). Notice
that the direction of maximum and minima curvature differ by 90°; this
means that an optometrist must know only one of these directions in order to
orient corrective lenses properly.

Exercises for Section 16.3

1. Refer to Fig. 16.3.5, a computer-generated graph
of z=(x*-3x)/(1 + »?). Where are the maxi-
mum and minimum points?

Figure 16.3.5. Computer-

generated graph of
z=(x>=3x)/(1 + y?.

(a) Coordinate grid lifted to
the graph. 3

(b) Level curves lifted to
the graph. ] ;
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2. Refer to Fig. 16.3.6, a computer-generated graph
of z = sin(wx) /(1 + y?). Where are the maximum
and minimum points?

Find the critical points of each of the functions in
Exercises 3-6. Decide by inspection whether each of
the critical points is a local maximum, minimum, or
neither.

In

3. f(x, y)= x>+ 2?2

4. f(x, y)= x2—2y?

5. f(x, y) = exp(— x* — Ty* + 3)
6. f(x, y) = exp(x* + 2y?)

7. Minimize the distance to the origin from the
plane x — y + 2z =3,

8. Find the distance from the plane given by
x + 2y + 3z — 10=0: (a) To the origin. (b) To
the point (1, 1, 1).

9. Suppose that the material for the bottom of the
box in Example 5 costs b cents per square centi-
meter, while that for the sides costs s cents per
square centimeter. Find the dimensions which
minimize the cost of the material.

10. Drug reactions can be measured by functions of
the form R(u,t)=u’(c—w)t?e ™', 0<u<ec,
t > 0. The symbols u and ¢ are drug units and
time in hours, respectively. Find the dosage u
and time ¢ at which R is a maximum.

Exercises 11-16 use the maximum—minimum test for

quadratic functions to decide whether (0,0) is a maxi-
mum, minimum, or saddle point.

L. f(x, y) = x>+ xp + y*

12. f(x, p)=x*— xy + y* + L.
13. f(x, y) =2 — x? + 3xp.

14. f(x, y) = x? +y2 — xy.

15. f(x, y) =y

16. f(x, y)=3+2x*— xy + y*

Find the critical points of each of the functions in
Exercises 17-30 and classify them as local maxima,
minima, or neither.

17. f(x, )= x>+ y*+ 6x — 4y + 13.
l8.f(x,y)=x2+y2+3x—2y+1.
19. f(x,y)=x2—y2+xy—7.

Chapter 16 Gradients, Maxima, and Minima

Figure 16.3.6. Computer-
generated graph of

sin(zx) /(1 + y?).

20. f(x, y) = x? +y2 + 3xy + 10.

21. f(x, y) = x*+ y* — 6x — 14y + 100.

22. f(x, y) =y2 - x2

23. f(x, )= 2x? — 2xy +y2 —2x + 1.

24. f(x, y)=x*—3xy + 5x — 2y + 6> + 8.

25. f(x, y) =3x*+ 2xp + 2p? — 3x + 2y + 10.

26. f(x, y) = x*+ xp* + y*.

27. f(x, yy=e'*¥ .

28. f(x, y) = (x> + yHe* 7

29. f(x, y) =1In(2 + sin xy). {Consider only the criti-
cal point (0, 0).]

30. f(x, y) =sin(x? + y?). [Consider only the critical
point (0, 0).] ‘

31. Analyze the behavior of z = x% + xy° + xp at
its critical points.

32. Test for extrema: z = In(x? + y2 + 1).

33. Analyze the critical point at (0,0) for the func-
tion f(x, y) = x> + y>. Make a sketch.

34. Locate any maxima, minima, or saddle points of
f(x, ») = In(ax? + by2 +1),a,b>0.

35. A computer-generated graph of

is shown in Fig. 16.3.7. (a) Show, by calculation,
that all critical points of the function lie on
circles whose radius satisfies the equation =r
= tan(wr). (b) Which points are maxima? Min-
ima? (¢) What symmetries does the graph have?

36. Show that z = (x> —3x)/(1 + y%) has exactly
one local maximum and one local minimum.
What symmetries does the graph have? (It is
computer drawn in Fig. 16.3.5.)

37. The work w done in a compressor with k + 1
compression cylinders is given by

C1#07

z = (sinwr)/ar,

w=c y+tc,,

where

k
y= _ZOT,-(p.-/pm)("_”/"-
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Figure 16.3.7. The
sombrero: z = (sinar)/ar.

The symbols 7; and p; stand for temperature and

pressure in cylinder i, 1 < i < k+ 1; the pres-

sures pi, ..., p, are the independent variables,
while pg, pry1>To, - - - » Ty and n > 1 are given.

(a) Find relations between the variables if w is a
minimum.

*(b) Find p,, p,, p; explicitly for the case k = 3.

B38. Planck’s law gives the relationship of the energy
E emitted by a blackbody to the wavelength A
and temperature 7T
2ak°T5  x° he
——hz&—e"—l’ where x—m.

The constants are 4 = 6.6256 X 10~ 3* joule sec-

onds (Planck’s constant), k= 1.3805x 10~2

joule kilograms™' (Boltzmann’s constant), ¢ =

2.9979 x 108 meter second ™! (velocity of light).

The plot of E versus A for fixed T is called a

Planck curve.

(a) The maximum along each Planck curve is
obtained by setting dE /9 = 0 and solving
for Anax- The relationship so derived is
called Wien’s displacement law. Show that
this law is just A, = hc/kTx,, where
5—x9—5e *=0.

(b) Clearly x, is close to 5. By examining the
sign of f(x)=5— x —5e™%, use your cal-
culator to complete the expansion x,=
4.965 ... to a full six digits.

£ (c) Improve upon the displacement law A,
= (0.00289/ T by giving a slightly better con-
stant. The peak for the earth (288°K) is
about 10 micrometers, the peak for the sun
(6000°K) about 0.48 micrometers, so the
maximum occurs in the infared and visible
range, respectively.

39. Apply the second derivative test to the critical

point in Example 5.

40. (a) Show that if (xq, yg,2¢) is a local minimum
or maximum point of w = f(x, y,z), then
ow/dx, ow/dy, and dw/dz are all zero at
(XO’ Yo> ZO)'

(b) Find the critical points of the function
sin(x? + y2 + z2). :

(¢) Find the point in space which minimizes the

P
- _—..‘-'.o'&’o"o"7/
D e
RSTITAEATH RS

<>

{7
R e
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sum of the squares of the distances from
(0,0,0), (1,0,0), (0,1,0), and (0,0, 1).
41. Analyze the behavior of the following functions
at the indicated points:
@ f(x, y)=x2—y*+ 3xy; (0,0).
®) f(x,p)= x2+ y*+ Cxp; (0,0). Determine
what happens for various values of C. At
what values of C does the behavior change
qualitatively?
42. Find the local maxima and minima for z =
(x2 + 3yDe' ~**~", (See Fig. 14.3.15.)
Exercises 43-48 deal with the method of least squares. Tt
often happens that the theory behind an experiment
indicates that the data should lie along a straight line of
the form y = mx + b. The actual results, of course, will
never exactly match with theory, so we are faced with
the problem of finding the straight line which best fits
some experimental data (xy, yy), . . ., (x,, »,) as in Fig.
16.3.8. For the straight line y = mx + b, each point will
deviate vertically from the line by an amount d; = y, —
(mx; + b). We would like to choose m and b in such a
way as to make the total effect of these deviations as
small as possible. Since some deviations are negative
and some are positive, however, a better measure of the
total error is the sum of the squares of these deviations;
so we are led to the problem of finding m and b to
minimize the function

s=f(mb)=d? +d}+ --- +d?

= > (= mx;— b)’,

i=1
where xq, . . . , ¥, are given data.

¥y

, X, and yy, ...

(x3,3)

(x3,72)

Figure 16.3.8. The method
of least squares finds a
straight line which “best”
approximates a set of data.
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43.

45.

46.

47.

48.

*49,

*50.

Chapter 16 Gradients, Maxima, and Minima

For each set of three data points, plot the points,

write down the function f(m, b), find m and b to

give the best straight-line fit according to the

method of least squares, and plot the straight

line.

(a) (xl’ _yl) = (17 1)! (Xz, y2) = (27 3)’ (X3, }’3)
=(43). ,

(b) (xl H }’1) = (0’ 0)> (xz, )’2) = (172)’ (X}, }’3)
=(2,3).

. Show that if only two data points (x,, y;) and

(x3, y,) are given, then this method produces the
line through (x;, ;) and (x,, y,).

Show that the equations for a critical point,
0s5/3b=0 and 3s/dm =0, are equivalent to
m(Zx;)+nb =2y, and m(Ex?) + b(Zx,)
= Zx;y;, where all the sums run from i=1 to
i=n.

If y=mx + b is the best-fitting straight line to
the data points (xy, y)), ..., (x,, y,) according
to the least squares method, show that

n

> (y;— mx;— b)=0.

i=1
That is, show that the positive and negative
deviations cancel (see Exercise 45).
Use the second derivative test to show that the
critical point of f is actually a minimum.
Use the method of least squares to find the
straight line that best fits the points (0, 1), (1, 3),
(2,2), (3,4), and (4, 5). Plot your points and line.

Complete the proof of the maximum-minimum
test for quadratic functions by following these
steps:

(a) If A 0and AC ~ B? < 0, show that

glx, y)=

A[(x + gy) - eyM(x + gy) + ey]
for some number e. What is e?

(b) Show that the set where g(x, y) = 0 consists
of two intersecting lines. What are their
equations?

(c) Show that g(x, y) is positive on two of the
regions cut out by the lines in part (b) and
negative on the other two.

(d) If 4 =0, g(x, y)=2Bxy + Cyz. B must be
nonzero. (Why?) Write g(x, y) as a product
of linear functions and repeat parts (b) and
(c).

Discuss the function Ax”+ 2Bxy + Cy? in the

case where AC — B2=0.

(a) If A 50, use formula (1) in the proof of the
maximum-minimum test for quadratic
functions.

*51.

*52,

*53.

*54,

*55.

*56.

(b) Sketch a graph of the function f(x, y)=
x2+2xy + y2

(c) What happens if 4 = 0?

Let f(x, y) = 3x% — dx% + 2.

(a) Show that f(x, y) has a critical point at the
origin.

(b) Show that for all values of 8, the function
h(r) = f(rcos#,rsin @) has a local minimum
atr=0.

(c) Show that, nevertheless, the origin is not a
local minimum point for f.

(d) Find the set of (x, y) for which f(x, y)=0.

(e) Sketch the regions in the plane where f(x, y)
is positive and negative.

(f) Discuss why parts (b) and (c) do not contra-
dict one another.

Complete the proof of the second derivative test

by following this outline:

(a) We begin with the case in which D > 0 and
Jfix(x0,¥0) > 0. Using Exercise 78, Section
15.1, show that there is a number ¢ > 0 such
that whenever (x, y) lies in the disk of ra-
dius & about (xq, yo),

Focl, D (3, 9) = fi(x, )

and f,.(x, y) are both positive.

(b) Show that the function A(r) is concave up-
ward on the interval (—e¢,¢) for any choice
of 8. ‘

(c) Conclude that f(x, y) > f(xg, yg) for all
(x, y) in the disk of radius & about (xg, yo).

(d) Complete the case in which D >0 and
fxx(XOs )’o) < 0

(e) Complete the case D < 0 by showing that f
takes values near (xg, y;) which are greater
and less than f(y, yg).

Find the point or points on the elliptic parabo-

loid z =4x? + »? closest to (0,0,a) for each a.

(See Example 10.) How does the answer depend

upon a? :

Let f(x, y) >0 for all x and y. Show that f(x, y)

and g(x, y) =[f(x, ) have the same critical

points, with the same “type” (maximum, mini-
mum, or saddle).

Consider the general problem of finding the
points on a graph z = k(x, y) closest to a point
(a, b, c). Show that (xg, yo) is a critical point for
the distance from (x, y, k(x, y)) to (a, b, ¢) if and
only if the line from (a, b, ¢) to (xg, o, k(xg, yo))
is orthogonal to the graph at (xq, yo, k(xo, yo))-

(See the supplement to this section.)
(a) Show that if the surface z = Ax? + 2Bxy +
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Cy? is sliced by the plane —xsinf + ycos 6 -(b) Show thatif B> — AC < 0and 4 > 0, then the
=0, then the curvature of the slice at the maximum and minima of curvature occur
origin is twice the absolute value of 4 cos?6 + when tan 20 = 2B/(4 — C).

2Bsin O cos ) + Csin?6.

16.4 Constrained Extrema
and Lagrange Multipliers

The level surfaces of two functions must cross, except where the gradients of the
functions are parallel.

In studying maximum-minimum problems for a function f(x) defined on an
interval [a, b], we found in Section 3.5 that the maximum and minimum points
could occur either at critical points (where f'(x)=0) or at the end-
points @ and b. For a function f(x, y) in the plane, it is common to replace the
interval [a,b] by some region D; the role of the endpoints is now played by
the boundary of D, which is a curve in the plane (possibly with corners).

The problem of finding extrema in several variables can be attacked in
steps:

Step 1. Suppose that (x,, y,) is an extremum lying inside D, like the point P,
in Fig. 16.4.1, and that the partial derivatives of f exist? at (xg, yo)-
Then our earlier analysis applies and (x,, y,) must be a critical point.
Figure 16.4.1. If the interior  Srep 2. The extreme point (x,, y,) may lie on the boundary of D, like P, in
point P, is an extreme point Fig. 16.4.1. At such a point, the partial derivatives of f might not be
of fon D, then the partial zero. Thus we must develop new techniques for finding candidates for
derivatives of f at P, if the extreme points of f on the boundar
they exist, must be zero. If Y-
Step 3. The function f should be evaluated at the points found in Steps 1 and

the boundary point P, is an
extreme point, the partial 2, and the largest and smallest values should be identified.

derivatives there might not  If we can parametrize the boundary curve, say by o(z) for ¢ in [, ], then the

be zero. restriction of f to the boundary® becomes a function of one variable, A(t)
= f(o(?)), to which the methods of one-variable calculus apply, as in the
following example.

Example 1 Find the extreme values of z = f(x, y) = x? + 2y? on the disk D consisting of
points (x, y) satisfying x* + y* < 1.

Solution Srep 1. At a critical point, 3z/dx =2x =0 and 0z/dy = 4y = 0. Thus, the
only critical point is (0,0). It is clearly a minimum point for f; we may also
verify this by the second derivative test:

2,
97 _359
ax?

and
2
3_22 _E)iz_ = =2-4—0>0.
x> J\ 9y? dxy

2 As with functions of one variable, there may be points where the derivatives of f do not exist. If
there are such points, they must be examined directly to see if they are maxima or minima.

3 That is, the function which has the same values as f but whose domain consists only of the
boundary points.
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Figure 16.4.2. The function
f(x, y) = x*+ 2y? on the
disk D has a minimum
point at (0,0) and
maximum points at (0, 1)
and (0, —1).

This result confirms that (0,0) is a local minimum.
Step 2. The boundary of D is the unit circle, which we may parametrize by
(cost,sin?). Along the boundary,

h(t) = f(cost,sint) = cos’ + 2sin’t = 1 + sin’.

Since A'(t) =2sintcost, W'(£)=0 at t =0, /2, m, and 37 /2 2= gives the

same point as zero). Thus, the only boundary points which could possibly be

local maxima and minima are (cosz?, sin¢) for these values of ¢, i.e., (1,0), (0, 1),

(—1,0), and (0, —1).

Step 3. Evaluating f at the points found in Steps 1 and 2, we obtain:
f(0,00=0, f(1,00=1, f(0,1)=2, f(—1,00=1, f(O,—1)=2.
Thus, f has a minimum point at (0,0) with value 0 and maximum points

at (0,1) and (0, —1) with value 2. (See Fig. 16.4.2.) The points (1,0) and

(—1,0) are neither maxima nor minima for f on D even though they are

minima for f on the boundary. A

y

Often it is inconvenient to find a parametrization for the curve C on which we
are searching for extrema. Instead, the curve C may be given as a level curve
of a function g(x, y). In this case, we can still derive a first derivative test for
local maxima and minima. The following result leads to the method of
Lagrange multipliers. '

First Derivative Test for Constrained Extrema

Let f and g be functions of two variables with continuous partial
derivatives. Suppose that the function f, when restricted to the level
curve C defined by g(x, y) = ¢, has a local extremum at (x,, y,) and
that Vg(x,, yo) # 0. Then there is a number A such that

V(x> y0) =AVg(x0, y0)-

If A= 0, this formula says that the level curves of f and g through
(xg, ¥o) have the same tangent line at (x,, y,)-

To demonstrate the result in this box, choose a parametrization (x, y) = o(f)
for C near (xg, yo), with a(0) = (x4, y¢) and ¢'(0) # 0.* Since f has a local
extremum at (xg, yo), the function A(7) = f(o(¢)) has a local extremum at
t =0, so #'(0) =0. According to the chain rule (Section 16.1), we get A’(0)
=Vf(xy, yo) - 0°(0), so Vf(x,, y,) is perpendicular to ¢’(0); but we already

* The implicit function theorem guarantees that such a parametrization exists; see J. Marsden
and A. Tromba, Vector Calculus, Freeman (1981), p. 237. We will not need to know the explicit
parametrization for the method to be effective.
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Figure 16.4.3. If Vg(xq, yo)
and Vf(xg, yo) are not
parallel, the level curve
g(x, y) = c cuts all nearby
level curves of f.

16.4 Constrained Extrema and Lagrange Multipliers 827

know that the gradient Vg(x,, y,) is perpendicular to the tangent vector ¢’(0)
to the level curve C (Section 16.2). In the plane, any two vectors perpendicular
to a given nonzero vector must be parallel, so Vf(xy, yo) = AVg(xy, yo) for
some number A. If A0, the tangent line to the level curve of f through
(xg> ¥o),» which is perpendicular to Vf(x,, yo), is also perpendicular to the
vector Vg(x,, yo); the tangent line to C is also perpendicular to Vg(xg, yo)
so the level curves of fand g through (x,, y,) must have the same tangent line.
This completes the demonstration. ll

There is a nice geometric way of seeing the result above. If the level
curves of f and g had different tangent lines at (x,, y,), then the level curves
would cross one another. It would follow that the level curve C of g would
intersect level curves of f for both higher and lower values of f, so the point
(x9, ¥o) would not be an extremum (see Fig. 16.4.3).

y
T2(xg,¥0)

Fle,y) < f(xg,¥0)

Fx,p)=f(xp, ¥p)

FGx,p) > flxg,yo)

gx,y)=0C

T f(xg,¥0)

X

In some problems, it is easiest to use the geometric condition of tangency
directly. More often, however, we look for a point (Xos Yo) on C and a
constant ), called a Lagrange multiplier, such that Vf(x,, yo) = AVg(xy, yo).
This means we wish to solve the three simultaneous equations

S5 p) = Age (%, ),

5 (x5 0) =28, (%, y), )

glx,y)=c
for the three unknown quantities x, y, and A. Another way of looking at
equations (1) is that we seek the critical points of the auxiliary function
k(x, y,N) = f(x, y) = M g(x, y) — c]. (By a critical point of a function of three
variables, we mean a point where all three of its partial derivatives vanish.)
Here

k_x=fx_AgX’
k,=f —Ag>
ky=c—g

and setting these equal to zero produces equations (1). We call this attack on
the problem the method of Lagrange multipliers.

Method of Lagrange Muitipliers

To find the extreme points of f(x, y) subject to the constraint g(x, y)

= ¢, seek points (x, y) and numbers A such that (1) holds.
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Example 2

Solution

Example 3

Solution

Find the extreme values of f(x, y)= x? — y? along the circle S of radius 1
centered at the origin.

The circle S is the level curve g(x, y)= x? +y2 =1, so we want x, y, and A
such that

Je(%: p) = Ago(x, y),
5 (% p)y =Ag,(x, )

g(xy)=1
That is,
2x = A2x,
2y = —A2y,
x*+y*=1

From the first equation, either x =0 or A= 1. If x =0, then from the third
equation, y = * 1, and then from the second, A = —1. If A = I, then y = 0 and
x = =*1; so the eligible points are (x, y)=(0, 1) with A= —1 and (x, y)
=(*1,0) with A =1. We must now check them to see if they really are
extrema and, if so, what kind. To do this, we evaluate f:

fO.1)=f0,~1)= —1,
f(1L.0) = (-1 =1,

so the maximum and minimum values are 1 and — 1. A

Find the point(s) furthest from and closest to the origin on the curve
xS+ y6 = 1. :

We extremize f(x, y) = x*+ y* subject to the constraint g(x, y) = x°+ y°
= 1. The Lagrange multiplier equations (1) are

2x = 6\x>,
2y = 6?\y5,
x +y6 = 1.

If we rewrite the first two of these equations as
x(6Ax* —2) =0,
y(6?\y4 -2)=0,

we find the solutions (0, =1) and (£1,0) with A = 1. If x and y are both
nonzero, we have x* = 1/3X = y*, so x = + y, and we get the further solutions

(= §1/2, = §1/2), with A = 223 /3.

To tell which points are maxima and minima, we compute; [0, £1)
=f(£1,0)=1, while f(= §1/2,% §1/2)=231/2 =2**>1, so the
points (0, 1) and (% 1,0) are closest to the origin, while (= §1/2, =+ {1/2)
are farthest (see Fig. 16.4.4). A
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Figure 16.4.4. Extreme
points of x> + y* on the
curve x°+ y¢=1.

Example 4

Solution

16.4 Constrained Extrema and Lagrange Multipliers 829

For functions of three variables subject to a constraint, there is a similar
method. (See Review Exercise 44 if there are two constraints.) Thus, if we are
extremizing f(x, y,z) subject to the constraint g(x, y,z) = ¢, we can proceed
as follows (see Exercise 23).

Method 1.
V£(xo, Yo»>20) =AVg(xqg, Yo, 20)s

Find points (xg, yg,2¢) and a number A such that

and
g(Xg5 Yo>20) = €,

or
Method 2. Find critical points of the auxiliary function of four variables
given by

k(x,y,z,A) = f(x, y,2) — A[ g(%, y»2) — c].

The density of a metallic spherical surface x*+ y2+ z2=4 is given by
p(x, y,z)=2+ xz + y*. Find the places where the density is highest and
lowest.

We want to extremize p(x, y,z) subject to the constraint g(x,y,z) =x*+
»?+ z2 = 4. Using either method 1 or 2 above gives the equations

px = A z=2\x
py=?\gy e 2y =2\
pz=}\gz ) X=2}\Z
g=4 x2+y2+zz=4

If y % 0 then A = 1 from the second equation, and so z = 2x and x = 2z which
implies x = z = 0. From the last equation, y = =2. If y = 0 then we have
z=2\x, x=2z and x*>+z’=4
Thus z = 4\, so if z# 0 then A= +1/2,s0 x = = z. If x = z, then from the
last equation x =z = *y2. If x= —2z, then x = +y2 and z= Fy2. The
case y = 0 and z = 0 cannot occur (why?).
Thus we have six possible extrema:

(£12,0,42),  (V2,0,%2).
Evaluating p at these six points, we find that p is a maximum at the two points

(0, =2,0) (where p is 6) and a minimum at the two points (* V2,0, 7V2)
(where p is 0). A

(0, £2,0),
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Example 5

Solution

Figure 16.4.5. What is the
largest value of Q in the
shaded triangle?

The multiplier A was introduced as an “artificial” device enabling us to find
maxima and minima, but sometimes it represents something meaningful.

Suppose that the output of a manufacturing firm is a quantity Q of product
which is a function f(K, L) of the amount K of capital equipment or invest-
ment and the amount L of labor used. If the price of labor is p, the price of
capital is ¢, and the firm can spend no more than B dollars, how do you find
the amount of capital and labor to maximize the output Q?

It is useful to think about the problem before applying our machinery. We
would expect that if the amount of capital or labor is increased, then the
output Q should also increase; that is,

aQ 9Q

= > — = 0.

0K 0 d oL 0
We also expect that as more and more labor is added to a given amount of
capital equipment, we get less and less additional output for our effort; that is,

2
9
aL?

Similarly,

3%Q
aK?

It is thus reasonable to expect the level curves of output (called isoquants)
Q = f(K, L) = c to look something like the curves sketched in Fig. 16.4.5, with

¢ < ¢y < cy.

<0

We can interpret the convexity of the isoquants as follows. As you move
to the right along a given isoquant, it takes more and more capital to replace a
unit of labor and still produce the same output. The budget constraint means
that we must stay inside the triangle bounded by the axes and the line
pL + gK = B. Geometrically, it is clear that we produce the most by spending
all our money in such a way as to pick the isoquant which just touches, but
does not cross, the budget line.

Since the maximum point lies on the boundary of our domain, to find it
we apply the method of Lagrange multipliers. To maximize Q = f(K, L)
subject to the constraint pL + ¢gK = B, we look for critical points of the
auxiliary function,

h(K,L,\) = f(K,L) = N(pL + 4K — B);

so we want
00 00 _
5?_}\41, E_}\P’ pL+ gK = B.
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Example 6

Solution

16.4 Constrained Extrema and Lagrange Muitipliers 831

These are the conditions we must meet in order to maximize output. (We will
work out a specific case in Example 6.)

. In this example, A does represent something interesting and useful. Let
k = gK and I = pL, so that k is the dollar value of the capital used and / is the
dollar value of the labor used. Then the first two equations become

ok ¢ 9K p oL _ dl

Thus, at the optimum production point, the marginal change in output per
dollar’s worth of additional capital investment is equal to the marginal change
of output per dollar’s worth of additional labor, and A is this common value.
At the optimum point, the exchange of a dollar’s worth of capital for a dollar’s
worth of labor does not change the output. Away from the optimum point the
marginal outputs are different, and one exchange or the other will increase the
output.’ A

Carry out the analysis of Example 5 for the production function Q(K, L)
= AK*L'™®, where A and a are positive constants and o <1. This Cobb—
Douglas production function is sometimes used as a simple model for the
national economy. Then Q is the output of the entire economy for a given

input of capital and labor.

The level curves of output are of the form 4K af 1=« = ¢ or, solving for L,

Since a/(a — 1) < 0, these curves do look like those in Fig. 16.4.5. The partial
derivatives of Q are

aQ _ a—-1yl—a aQ _ _ ay —«
aK—aAK L and ﬁ_(l a)AKL s

so there are no critical points except on the axes, where Q =0. Thus the

maximum must lie on the budget line pL + gK = B. The method of Lagrange
multipliers gives the equations

adK*" L' =g,
(1 — a)AK"L™" = Ap,
pL + gK = B.
Eliminating A from the first two equations gives
apL = (1 — a)gk,

and from the third equation we obtain

5 More of this type of mathematical analysis in economics can be found in Microeconomic
Theory, by James Henderson and Richard Quandt, McGraw-Hill (1958). This reference discusses
a second derivative test for the Lagrange multiplier method. {See also J. Marsden and A. Tromba,
Vector Calculus, Second Edition, Freeman (1981).]

Copyright 1985 Springer-Verlag. All rights reserved



832

Chapter 16 Gradients, Maxima, and Minima

Exercises for Section 16.4

Use the method of Example 1 to find the extreme
values of the functions in Exercises 1-4 on the disk
x? +y2 < 1.

L f(x, y) =2x*+ 3)?

2. fix, y)=xy + 5y

3. f(x, y)= 5x%— 2y2 + 10

4
Find

flxe, y)=3xy—y+5
the extrema of f subject to the stated constraints in

Exercises 5-12.

5
6
7
8
9
10
11
12

13.

14.

15.

16.

17.

Sf(x, y)=3x+2y; 2x2 + 3y2 < 3.

S ) =xy; 2x+3y <10,0< x, 0 < p.
fley)y=x+y; x4 yi=1.

fle, )y =x—yy xt—yi=2.

Sy = xt+y =1

. f(x, y) = cos’x + coshy; x + y = 7 /4.

. f(x, )= x—3y; x2+y2= 1.
.f(x,y)=x2+y2; x4+y4=2.

Cascade Container Company produces a card-
board shipping crate at three different plants in
amounts x, y, z, respectively, producing an annu-
al revenue of R(x, y,z)= 8xy22 —.200,000(x +
y + z). The company is to produce 100,000 units
annually. How should production be handled to
maximize the revenue?

The temperature T on the spherical surface x* +
y2+ z2=1 satisfies the equation T(x, y,z)=
xz + yz. Find all the hot spots.

A rectangular mirror with area 4 square feet is
to have trim along the edges. If the trim along
the horizontal edges costs p cents per foot and
that for the vertical edges costs g cents per foot,
find the dimensions which will minimize the total
cost.

The Baraboo, Wisconsin, plant of International
Widget Co. uses aluminum, iron, and magnesium
to produce high-quality widgets. The quantity of
widgets which may be produced using x tons of
aluminum, y tons of iron, and z tons of magne-
sium is Q(x, y,z) = xpz. The cost of raw materi-
als is aluminum, $6 per ton; iron, $4 per ton; and
magnesium, $8 per ton. How many tons each of
aluminum, iron, and magnesium should be used
to manufacture 1000 widgets at the lowest possi-
ble cost? [Hint: You want an extreme value for
what function? Subject to what constraint?]

A water main consists of two sections of pipe of
fixed lengths, /,,/, carrying fixed amounts Q,
and Q, liters per second. For a given total loss of
head 4, the (variable) diameters D,, D, of the
pipe will result in a minimum cost if

C=1{{a+ bD,) + l,(a + bD,) = minimum
subject to the condition

cly le cly sz

h= 2=
D} Dj

Find the ratio D,/ D,.

20.

21.

22.

*23.

. A firm uses wool and cotton fiber to produce

cloth. The amount of cloth produced is given by
Q(x, y)=xy — x —y+ 1, where x is the num-
ber of pounds of wool, y is the number of
pounds of cotton, and x > 1 and y > 1. If wool
costs p dollars per pound, cotton costs g dollars
per pound, and the firm can spend B dollars on
material, what should the mix of cotton and wool
be to produce the most cloth?

. Let f(x, y) = x + xy + y*

(a) Find the maximum and minimum points
and values of f along the circle x> +y2 =1
Moving counterclockwise along the circle
x2+y2= 1, is the function increasing or
decreasing at the points (*+1,0) and

©, =1)?

Find extreme points and values for f in the
disk D consisting of all (x, y) such that
2+ yr< L

Locate extreme points and values for the func-
tion f(x, y)=x>+y>—x—y+1 in the disk
X2+ < 1.

A transformer is built from wire of cross sections
¢, and ¢, wound with n, and n, turns onto the
primary and secondary coils, respectively. The
corresponding currents are /; and i,. The thick-
ness x of the primary winding and the thickness
y of the secondary winding will result in mini-
mum copper loss if

(b)

(©)

_ pmm(D) + x)if + prym(Dy = p)i3

91 92
is a minimum. The resistivity p and iron core
diameters D, D, are constants.
(a) From transformer theory, n,i; = nyi, =
constant. By an argument involving insula-
tion thickness, one can show that g,
= axh/n, and g, = ayh/n,, where a and h
are constants. Use these relations to simplify
the expression for C.
Physical constraints give x + y = }(D, —
D). Apply the method of Lagrange multipli-
ers to find x and y which minimize C sub-
ject to this condition.
The state of Megalomania occupies the region
x* +2p* < 30,000. The altitude at point (x, y) is
§xy + 200x meters above sea level. Where are
the highest and lowest points in the state?
Suppose that (x, yg, z¢) is a critical point for the
restriction of the function f(x, y, z) to the surface
g(x, y,z) = c. The method of Lagrange multipli-
ers tells us that in this case the partial derivatives
with respect to x, y, z, and A of the function of
four variables

k(x, y,z,A) = f(x, y,z)
— }\[g(x, y.z) — cl

C

(b)

are equal to zero.
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(a) Interpret this fact as the statement about the _(c) Rework Example 5, Section 16.3 by mini-
gradient vectors of f and g at (xo, yo,Zo)- mizing a function of x, y, and A subject to
(b) Find the maxima and minima of xyz on the the constraint xyh = 256.

sphere x? + y? + 22 = 1.

Review Exercises for Chapter 16

Calculate the gradients of the functions in Exercises
1-4.

1. f(x, y) :2e_")’ -;- cos(xy) ‘ 7?;‘.,“““\\“‘/‘“
2 Jx ) = +; ; F— = ““\\\\‘\\o

3. fx, y)= e* — cos (xyz)

4. f(x, y) = tan"'(x* + y?)
In Exercises 5-8, calculate (a) the directional derivative
of the function in the direction d=i/y2 —j/y2 and
(b) the direction in which the function is increasing
most rapidly at the given point.

5. f(x, y) =sin(x* — 2p%); (1, = 1)

x —

6. f(x, y)= ﬂ_i; ©,1)

7. f(x, y) = exp(x2 — y2 +2): (- 1,2) 26. Find the maxima, minima, and saddles of the

3. f(x’ y) = sin~'(x — 2p%); (’0 0) ’ function z = (2 + cos wx)(sinwy), which is
In Exercises 9-12, find the equation of the tangent graphed in Fig. 16.R.2.
plane to the surface at the indicated point.

9. z=x>+2y% (1,1,3)

boemis

Figure 16.R.1. Computer- generated graph of
z=(3x*—4x> — 12x2 + 18)/12(1 + 4y?).

10. z = cos(x® + %); (0,0,1) SN
5 s Us P ‘$“\
2 2 2 _ 1. 1 1 1 0’:‘“‘\\\\\»‘.0:‘:"“\“
1. X2+ + 22 =1; (_3,7,_3) < T

\“\\\\\\\":0:‘:“““““\‘\\\\““‘ 0 RN

eSS RS P 7SR S

57 i
S 1P NS TS

7 “‘{“‘R’s‘:‘t“‘\‘\\ \333333&&\&{{

12. X+ y3+ 22 =3; (1,1, 1) 1
Suppose that x = f(r) and y = g(t) satisfy the relations :
in Exercises 13—16. Relate dx /dt and dy/dt.

13. X2+ xp + y* =1

14. cos(x — y) =14

15. (x + y)’ + (x — y)* =427 "

16. tan"Y(x — y)=7/4
Suppose that x and y are related by the equations given
in Exercises 17-20. Find dy/dx at the indicated points.

17. x+cosy=Lx=1y=a/2

18. x4-§y4= 171’ x=-ly=2 27. Find and describe the critical points of f(x, y)

19. fiutdu=53,x=-2,y=2 = ysin(mx) (See Fig. 16.R.3).

20, [2f(ndr=1, x=2, y=4; if [3f(ndt=T,

f@=3,f@=5 f@=11f4)=13.

Find and classify (as maxima, minima or saddles) the

SN
OSSN

M
INEEES TIN50 S\
S

SSSRNAN

Figure 16.R.2. Computer- generated graph of
z = (2 + coswx)(sin7y).

>
criti¢al points of the functions in Exercises 21-24. o ";’d\
1, ' N\ "““\
L) =6y ) L //'7""7;% /
2. f(x, y)= 26" = y*+ 5xy . ///,/I/,';o‘;:;\ /II/,,';:::.‘::;\,,,,,,,,I;;, 2 ,
) 2 s 4 7 (consi S == iy
24. f(x, y) = sin(x? + y?) (consider only (0,0)). A W%m%};ﬁﬁm%;;;ﬂllﬁ\\
AN ////,,'-{”""“3}:\\{\\\(\\ % A N
25. Prove that (L \\\\T\}\\\\\\\\W\\\\\\\\\\W \\\\
a0 e Nl N
_3xf—4x® - 1252+ 18 N N\
2= 2 Ny Y
12(1 + 4y?) \\O.I,, ,

has one local maximum, one local minimum, and
one saddle point. (The computer-generated

i 16.R.3. C ter- ted f
graph is shown in Fig. 16.R.1.) Figure 16.R.3. Computer-generated graph o

z = ysin{mx).
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834 Chapter 16 Gradients, Maxima, and Minima

28. A computer-generated graph of the function
z =sin(7x)/(1 + y?) is shown in Fig. 16.R.4.
Verify that this function has alternating maxima
and minima on the x axis with no other critical

points.

SIREETTAALL
LA THAALLT
(]

7

OOy by
RS

KRN

L2775

XK 2 RSN s
\\\\‘“ ""’3"‘3‘:“2‘\‘1%\'%}:3:@”
\ ... S ST

Figure 16.R.4. Computer-generated graph of
sin(mx)/(1 + y2).

29. In meteorology, the pressure gradient G is a vec-
tor quantity that points from regions of high
pressure to regions of low pressure, normal to the
lines of constant pressure (isobars).

(a) In an xy coordinate system,

P, OJP.
G=— v @ j-
Write a formula for the magnitude of the
pressure gradient.

(b) If the horizontal pressure gradient provided
the only horizontal force acting on the air,
the wind would blow directly across the
isobars in the direction of G, and for a giv-
en air mass, with acceleration proportional
to the magnitude of G. Explain, using New-
ton’s second law.

(c) Buys—Ballot’s law states: “If in the North-
ern Hemisphere, you stand with your back
to the wind, the high pressure is on your
right and the low pressure on your left.”
Draw a figure and introduce xy coordinates
so that G points in the proper direction.

(d) State and graphically illustrate Buys—Bal-
lot’s law for the Southern Hemisphere, in
which the orientation of high and low pres-
sure is reversed.

30. A sphere of mass m, radius @, and uniform

density has potential u and gravitational force F,

at a distance r from the center (0, 0, 0), given by

2

Im _ mr m .
= -, F=—-——r (r<a)
“ 2a 24° a’ ( )
_m —.m
u=-, F= r3r (r>a).

Here, r = |r}|, r = xi + yj + zk.

(a) Verify that F = Vu on the inside and out-
side of the sphere.

(b) Check that u satisfies Poisson’s equation:
3% /9x% + 0%u/dy? + 0%u /02 = constant
inside the sphere.

(¢) Show u satisfies Laplace’s equation:
3% /9x? + 3% /3y* + 0% /322 = 0 outside
the sphere.

31. Minimize the distance from (0,0,0) to each of
the following surfaces. [ Hint: Write the square of
the distance as a function of x and y.]

(@) z=yx*-1;

(b) z=06xy+7;

() z=1/xy.

32. Suppose that f(x, y)= x2+y. Find the maxi-
mum and minimum values of f for (x, y) on a
circle of radius 1 centered at the origin in two
ways:

(a) By parametrizing the circle.

(b) By Lagrange multipliers.

In Exercises 33-36, find the extrema of the given func-
tions subject to the given constraints.

33, flx, y)=x*—2xy + 2p% x2 4+ yr = 1.

34, f(x, yy=xy—y5 x4+ =1

35. f(x, y)= cos(x? —yz); x? +y2 =1

xt—y?

36.f(x,y)=2—»5;x+y= 1.

x“+y

37. An irrigation canal in Arizona has concrete sides
and bottom with trapezoidal cross section of area
A= y(x+ytan#) and wetted perimeter P =
x +2y/cost, where x = bottom width, y =
water depth, # = side inclination, measured from
vertical. The best design for fixed inclination 8
is found by solving P = minimum subject to
the condition A4 = constant. Show that y?
=Acosf/(2 —sinf).

38. The friction in an open-air aqueduct is propor-
tional to the wetted perimeter of the cross sec-
tion. Show that the best form of a rectangular
cross section is one with the width x equal to
twice the depth y, by solving the problem perime-
ter = 2y + x = minimum, area = xy = constant.

39. (a) Suppose that z = f(x, y) is defined, has con-
tinuous second partial derivatives, and is har-

monic:
2 2
2 L 92 _o
dx? 8y2

Assume that (3%2/3x?)(xg, yo) # 0. Prove that f
cannot have a local maximum or minimum at
(x0, Yo)-

(b) Conclude from (a) that if f(x, y) is harmonic
on the region x? + y2 < 1 and is zero on x? +y2
=1, then f is zero everywhere on the unit disk.
[Hint: Where are the maximum and minimum
values of f?)
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40. (a) Suppose that u = f(x, y) and o= g(x, y)

have continuous partial derivatives which satisfy
the Cauchy— Riemann equations:

du _ 2o du_ 2o

ox 9y and ay ax
Show that the level curves of u are perpendicular
to the level curves of o.
(b) Confirm this result for the functions u =
x?— y? and v = 2xy. Sketch some of the level
curves of these functions (all on the same set of

Review Exercises for Chapter 16 835

(b) Use this method to show that the tangent

plane of the graph of

f(x, y) = (x + cos y)x?
at (1,0,2) is as sketched in Figure 16.R.6.

axes).
41. Consider the two surfaces \  om—— < ——
S x4yl 4 22 — ¢ |V I
1ixT YT = fx, p,2) =6 7=
S, :2x2+ 3y + 22 =g(x, y,2) = 9. (1,0,0)
(a) Find the normal vectors and tangent planes
to S, and S, at (1, 1,2). /
(b) Find the angle between the tangent planes.
(c) Find an expression for the line tangent at Figure 16.R.6. The plane
(1,1,2) to the curve of intersection of S, and referred to in Exercise
S,. [Hint: Tt lies in both tangent planes.] 43(b).
42. Repeat Exercise 41 for the surfaces x2 — y2 + 22
=1land 2x?—p?2+5z2=6at (1,1, - 1). 44. (a) Use a geometric argument to demonstrate
43. (a) Consider the graph of a function f(x, y) that if f(x, y,z) is extremized at (xg, g, zg)

(Figure 16.R.5). Let (xg, yg) lie on a level
curve C, so Vf(xq, o) is perpendicular to
this curve. Show that the tangent plane to
the graph is the plane that (i) contains the
line perpendicular to V f(xy, o) and lying in
the horizontal plane z = f(xq, ), and (i)
has slope ||Vf(xg, yo)l| relative to the xy
plane. (By the slope of a plane P relative to
the xy plane, we mean the tangent of the
angle 4, 0 < § < 7, between the upward
pointing normal p to P and the unit vec-
tor k.)

45.

subject to two constraints g,(x, y,z) = ¢,
and gy(x, y,z) = ¢,, then there should exist
A, and A, such that

Vi(xo, y0,20) = AV gi(x0, yo,20)
+ A,V g5(x0,5 yo»20)-
(b) Extremize f(x, y,z)=x — y + z subject to
the constraints x?+ y?+z?=1 and x +
y+2z=1
A pipeline of length / is to be constructed from

one pipe of length /; and diameter D, connected
to another pipe of length /, and diameter D,.

The finished pipe must deliver (' liters per sec-
ond at pressure loss 4. The expense is reduced to
a minimum by minimization of the cost C
= Ili(a+ bD)) + LL(a + bD,) (a,b = constants)
subject to the conditions

L+ h=1

I3 I
h=kQ™" { — + },
DM D

where k,m,m,,m, are constants. Show that
D, = D, in order to achieve the minimum cost.
[Hint: As in Exercise 44, the partials of C —
Al — Ak with respect to /,, [, Dy and D, must
all be zero for suitable constants A; and A,.]
Ammonia, NH;, is to be produced at fixed tem-
perature T and pressure p. The pressures of N,,
H,, NHj are labeled as u, v, w, and are known to
satisfy u+ v+ w=p, w?=cuv® (c=positive
constant). Due to the nature of the reaction
N, + 3H, =2NH,;, the maximium ammonia pro-
duction occurs for w = maximum. Find the max-
imum pressure w,,.

slope of tangent plane = |7 £||

level curve raised to graph

(g, 20,00, 79)) and

graph of f
/

y
/ ;; xo0,0) 46.

Vf(xg,v0)

/L

level curve
x

Figure 16.R.5. Relationship
between the gradient of a
function and the plane
tangent to the function’s
graph (Exercise 43(a)).
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836  Chapter 16 Gradients, Maxima, and Minima

For Exercises 47-50, consider the level curves for the
function f(x, y) shown in Figure 16.R.7. Find or esti-
mate the maximum value of f(x, y) for each of the
given constraint conditions.

Figure 16.R.7. Level curves
of a function f.

47. x>0,y >0, y=—3x+2
48. x2+y2<4

49. x2+y2=4

50. x=4,0< y<4

51. Refer to Figure 16.R.7. The function f has ex-
actly one saddle point. Find it.

52. Refer to Figuie 16.R.7. There are two points on
the graph z = f(x, y) at which the tangent plane
is horizontal. Give the equation of the tangent
plane at each such point.

53. (a) Let y be defined implicitly by

x2+yd+e’=0.
Compute dy/dx in terms of x and y.
(b) Recali from p. 810 that
oF

aF/dx .

% = — ﬁ—é—a; if B = 0.
Obtain a formula analogous to this if y;, y,
are defined implicitly by

Fi(x, yi(x), ya(x)) = 0,

Fy(x, y(x), yo(x)) = 0.

(¢) Lety, and y, be defined by
x?+ yt=cosx,
x? -y =sinx.

Compute dy,/dx and dy,/dx using (b).
54. Thermodynamics texts® use the relationship

(a_y 3z (6_x)= -
dx J\ oy J\ oz '
Explain the meaning of this equation and prove
that it is true. [Hint: Start with a relationship

F(x, y,z) = 0 that implicitly defines x = f(y, z),
y = g(x,2), and z = h(x, y) and differentiate.]
55. (a) Suppose that F(x, y) = P(x, y)i+ Q(x, y)j.
Show that if there is a function f(x, y) with
continuous second partial derivatives such
that F =V, then P, = Q..
(b) Suppose that

F(x, y,z)= P(x, y,2)i+ Q(x, y,2)j + R(x, y, 2)k.

Show that if there is a function f(x, y,z)
with continuous second partial derivatives
such that F =V, then

Py:Qx’ Pzsz’ Qz=Ry'

(¢) Let F=3xyi— ye”j. Is there an f such that
F=Vf?

*56. (Continuation of Exercise 55.) Suppose that P

and Q have continuous partial derivatives every-

where in the xy plane and that P, = Q,. Follow

the steps below to prove that there is a function f

such that Vf= Pi+ Qj; that is, f, = P and

fi=0.

(a) Let g(x, y) be an antiderivative of Q with
respect to y; that is, g, = Q. Establish that
P — g, is a function of x alone by showing
that (P — g,), = 0.

(b) If P-—g, = 0, then we may simply take
g = f. Otherwise let A(x) be an antideriv-
ative of P— g.; that is, A'(x)=P — g,.
Show that f(x, y) = g(x, ) + y(x) satisfies
Vi=Pi+ Qj :

%57. For each of the following vector fields Pi + Qj,

find a function f such that f, = P and f, = Q or
show that no such function exists. (See Exercises
55 and 56.)

(a) (xzy2 + 2x)ex—vzi + 2x3ye"y2j;

by (X% +2x)e™i + 2xYe™j;

. 2 .
@ —H—i+ —T
L+ x"+y I+ x"+y
2y . 2x

) i+

Trxty Taxiir

*58. (The gradient and Laplacian in polar coordinates.)

Let r and 6 be polar coordinates in the plane and
let f be a given function of (x, y). Write

u=f(x, y)= f(rcosf,rsinf).

Let i, = cos#i + sinfj and i, = —sinfi + cosbj.

(a) Show that when based at v= xi+ yj the
vectors i, and iy are orthogonal unit vectors
in the directions of increasing r and 6, re-
spectively.

(b) Show that

_ du _ sinf du\,
Vf—(cosﬂW )1

., 0u , cosd ou\.
+(sm067+ p ag)j

6 See S. M. Binder, “Mathematical methods in elementary thermodynamics,” J. Chem. Educ. 43. (1966): 85-92. A proper
understanding of partial differentiation can be of significant use in applications; for example, see M. Feinberg, “Constitutive
equation for ideal gas mixtures and ideal solutions as consequences of simple postulates”, Chem. Eng. Sci. 32 (1977): 75-78.
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(¢) Show that

82u+82u_18<8u) 1 9%

—+ === L (r= - ==

ax?  3y? rdr\ 3r) 2 42

*59. Find a family of curves orthbgonal to the level
curves of f(x, y) = x? — »? as follows:

(a) Find an expression for a vector normal to
the level curve of f through (x,, y,) at the
point (xg, yo).

(b) Use this expression to find a vector tangent
to the level curve of f through (x,, y,) at
()Co, Py 0)'

(¢) Find a function g which has these vectors as
its gradient.

(d) Explain why the level curves of g should
intersect those of f orthogonally.

(¢) Draw a few of the level curves of fand g to
illustrate this result.

*60. (a) Figure 16.R.8 shows the graph of the function
z=(x*=y% /(x> + y?). Show that z has differ-
ent limits if we come in along the x or y axis.

ﬁ%’u
N7
SN
.’"‘ I
“‘“ //////ll:
S

/ 17 77
Nz
N
Y
L
2
i

/17
7777

T

Figure 16.R.8. Computer-

generated graph of

2= = p)/(x* + ).
(b) Figure 16.R.9 shows the graph of the func-
tion z=2xy*/(x*+ p*. Show that if we ap-
proach the origin on any straight line, z ap-

W st
W
W 0%
Wi

AL
2z AN
7NN
W
AL WS NSSINSI S0,
e
i
i

5
..‘30’0’0‘0’0::::':"‘020‘03;202:::&:»:‘:
A
W
3N

t,oo,% 25
W\
S
O {
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NS n..{.,!' ':"‘::: <55
Q. /”” 17 o205t
N\

:':3}‘ A\ / [ll’ 27
N \ i
NN\
NN 40
NSNS e,
SRR

Figure 16.R.9. Computer-
generated graph of
z=2xp?/(x? + 9.
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proaches zero, but z has different limits when

(0,0) is approached along the two parabolas

X == yz.

*61. Let f(x, y) = y*/(x* + »?); £(0,0) = 0.

(a) Compute f,, f» fx(0,0), and £0,0).

(b) Show that, for any #, the directional deriva-
tive (d/dr) f(rcos@,rsinf)|,_, exists.

(c) Show that the directional derivatives are not
all given by dotting the direction vector with
the gradient vector (see Fig. 16.R.10). Why
does this not contradict the chain rule?

B0
50
/’///,/,/,/,’{/,”/1,"'

et 2 At
U
o770

Figure 16.R.10. Computer-generated graph of z
= P /(x2 + ).

*62. Do the same things as in Exercise 61 for z
= (x* = 3xp?) /(x> + y?), which is graphed in
Fig. 16.R.11.

Figure 16.R.11. Computer-generated graph of :
= (x* = 399 /(x* + ).

Copyright 1985 Springer-Verlag. All rights reserved



Chapter 17

17.1

8 d——
> ——

(a) The closed rectangle
as<x<bhc<sysd

[ R

|
|
|
1
a

(b) The open rectangle
a<x<bc<y<d

_ Figure 17.1.1. Examples of

closed and open rectangles.

Multiple Integration

Functions can be integrated over regions in the plane and in space.

Double and triple integrals enable us to “sum” the values of real-valued
functions of two or three variables; we evaluate them by integration with
respect to one variable at a time, using the methods of one variable calculus.
As in the previous chapters, we concentrate on the basic ideas and methods of
calculation, leaving a few of the more theoretical points for a later course.

The Double Integral
and lterated Integral

The double integral of a non-negative function over a region in the plane is equal
to the volume under its graph.

The definite integral [2f(x)dx, defined in Chapter 4, represents a “sum” of the
values of f at the (infinitely many) points of the interval [a,b]. To “sum” the
values of a function f(x, y) over the points of a region D in the plane, we will
define the double integral [[,f(x, y)dxdy. We recommend a rapid review of
Sections 4.1 to 4.5 as preparation for the present section.

Our development of double integrals will be similar to that of definite
integrals in Chapter 4. We will give a formal definition first, but the actual
calculation of double integrals will be done by reduction to repeated ordinary
integrals as explained later in the section, rather than using the formal
definition.

The sets in the plane which will play the role of “intervals” in double
integration are the rectangles (see Fig. 17.1.1). A closed rectangle D consists of
all x and y such that a < x < b and ¢ < y < d; it is denoted by [a,b] X [c,d].
The interior of D consists of all x and y such thata < x < bandc <y < d; it
is called an open rectangle and is denoted by (a,b) X (¢,d). The area of D is
the product (b — a)(d — ¢). Note that the rectangles considered here have
their sides parallel to the coordinate axes.

We say that a function g(x, y) defined in [a,b] X [¢,d] is a step function
provided there are partitions a =1, < t; <1, < --- <t,=b of [a,b] and
c=5,<5,<5,< -+ <s,=d of [c,d] such that, in each of the mn open
rectangles R;=(t_y, IADS (sj_l,sj), g(x, y) has a constant value k;;. The graph
of a step function is shown in Fig. 17.1.2.
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840 Chapter 17 Multiple Integration

Figure 17.1.2. g is a step
function since it is constant
on each subrectangle.

Example 1
Solution
y
3
4 -1
2
6 3
1
-8 2
2 5 X

Figure 17.1.3. Find

{[pg(x, y)dx dy if g takes
the values shown.

Graph ot g

By analogy with our definition for step functions of one variable, we
define:

[fsenasd= 3 ()areak)= 5 (k)G @)

i=lj=
where Ar, = 1, — t,_; and As; = 5, — 5;,_;. The summation symbol means that
we sum over all i and j, with 7 ranging from 1 to n and j from 1 to m; there are
nm terms in the sum corresponding to the nm rectangles R;;.

If g(x, y) > 0, the integral of g is exactly the volume under its graph.
Indeed, the height of the box over the rectangle R;; is k;;, so the volume of the
box is k;; X area (R;) = k;At;As;; the integral of g is the sum of these and so it

is the total volume.

Let g take values on the rectangles as shown in Fig. 17.1.3. Calculate the
integral of g over the rectangle D =[0,5] X [0, 3].

The integral of g is the sum of the values of g times the areas of the rectangles:

ffg(x,y)dxdy= —8X24+2X3+6X2+3X3+4%x2-1X3
D

=16. A

We proceed now to define the integral of a function over a closed rectangle in
the same manner as we did in Section 4.3.

Upper and Lower Sums

The integral over D of a step function g such that g(x, y) < f(x, y)on D
is called a lower sum for f on D. The integral over D of a step function 4
such that 2(x, y) > f(x, y) on D is called an upper sum for f on D.

As in Section 4.3, every lower sum is less than or equal to every upper sum.
The integral separates these sets of numbers.
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The Double Integral

We say that f is integrable on D if there is a number S such that every
S < 8 is a lower sum for f on D and every S > §; is an upper sum. The
number S is called the integral of f over D and is denoted by

[ fee pydxdy.

Example 2 Let D be the rectangle 0 < x <2, 1 < y < 3, and let f(x, y) = x%. Choose a
step function A(x, y) > f(x, y) to show that [[,f(x, y)dxdy < 25.

Solution The constant function A(x, y) = 12 > f(x, y) has integral 12 X 4 = 48, so we
get only the crude estimate [[,f(x, y)dxdy < 48. To get a better one, divide
D into four pieces:

D, =[0,1]x[1,2], D;=[1,2]X[1,2],

D2=[0,1] ><[2,3], D,=[1,2] x[2,3].
Let & be the step function given by taking the maximum value of f on each
subrectangle (evaluated at the upper right-hand corner); that is,

h(x,y)=2onD;,30onD,,80nD,,and 120n D,.
The integral of #is 2 X 1 +3X 1+ 8 X 1+ 12X 1=25. Since & > f, we get
ffo(x,y)dxdy< 25. A

The basic properties of the double integral are similar to those of the ordinary
integral:

Properties of the Double Integral

. Every continuous function is integrable.

2. If a rectangle D is divided by a line segment into two rectangles D,
and D, (Fig. 17.1.4), and if f(x, y) is integrable on D, and D,, then f
is integrable on D and

ffo(x’)’)dXd)’=ffD1f(x’)’)dXd)’+fszf(x,y)dxdy.

3. If f, and f, are integrable on D and if f; < f, on D, then

Figure 17.1.4. The fj;)fl(x’y)dxa’y <foz(x’y)dxdy-

rectangle D is divided into
two smaller rectangles D, 4. If f(x, y)= k on D,

and D,. f f f(x, y)dx dy= k(area of D).
D

—

=

> fj;)[fl(x’)’)"’fz(xa}’)]dxdy,
=fj;)f1(x,)’)dxdy+ffo2(x,y)dxdy_
6. ffDCf(x, y)dxdy= Cffo(x, y)dx dy.
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Figure 17.1.5. The volume
of R, the region under the
graph of f, equals
[[pf(x, y)dxdy.

We omit the proofs of these results since they are similar to the one-variable
case. Choosing k = 1 in 4, note that [[, dxdy = area of D.

We observed earlier that if g(x, y) > 0 and g is a step function, then the
integral of g is the volume under its graph. If f(x, y) > 0 is any integrable
function, then the volume under the graph of f lies between the volumes under
the graphs of step functions g < fand & > f; that is, between lower and upper
sums. Since the integral has exactly this property, we conclude, as for
functions of one variable, that the integral of f over D equals the volume under
the graph of f if f > 0 (see Fig. 17.1.5).

For the moment, we can evaluate integrals only approximately or by
appealing to geometric formulas for volumes of special solids. Later in this
section, we show how the fundamental theorem of calculus can be brought
into play.

The double integral has other interpretations besides the volume of the
region under the graph of the integrand. For example, suppose that a
rectangular plate D has mass density p(x, y) grams per square centimeter. Let
us argue that [[,p(x, y)dxdy is the mass of the plate. If p is constant, this is
true since mass = density X area. Next, if p is a step function, then the integral
of p over D is the mass of a plate with density p since the total mass is the sum
of the masses of its parts. Now let p be arbitrary. If p, is a step function with
p, < p, then [[ppi(x, y)dxdy < m, where m is the mass of the plate with
density p, since a lower density gives a smaller mass. Likewise, if p, is a step
function with p, > p, then m < [[,px(x, y)dxdy. Thus the mass m lies be-
tween any pair of lower and upper sums for p, so it must equal the integral

[[pp(x, y)dxady.

Before establishing the fundamental result which will enable us to use
one-variable techniques to evaluate double integrals, we must explain some
notation. The iterated integral

i ”’{ [, y)dx} dy

is evaluated, like most parenthesized expressions, from the inside out. One first
holds y fixed and evaluates the integral [“f(x, y)dx with respect to x; the
result is a function of y which is then integrated from ¢ to d.

The expression [2[[f(x, y)dy]dx is defined similarly; this time the inte-
gral with respect to y is evaluated first. Iterated integrals are often written
without parentheses as

fcd_[lbf(x,y)dxdy and fabfcdf(x’)’)dydx.
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Example 3 Evaluate fo ? fl > dy dx.

3
2 3 2( 3 2f xH?
Solution 2 dy dx = ( d )d = (2] Jax
b= [{oa)a= 15
S22 - W avma [Pdx e 2| = 32
—fox(z 2)alx 4f0xdx 430—3.
Notice that the second step in this calculation is essentially the inverse of a
partial differentiation. A

We claim, and shall prove below, that the double integral equals the iterated
integral. That is, for D = [a,b] X [¢,d],

’

ffpf(xa)’)dXd)’=fcd{Lbf(x,)’)dx}dy=fab[fcdf(x,y)dy}dx'.

To see why this might be so, let us suppose that f(x, y) > 0, so that the
integral [f,f(x, y)dxdy represents the volume of the region R under the
graph of f. If we take this volume and slice it by a plane parallel to the yz
plane at a distance x from the origin, we get a two-dimensional region whose
area is given by A (x) = [f(x, y)dy (see Fig. 17.1.6).

z z
Graph of z = f(x,y)

z=f(x,y)

Figure 17.1.6. The area of
the cross-section is the area R
under the graph of

z=f(x, y)fromy = c to 4
y = d (where x is fixed). % A =1 S y)dy

By Cavalieri’s principle (Section 9.1), the total volume is the integral of
the area function A (x). Thus,

ffo(x, ) dx dy= volume of R =fabA (%) dx=Lb[£df(x, ») dy} dx.

In the same way, if we use planes parallel to the xz plahe, we get

f}fo(x, y)dxdy= fcdulbf(x, ») dx} dy,

which is what we claimed. We see that Cavalieri’s principle gives a geometric
“proof” of the reduction to iterated integrals; in fact, it is more appropriate to
take our proof below as a justification for Cavalieri’s principle.

Theorem: Reduction to Iterated Integrals

Assume that f(x, y) is integrable on the rectangle D = [a,b] X [c,d].
Then any iterated integral which exists is equal to the double integral;
that is,

ffo(x, )’)dxdy=£d{fabf(x, y)dx]dy=fab[fcdf(x, y)avadx.
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Proof of the
Reduction to
Iterated
Integrals

To prove this theorem, we first show it is true for step functions. Let g be a
step function, with g(x, y) = k; on (f;_,4) X (5;_,5)), 50 that

fng(x»y)dxdy=

If the summands ky; At As; are laid out in a rectangular array, they may be
added by first adding along rows and then adding up the subtotals, as follows:

n.m
S kyAtAs,.
i=1,j=1

ki At As,  ky Aty As, kAt As;, —— (2 knAf,-) As,
i=1
ki, At As,  ky Aty As, kAt As, —— (z kizAt,-) As,
i=1
ki, Aty As,,  k,, Aty As, k,, At As, —— ( > ki At,-) As,,
i=1
> ( > kl.jAti) As;
AR )

The coefficient of As; in the sum over the Jth row, 3%_k; At is equal to
fZg(x, y)dx for any y with s;_; < y <, since, for y fixed, g(x, y) is a step
function of x. Thus the integral [5g(x, y)dx is a step function of y, and its
integral with respect to y is the sum:

id[[zbg(x,y)dx}dy=]§1( 2 k(/.Atl-) A;,=ffl)g(x,y)dxdy.

i=1

Similarly, by summing first over columns and then over rows, we obtain

fng(x, y)dx d}’=fab{£dg(x, ») dy} dx.

The theorem is therefore true for step functions.

Now let f be integrable on D = [a,b] X [c,d] and assume that the iterated
integral [[[f(x, y)dy]dx exists. Denoting this integral by S, we will show
that every lower sum for f on D is less than or equal to S, while every upper
sum is greater than or equal to S, so S, must be the integral of f over D.

To carry out our program, let g be any step function such that

g(x, y) < f(x,») (H

for all (x, y) in D. Integrating equation (1) with respect to y and using
property 5 of the one-variable integral (see Section 4.5), we obtain

[“etendy< [fx 0 d @

for all x in [a,b]. Integrating (2) with respect to x and applying property 5
once more gives
dx <fb

fabudg(x,y) dy fcdf(X,y)dy} dx. )

Since g is a step function, it follows from the first part of this proof that the
left-hand side of (3) is equal to the lower sum [[,g(x, y)dxdy; the right-hand
side of (3) is just Sy, so we have shown that every lower sum is less than or
equal to S,. The proof that every upper sum is greater than or equal to S is
similar, and so we are done. @
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Example 4 Let f(x, y) = e***”. Evaluate the integral of f over D =[0, 1] X [0, 3].

Solution fj;)f(x, y)dxdy= -LB(j:ez" *y dx) dy

— (L x| =1 P2+ _ 7\ d
Py Jo=i feren
(e —1)e*—1)

2

%(e—l)f e’ dy=

(You should check that integrating with respect to y first gives the same
answer.) A

~ 60.9693.

Example 5 Evaluate ’ 2x dx dy and compare with Example 3.
1 Jo 4

Solution f f yaxdy= ([ ( xﬁ)dx) ( -)dy

_ﬁ 432 _ g2y 32
'f3yy 3 11 3 (-1 =5"

The answer is the same as that in Example 3, as predicted by the theorem
above. (It is also consistent with Examplg 2.) A

Example 6 Compute f f sin(x + y)dx dy, where D = [0, 7] X [0, 27].
D

Solution fstin(x + y)dx dy=f2w{fwsin(x + ) dx] dy
f —cos(x +y)]’;=0] dy

=f [cos y — cos(y + m) ] dy

=[smy— sin( y + fn)]i”=0=0. A

Example 7 Find the volume under the graph of f(x, y)= x*+ y? between' the planes
x=0,x=3,y=—1,and y=1.

Solution The volume is
13, _ X3, 2 3 _ (! 5
LJ(; (x*+y )dxdy fh]( 3 +yxx )dy f-l(9+3y)dy

= (9 +y3)|1_l =20. A

Example 8 If D is a plate defined by 1 < x <2, 0< y <1, and the mass density is
p(x, y) = ye™ grams per square centimeter, find the mass of the plate.

Solution The total mass is

fpo(x,y)dfcdy=folfl2ye"ydxdy=fol(e"yli=1 dy
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I

=f1(e2y - ey)dy=(%2y _ey)
0

y=0

2
= f”z— —e+ - ~ 14762 grams. A

N |—

Supplement for Section 17.1:
Solar Energy and Double Integrals

To illustrate the process of summation which is represented by the double
integral, we may use an example connected with solar energy. The intensity of
solar radiation is a “local” quantity, which may be measured at any point on
the earth’s surface. Since the sqlar intensity is really a rate of power input (see
the Supplement to Section 9.5), we can measure it in units of watts per square
meter.

If the solar intensity is uniform over a region, the total power received is
equal to the intensity times the area of the region. In practice, the intensity is a
function of position (in particular, it is a function of latitude); so we cannot
just multiply a value by the area of the region. Instead, we must integrate the
intensity over the region. Thus, the method of this section would allow us to
find (at least in principle) the total power received by the state of Colorado,
which is a rectangle in longitude-latitude coordinates. The problem for Utah
is also tractable, since that state is composed of two rectangles, but what
happens if we are interested in Michigan or Florida? For this problem, we
need to integrate over regions which are not rectangles: the method for doing
this is presented in the next section.

Exercises for Section 17.1

In Exercises 1 and 2, the function g takes values on the 4. Let D be the rectangle 1< x <4, 0< y<2.
rectangles as indicated in Fig. 17.1.7. Calculate the Suppose that D is a plate with mass density
integral of g.

p(x, y) =2xy*+ cosmy + 1 (grams per square

1. For the rectangle in Fig. 17.1.7(a). centimeter). Find step functions to show that the
2. For the rectangle in Fig. 17.1.7(b).

mass m (in grams) of the plate satisfies the in-
equalities 30 < m < 62.

Y Y Evaluate the iterated integrais in Exercises 5-10.
4 4 5. [P (*x¥dxd 6. [ *x%dydx
o JE— [Pows o [
2 — - 2,1 s 1 2 2
- 7. dvd 8. dx d
2l I Jf o ayax o froxrdxa
4 x 2 4 6 x 9. f] flye"dydx 10. f‘ f3y5ex—vjdxdy
—1J0 —1J0
Evaluate [[,f(x, y)dxdy for the indicated functions
@ ® ) ax &
Fi 17.17. Find th and rectangles in Exercises 11-16.
; 'f“’el oy mnd the 1. f(x, y)=(x +2)%; D =[~1,2] X[0,2].
integral of g. 12. f(x, y)=y3coszx; D=[-n/2,7] xX[1,2].
=2 _ D= _
3. (a) Let D be the rectangle determined by the }i ﬁi’i; ; ;3;2@){}}0 i‘ﬁ ’3f>< [1[0’2]1] x[=2.2]

inequalities ~1 < x <1 and 2 < y < 4 and let
f(x, )= x(1 + y). Find a step function g satisfy-
ing g(x, y) < f(x, y) to show that

Jfpf(x, pydxdy > —9.

(b) Sketch the graph of f(x, y) over D. Use
symmetry to argue that the value of the integral
in part (a) must in fact be zero.

Copyright 1985 Spri

15 fx, )=xy + x/(y + 1); D=[1,4] X[1,2].
16. f(x,y) = y>e”’ **sinx; D = [0,1] x [—1,0].

17. Evaluate [3/' x(1 + y)dx dy and compare with
Exercise 3.

18. Evaluate [3/%(2xp? + cosmy + 1)dx dy and com-
pare with Exercise 4.
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Sketch and find the volume under the graph of f
between the planes x =a, x=b, y=c, and y =4 in
Exercises 19 and 20.

19. f(x, y)=x>+y?+2; a=~1, b=1, c=1,

d=3.
20. f(x, y)=2x+3p?+2; a=0, b=3, ¢c=-2,
d=1.

21. The density at each point of a 1 centimeter square
(i.e., each side has length 1 centimeter) microchip
is 4 + r? grams per square centimeter, where r is
the distance in centimeters from the point to the
center of the chip. What is the mass of the chip?

22. Do as in Exercise 21, but now let r be the
distance to the lower left-hand corner of the
plate.

+23. Prove that the sum of two step functions defined
on the same rectangle is again a step function.

*24. Prove that if f(x, y) < g(x, y) for all (x, y) in
the rectangle [a, b] X ¢, d], then

fabidf(x,)’)dya’x<£dfahg(x,y)dxdy.

17.2 The Double Integral

17.1 The Double Integral and lterated Integral 847

*25. The state of Colorado occupies the region be-

tween 33° and 41° latitude and 102° and 108°
longitude. A degree of latitude is about 110 ki-
lometers and a degree of longitude is about 83
kilometers. The intensity of solar radiation at
time 7 on day T at latitude / is (in suitable units;
see the Supplement to Section 9.5)

_ ~ sinacost( 27T ) cosf 27t
1 cosl\/l 51nacos(365)cos( 24)

2aT

5 )

(a) What is the integrated solar energy over
Colorado at time ¢ on day T?

(b) Suppose that the result of part (a) is inte-
grated with respect to ¢ from ¢, to t,. What
does the integral represent?

+ sin/sin « cos(

Over General Regions

Double integrals over general regions become iterated integrals with variable

endpoints.

Many applications involve double integrals [[,f(x, y)dxdy over regions D
which are not rectangles. For instance, the volume of a hemisphere, the mass
of an elliptical plate, or the total solar power received by the state of Texas
can be expressed as such integrals. We shall find that such integrals can be
evaluated by iterated integration in a form slightly more complicated than that

used for rectangles.

To begin, we must define what we mean by [[,f(x, y)dxdy when D is
not a rectangle. We shall assume that D is contained in some rectangle D*.
Let f* be the function on D* defined by

o5, ) = fe.y) if (x ) €D,
Y7o it (x,y)&D.
(See Fig. 17.2.1.)
z z=f(x,y) ‘ z=f*(x,y)

Figure 17.2.1. Given fand

D, we construct f* by

setting f*(x, y) equal to

zero outside D. x
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Figure 17.2.2. The choice
of D* does not matter.

¥ =y(x)

Y =¢,(x)
Figure 17.2.3. A region D is
of type 1 if it is the region
between the graphs of two
functions, y = ¢(x) and

Y = ¢a(x).

If D** is another rectangle containing D, and f** is the corresponding
function defined as above, then [[,.f*(x, p)dxdy = [[pu f**(x, y)dx dy,
since f* and f** are zero in the regions where D* and D** differ (see Fig.
17.2.2 and use the properties of the integral given in Section 17.1).

f* and f** are zero here
D* /

4

D

We note that if f(x, y) > 0 on D, then both integrals above are equal to
the volume of the region under the graph of f on D, i.e., the set of (x, y,z)
such that (x, y) € D and 0 < z < f(x, y).

With these preliminaries, we can state the following definition.

The Double Integral Over a Region D

Extend f to a rectangle D* containing D by letting f* equal f on D and
zero outside D. If f* is integrable on D*, then we say that f is integrable
on D, and we define [[,f(x, y) dxdy to be [[,. f*(x, y)dxdy. (By our
preceding remarks, the choice of D* does not affect the answer).

This definition serves the purpose of giving meaning to the double integral,
but it is not very useful for computation. For this purpose, we need to choose
D in a more specific way. We shall define two simple types of regions, which
we will call elementary regions. Complicated regions can often be broken into
elementary ones.

Suppose that we are given two continuous real-valued functions ¢, and ¢,
on [a, b] which satisfy ¢,(¢) < ¢,(¢) for all ¢ in [a,b]. Let D be the set of all
points (x, y) such that

xisin [a,b] and ¢(x) < y < ¢y(x).
This region D is said to be of type 1. (See Fig. 17.2.3.) The curves and straight
line segments that enclose the region constitute the boundary of D.

We say that a region D is of type 2 if there are continuous functions i,
and y, on [c,d] such that D is the set of points (x, y) satisfying

yisin[c,d] and ¢,(y) < x < y(p),

where ,(¢) < ,(7) for ¢ in [¢,d]. (See Fig. 17.2.4.) Again the boundary of the
region consists of the curves and line segments enclosing the region.
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Figure 17.2.4. A region D is
of type 2 if it is the region
between the graphs of

x = ¢i(y) and x = Yo y).

Example 1

Solution

Figure 17.2.5. The unit disk
as a type 1 region and a
type 2 region.

VY =d,y(x)

H /

1 -

a x ( b
y=6¢,0x)

Figure 17.2.6. The integral
of f* over D* equals that of
fover D.

17.2 The Double integral Over General Regions 849

x = \bz(y)

d -

The following example shows that a given region may be of types 1 and 2
at the same time.

Show that the region D defined by x* + »? < 1 (the unit disk) is a region of
types 1 and 2.

Descriptions of the disk, showing that it is of both types, are given in Fig.
17.2.5. A

(a) Type 1 region (b) Type 2 region

We will use, without proof,' the following fact: If f is continuous on an
elementary region D, then f is integrable on D. This fact, combined with the
reduction to iterated integrals for rectangles, enables us to evaluate integrals
over elementary regions by iterated integration. Indeed, if D* = [a,b] X [c,d]
is a rectangle containing D, then

[[icpasdy=[ [ peyydcdy =" [“frydde )
ARG B©)

where f* equals f in D and is zero outside D. Assume that D is a region of
type 1 determined by functions ¢, and ¢, on [a,b]. Consider the iterated
integral

I NACSOE TS

and, in particular, the inner integral [“f*(x, y)dy for some fixed x (Fig.
17.2.6). By definition, f*(x, y) = 0 if y < ¢,(x) or y > ¢,(x), so

[ eend= [P0 = [ 10 ) 3)

! For a proof, see an advanced calculus text, such as J. Marsden, Elementary Classical Analysis,
Freeman (1974), Chapter 8.
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V4

Substituting (3) into (1) gives

ffo(X, y)dxdy=£b{f¢ii:)f(xa)’)dy}dx.

A similar construction works for type 2 regions.

Double Integrals
If D is a region of type 1 (Fig. 17.2.3),

ffo(x, ) dxdy=fab[f¢‘l”(i:)f(x, ) dy] dx. @)
If D is of type 2 (Fig. 17.2.4),
fj;f(x,y)dx dy=j;d{f¢i2}(j)y)f(x, y)dx} dy. 5)

If D is of both types, either (4) or (5) is applicable.

If f(x, y) > 0 on D, we may understand the procedure of iterated integration
as our old technique of finding volumes by slicing (Section 9.1). Suppose, for
instance, that D is of type 1, determined by ¢,(x) and ¢,(x) on [a, b]. If we fix
x and slice the volume under the graph of f(x, y) on D by the plane which
passes through the point (x,0,0) and which is parallel to the yz plane, we
obtain the region in the yz plane defined by the inequalities ¢;(x) < y < ¢y(x)
and 0 < z < f(x, y). The area A(x) of this region is just (27 f(x, y)dy. Now
the double integral f[,f(x, y)dxdy, which is the volume of the entire solid,
equals

fabA (%) dx=Lb[Li2$)f(x,y) dy} dx,

the iterated integral. Thus we get (4).

If D is of type 2, then slicing by planes parallel to the xz plane produces
the corresponding result (5). The reader should draw figures similar to Fig.
17.1.6 to accompany this discussion.

Example 2 Find ff (x + y)dx dy, where D is the shaded region in Fig. 17.2.7.
D

Solution D is a region of type 1, with [a,b] =[0,1], ¢,(x) =0, and ¢,(x) = x> By
formula (4) in the preceding box,
24 %
(xy + 12— ) J dx

ffu(x +)’)dxdy='£1/2f0xz(x +)’)dydx='f(;1/2
‘ N

. L IR S P AT
- —fo (x + 5 )dx—( ) + 10)‘\0
=14 1 _ 3
Figure 17.2.7. Find 64 320 160 °

[Ip(x + y)dx dy.

D is also a region of type 2, with ,(y) = \/; and J,(y) = 1. We leave it to you
to verify that the double integral calculated by formula (5) is also 2;. A
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17.2 The Double Integral Over General Regions 851

x2 .
Example 3 Evaluate f1f3 xydydx. Sketch the region for the corresponding double
0 Jx
integral.

Solution Here y ranges from x* to x2, while x goes from 0 to 1. Hence the region is as
shown in Fig. 17.2.8. The integral is

1xy2x2 _ 1x_s_x7 _x6_X8
fo(“z‘yxs)d"‘fo(z =33 %)

The next example shows that it sometimes saves labor to reverse the order of
integration.

o1 _1_1

12 16 48

- A

x=0

x=1

Figure 17.2.8. The region
of integration for

fofxy dy dx.
Example 4 Write f : f 1= /1 — 42 dy dx as an integral over a region. Sketch the region
0 Jo

and show that it is of types 1 and 2. Reverse the order of integration and
evaluate.

Solution The region D is shown in Fig. 17.2.9. D is a type 1 region with ¢,(x) =0,
¢,(x) =Vl — x? and a type 2 region with ¢,(y) =0, ¥,(y) =41 — y*. Thus

Ll}émﬂdydx=folfom,/1—y2dxdy
=fol{“—ylef}dyﬁol(l—yz)dy

3!
(-2
(-5

0

Evaluating the integral in the original order requires considerably more
computation! A

_2

3

Figure 17.2.9. The region of
integration for

[ofe"' T N1 = y? dydx.
Example 5 Calculate the integral of f(x, y)=(x + y)* over the region shown in Fig.

17.2.10.

Solution In this example, there is a preferred order of integration for geometric reasons.
The order [[f(x, y)dxdy, i.e., x first, requires us to break up the region into

2.2) two parts by drawing the line y = 1; one then applies formula (5) to each part
and adds the results. If we use the other order, we can cover the whole region
at once:

ffo(xay)dxdy=f02f:“‘f(x,y)dydx_

(The lines bounding D on the bottom and top are y = x and y = 1 x + 1.) The
integral is thus

fozfx%)“rl(x +y)2dydx {%(x+ )

0,0 x

Figure 17.2.10. The region
of integration for

Example 5. 1
o } dx

=X
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If

%[%(M—w)—z-m}

_iqaty_2
’3{2} 6 A

General regions can often be broken into elementary regions, and double
integrals over these regions can be computed one piece at a time.

Example 6 Find ff x?dx dy, where R is the shaded region in Fig. 17.2.11.
R

Solution Each of the regions R, R,, Rs, R, is of types 1 and 2, so we may integrate over
each one separately and sum the results. Using formula (4), we get

flexzdx\dy=J(;lfxlxzdydx=fol(x2y)

3 4
= 1(xz—)c3)dx=()% - x_)

dx

1
y=x

0 471,
=1l_1_1
3 4 127

Figure 17.2.11. Integrate x>
over the pinwheel. By symmetry,

SO

2 b 1 12
ffodxdy—lz+4+12+4 3

You may check that formula (5) gives the same answers. A

Exercises for Section 17.2

In Exercises 1-4, sketch each region and tell whether it 6. Find [{,(1 — sinmx)y dx dy, where D is the re-
is of type 1, type 2, both, or neither. gion in Figure 17.2.12.
1. (x, y)such that 0 < y < 3x,0< x < L. 7. Find [{p(x fy)zdx dy, where D is the region in
2. (x,y)such thaty’ < x < y,0< y < 1. Figure 17.2.13.
3. (x, y) such that M+ yt< L 8. Find [[,y(1 — cos(mx /4))dx dy, where D is the
4. (x, y) such that } < oyt <L region in Fig. 17.2.13.
5. Find [[p(x + y)*dxdy, where D is the shaded
region in Fig. 17.2.12. Y
¥y
. - y=Vx
x=1 X | Ax
Figure 17.2.13. The region
Figure 17.2.12. The region of integration for
of integration for ) Exercises 7 and 8.

Exercises 5 and 6.
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17.2 The Double Integral Over General Regions 853

Evaluate the integrals in Exercises 9-16. Sketch and In Exercises 21-24, integrate the given function f over
identify the type of the region (corresponding to the the given region D.
way the integral is written). 21. f(x, y)=x —y; D is the triangle with vertices
3sin x (0,0), (1,0), and (2, 1).
o f fsmx x4 ) dy dx. 22. f(x, y)= x + cosx; D the triangle defined by
10. (1 [*2 ™2 4 xy + Dy 0<x<7/2,0<y<x |
f [T 4 Dy 23. f(x, y) = (x* + 2xp* + 2); D the region bounded
11. @ )’)( VX +p3 = 2y)dx d by the graph of y = — x? + x, the x axis, and the
f f2/3 i 4y =2y . lines x =0 and x = 2.
12. f f3(,/4 x%)/2 N P 24. f(x, y)=sinxcos y; D the pinwheel in Fig.
3(,/4 *2)/2\ 2+ x 17.2.11.
13. f f (x + xy — y?)dy dx. 25. Show that evaluating [[,dxdy, where D is a
region of type 1, simply reproduces the formula
14. f fy 3dxay. from Section 4.6 for the area between curves.
) 26. Let D be the region defined by x? + y? < 1.
15. fo fx “(x+ yYdyadx. (a) Estimate [[,dxdy (the area of D) within
0.1 by taking a rectangular grid in the plane
103y o y 2 g g p
16. L J(; e dxdy. and counting the number of rectangles: (i)

contained entirely in D (lower sum); (i)
intersecting D (upper sum).
(b) Compute [[, dx dy exactly by using an iter-

In Exercises 17-20, sketch the region of integration,
interchange the order, and evaluate.

1,1
17. L L xy dy dx ated integral.

w/2 [cosf 27. Which states in the United States are regions
18. f f cos 6 dr df of type 1? Type 2? (Take x = longitude, y =

latitude.)

19. ('[! (x+yHaxay
fo j;—y *28. Prove: fx[le(u) du} dr =fx(x — w)F(u)du.
(4] (4] 0

20. j;afl&(x2+y2)dydx

17.3 Applications of
the Double Integral

Volumes, centers of mass, and surface areas can be calculated using double
integrals.

We have observed in Section 17.1 that if f(x, y) > 0 on D, then the double
integral [[,f(x, y)dxdy represents the volume of the three-dimensional region
R defined by (x, y) in D, 0 < z < f(x, y). An “infinitesimal argument” for
this result goes as follows. Consider R to be made of “infinitesimal rectangular
prisms” with base dx and 4y and height f(x, y) (see Fig. 17.3.1). The total

Figure 17.3.1. The region

under the graph of fon D

may be thought of as being
composed of infinitesimal
rectangular prisms. x
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854 Chapter 17 Multiple Integration

volume is obtained by integrating (that is, “summing”) the volumes of these
cylinders. Notice, in particular, that if f(x, y) is identically equal to 1, the
volume of the region under the graph is just the area of D, so the area of D is
equal to ([, dxdy.

Example 1 Compute the volume of the solid in space bounded by the four planes x =0,
y=0,z=0, and 3x + 4y = 10, and the graph z = x* + »°.

Solution The region is sketched in Fig. 17.3.2. Thus the volume is
24 2 dxdv= 5/2| ((10—4y)/3 240 v dx | d
[ Lo+ axay= [ | (" + y9)dx | dy

=f5/2{ (10_4)’)3 + )’2(10_4)’)
0

3¢ 3 g4

5/2

_ (10—4}1)4 N 10y3 _ y_4
T 34.4.4 9 3

0

4 3 4
10° , 10-5° 5% _ 15625 _ 50s6. a

= 34.04  32.93 3.4 1296

2

Figure 17.3.2. The volume
of the region in space above
D and below z = x* + y%, is
[fp(x* + yHdx dy.

(The volume in Example 1 can also be written as 5¢/(3*- 2%). Can any reader
explain this simple factorization?)

By reasoning similar to that for one-variable calculus (see Section 9.3), we
are led to the following definition of the average value of a function on a
plane region. , '

Average Value

If fis an integrable function on D, the ratio of the integral to the area
of D,

Jf e naxd

fLw@

is called the average value of f on D.

Example 2 Find the average value of f(x, y) = xsin®(xy) on D = [0, 7] X [0, 7].

Solution First we compute
ffo(x, y)dxdy=j(;wj(‘)wx sin®(xy) dx dy
Copyright 1985 Springer-Verlag. All rights reserved



17.3 Applications of the Double Integral 855

(f 1—cos(2xy) dy) dx=fow(% B sinjix)’) )x

[
fvr( X _ sm(ZWX) )dx=( mx? M) n

= mX

dx

y=0

4 8w
0

3 [cos(27r2) -1 :I

-7
B * 8
Thus the average value of fis
7 /4 + [ cos(2n?) — 1] /87 cos(27?) — 1
/ [ Cm) }/ =E+——(———)—z0.7839.A
7? 4 873

Double integration also allows us to find the center of mass of a plate with
variable density. Let D represent a plate with variable density p(x, y). We can
imagine breaking D into infinitesimal elements with mass p(x, y)dxdy; the
total mass is thus [[,p(x, y)dxdy. Applying the consolidation principle (see
Section 9.4) to the infinitesimal rectangles, one can derive the formulas in the
following box.

Center of Mass

[ etz ydxdy [ [ yotx pyaxdy

X = and

f fDP(x,y)dxdy & f fDP(X,y)dxdy '

Example 3 Find the center of mass of the rectangle [0, 1] X [0, 1] if the density is e**7.

Solution First we compute the mass:

ffl)ex+ydxdy=folj;lex+ydxdy=fol(e’”yuc:o)dy
=f01(e‘” —e)dy

=e'" e _g=el—e—(e—1)=e"—2e+ 1

The numerator in the formula for x is
1
dy

Llﬁlxex+ydxdy=ﬁl(xex+y— ex ) .
=j(;l[el+y— e't’ — (0e” — ey)}dy

=f]eydy= e|,_o=e—1,
0

SO

x=_€e-1_ _ e-l _ 1 _gs8.
e?—2e+1 (e—1)y e—1

The roles of x and y may be interchanged in all these calculations, so
y=1/(e —1)~0.582 as well. A
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856 Chapter 17 Multiple Integration

Figure 17.3.3. The “image”
on the surface z = f(x, y)
of an infinitesimal rectangle
in the plane is the
infinitesimal parallelogram
P,P,P,P;.

In Section 10.3 we used ordinary integration to determine the area of surfaces
of revolution. Using the double integral, we can find the area of general
curved surfaces. We confine ourselves here to an infinitesimal argument—the
rigorous theory of surface area is quite subtle.?

To find the area of the graph z = f(x, y) of a function f over the plane
region D, we divide D into “infinitesimal rectangles” which are of the form
[x,x + dx] X[y, y + dy]. The image of this infinitesimal rectangle on the
graph of fis approximately an “infinitesimal paralielogram” with vertices at

Py =(x, y, f(x, ),
Py = (x+dx, y, f(x + dx, y)) =~ (x + dx, y, f(x, y) + fo(X, ¥) dx),
Py=(x,y +dy, f(x,y + d))y=(x, y + dy, f(x, p) + [,(x. ) dp),
Py=(x+dx,y+dy, f(x + dx, y + dy))
~(x+dx, y+dy, f(x, y) + f.(x, y)ydx +]:V(x, »)dy).
(See Fig. 17.3.3))

We compute the area dA4 of this parallelogram by taking the length of the
cross product of the vectors from P, to P, and from P, to P; (see Section
13.5). The vectors in question are dxi + f.(x, y)dxk and dyj + f,(x, y)dyk;
their cross product is

i k
de 0 fo(x,y)dx|= —f (x, y)dxdyi — [, (x, y)dxdyj+ dxdyk,
0 d [

and the length of this vector is d4 = \/1 + fo(% y) + (% »)? dxdy. To get
the area of the surface, we “sum” the areas of the infinitesimal parallelograms
by integrating over D.

2 See T. Rado, Length and Area, American Mathematical Society Colloquium Publications,
Volume 30 (1958).
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17.3 Applications of the Double Integrat 857

Surface Area of a Graph

Area =ffDdA=ffD\/l + fo(x, p) +fy(x,y)2 dx dy

ff\/u g—;) dx dy.

Note the similarity of this expression with the formula for the arc length of a
graph (Section 10.3). As with arc length, the square root makes the analytic
evaluation of surface area integrals difficult or even impossible in all but a few
accidentally simple cases.

Example 4 Find the surface area of the part of the sphere x2 + y*+ z2 =1 lying above
the ellipse x> + (y*/a®) < 1; (a is a constant satisfying 0 < a < 1.

Solution The region described by x> + (y?/a? < 1 is type 1 with ¢ (x) = —ayl — x?
and ¢,(x) = @yl — x*; —1 < x < 1. The upper hemisphere may be described
by the equation z = f(x, y) =1 — x> — y*. The partial derivatives of f are

9z/9x = —x/y1 —x*=y? and 9z/dy = — 1 —x?— %, so the area
Y Y Y y

integrand is

\/1+ x? + s’ - 1
2 2 2 2
l—x"—y l—x"—y /1—x2—y2

and the area is

e

ay1—x? \/1 x—y
- (
—afT=x2

)dx= 2[1 sin”'a dx= 4sin"a.

-1
(See Fig. 17.3.4.) As a check on our answer, note that if a =1, we get
4sin” 'l =4-7/2 =27, the correct formula for the area of a hemisphere of
radius 1 (the surface area of a full sphere of radius r is 47r%). A

dx

ay1—x?

l—x2

Figure 17.3.4. The area of
the hemisphere above the
ellipse x> + y?/a? < 1is

4sin"'a.
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858 Chapter 17 Multiple Integration

Example 5 The equation in xyz space of the surface obtained by revolving the graph
= f(x) about the x axis is y? + 2> = [ f(x)]>. Express as a double integral the
area of the part of this surface lying between the planes x = ¢ and x = b.
Carry out the integration over y. Do you recognize the resulting integral
over x?

Solution Writing z as a function of x and y, we have z = g(x, y) = =/ f(x)* = »* .
The domain of this function consists of those (x, y) with —f(x) < y < f(x)
so the surface in question lies over the type 1 region D defined by a < x < b,
— f(x) < y < f(x). (See Fig. 17.3.5.) The partial derivatives of g are

Figure 17.3.5. Finding the
surface area when y = f(x)
is rotated about the x axis.

-
y=—f(x)

/
[y =1t

g(% y) = F ) fE) /NI = g(uy) = —y/fx) =

so the surface area integrand is

\ﬂ+f'(x>2f(x>2+ T \/f(X)z—y2+f’(X)2f(X)2+y2
JeP=yt fr =y J[CoRa s
[y
TV Jor- 7

1+ / x 2
and the area is 4 = 2] ffm T)fz—(% dy dx
J(x) J&x)y -y

(The factor of 2 occurs since half the surface lies below the xy plane.) We can
carry out the integration over y: '

- _ b gl

2f FE1+ f/(x) f;;m dy |d

—2[ JEOWW1+ f(x)° [sm ‘( (x))f(X) \ )1 dx
y=—flx

- ZLbf(x)\/l +f(x)? (Z+7
- 27Tfa”f(x)1/1 + f(x)? dx.

This is the formula for the area of a surface of revolution (Section 10.3). A
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17.3 Applications of the Double Integral 859

Exercises for Section 17.3

In Exercises 1-4, find the volume under the graph of
f(x, y) between the given planes x =4a, x =15, y =,
and y = d,

I. f(x,p)=xsiny+3; a=0, b=2, c=m,

d=37;

2. f,y)=xy" +2x*+6; a=0, b=1, c=—1,
d=1.

3. f(x, p)=2x*+3y*? a=~1, b=1, ¢=0,
d=2;

4 flx, y=xpyx®+3y?; a=1, b=2 c=1,
d=2

5. Compute the volume under the graph of f(x, y)
= 1+sin(7y/2) + x on the parallelogram in the
xy plane with vertices (0,0),(1,2),(2,0),(3,2).
Sketch.

6. Compute the volume under the graph of f(x, y)
=4x%+ 32 + 27 on the disk of radius 2 cen-
tered at (0, 1). Sketch.

7. Compute the volume under the graph of f(x, y)
=(cos y)e‘_c"sz" + xy on the region bounded
by the line y=2x, the x axis, and the line
x=u/2

8. Compute the volume between the graphs of the
functions f(x, y)=2x +1 and g(x, y)= —x —
3y — 6 on the region bounded by the y axis and
the curve x = 4 — y% Sketch.

9. Find the volume of the region bounded by the
planes x =0 and z=0 and the surfaces x =
—4y?+ 3, and z = x.

10. Find the volume of the region bounded by the
planes x=1,z=0,y=x+1,y=—x -1 and
the surface z = 2x? + y*.
In Exercises 11-14, find the average value of the given
function on the given region.
11. f(x, y) = ysinxy; D =[0,7] X [0, 7]
12. f(x, y)= x2 + p%; D = the ring between the cir-
cles x>+ y? =1 and x4+ yr=1.
13. f(x, y) = e**”; D = the triangle with vertices at
(0,0), (0, 1), and (1, 0).
14. fx, y=1/(x+y); D=]le, e?] % [e, €]
Find the average value of x2+ y? over each of the
regions in Exercises 15-18.
15. The square [0, 1] X [0, 1].
16. The square [a,a + 1] X [0, 1], where a > 0.
17. The square {0, a] X [0, a], where a > 0.
18. The set of (x, y) such that x2 + y? < a’.

19. Find the center of mass of the region between
y=x2and y = x if the density is x + y.

20. Find the center of mass of the region between
y=0,y=x% where 0 < x <}.

21. Find the center of mass of the disk determined
by (x — 12+ y2 < 1 if the density is x.

22. Repeat Exercise 21 if the density is y°.

23.

24.

25.

26.

27.

28.

29.

30.

Find the area of the graph of the function f(x, y)
=2(x*? + »3/?) which lies over the domain
D =[0,1] X [0, 1].

Find the area cut out of the cylinder x* + z2=1
by the cylinder x* + y? = 1.

Calculate the area of the part of the cone z
= x% + y? lying in the region of space defined by
x>»0,y>0,z< L

Find the area of the portion of the cylinder
x2+ z2 =4 which lies above the rectangle de-
fined by —1<x<1,0< y<2

Show that if a plate D has constant density, then
the average values of x and y on D are the
coordinates of the center of mass.

Find the center of mass of the region (composed
of two pieces) bounded by y = x3 and y =3/x if
the density is (x — y)>. Try to minimize your
work by exploiting some symmetry in the prob-
lem.

(a) Prove that the area on a sphere of radius r cut
out by a cone of angle ¢ is 2ar*(1 — cos ¢) (Fig.
17.3.6).

2

Figure 17.3.6. The area of
the cap is 27r%(1 — cos ¢).

(b) A sphere of radius 1 sits with its center on the

surface of a sphere of radius r > 1. Show that the

area of surface on the second sphere cut out by
the first sphere is 7. (Does something about this
result surprise you?)

A uniform rectangular steel plate of sides a and b

rotates about its center of gravity with constant

angular velocity .

(a) Kinetic energy equals }(mass)(velocity)>.
Argue that the kinetic energy of any element
of mass pdxdy (p= constant) is given by
p(w?/2)(x* + y?) dx dy, provided the origin
(0,0) is placed at the center of gravity of the
plate.

(b) Justify the formula for kinetic energy:

2
K.E.= © (x2 + p¥)ydx dy.
ffplate”Z(x y¥ydxdy

(c) Evaluate the integral, assuming that the
plate is described by —a/2< x<a/2,
—-b/2< y<b/2
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860 Chapter 17 Multiple Integration
31. A sculptured gold plate D is defined by 0 < x *33. Express as a double integral the volume enclosed
< 27 and 0 < y < 7 (centimeters) and has mass by the surface of revolution in Example 5. Carry
density p(x, y) = y*sin®4x + 2 (grams per square out the integration over y and show that the
centimeter). If gold sells for $7 per gram, how resulting integral over x is a formula in Section
much is the gold in the plate worth? 9.1.
*32. (a) Relate the integrand in the surface area for- *34. Let n right circular cylinders of radius r intersect

mula to the angle between k and the normal to
the surface z = f(x, y).

(b) Express the ratio of the area of the graph of f
over D to the area of D as the average value of

such that their axes lie in a plane, meeting at one
point with equal angles. Find the volume of their
intersection.

some geometrically defined quantity.

17.4 Triple Integrals

Figure 17.4.1. The box
W =la,b] X [c,d] X [p.q]
consists of points (x, y, z)
satisfyinga < x < b,

c<y<dandp<z<yg

Integrals over regions in three-dimensional space require the triple integral.

The basic ideas developed in Sections 17.1 and 17.2 can be readily extended
from double to triple integrals. As with double integrals, one of the most
powerful evaluation methods is reduction to iterated integrals. A second
important technique, which we discuss in Section 17.5, is the method of
changing variables.

If the temperature inside an oven is not uniform, determining the average
temperature involves “summing” the values of the temperature function at all
points in the solid region enclosed by the oven walls. Such a sum is expressed
mathematically as a triple integral.

We formalize the ideas just as we did for double integrals. Suppose that
W is a box (that is, rectangular parallelepiped) in space bounded by the planes
x=a,x=b,y=c,y=d,and z = p, z = g, as in Fig. 17.4.1. We denote this

box by [a,b] X [c,d] X [p,q]. Let f(x, y,z) be a function defined for (x, y,z)
in W—that is, for

a<x<b, c< y<d,

In order to define the triple integral

fffwf(x, y,z)dxdydz,

p<z<y.
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17.4 Triple Integrals 861

we first define the concept of a step function of three variables.

A function g(x, y,z) defined on [a,b] X lc,d] X [p.q] is called a step
function if there are partitions

a=t, <t <---<t,=b of [ab]

c=s5<s5;<:--<s,=d of [c.d],

p=ro<n<---<rn=q of [pgq]
such that g(x, y,z) has the constant value k, for (x, y,z) in the open box

Wi = (Li—1:8) X (5-158) X (Te—157%)-

We cannot draw the graphs of functions of three variables; however, we
can indicate the value ky associated with each box (see Fig. 17.4.2). The

Zh

Tk i 71 A

Tl pm———— 7l|

Figure 17.4.2. g has the
value & on the small

box Wi.
integral of g is defined as a sum of nm/ terms:
n,m,l
fff g(x, y,z)dxdydz= > ki (volume Wy, )

w i=1,j=1k=1

n,m,l
= 2 k,-jk (At) (Asj) (Ary).
i=lj=1k=1

If f is any function on W, its lower (respectively upper) sums are defined,
as before, as the integrals of step functions g (respectively h) such that
g(x, y,2) < f(x, y,2) (respectively h(x, y,z) > f(x, y,z)) for all points (x, y,z)
in W.

The Triple Integral

We say that f is integrable on W if there is a number S, such that every
S < 8, is a lower sum for f on W and every § > S is an upper sum.
The number S, is called the integral of f over W and is denoted by

fffwf(x, y,z)dxdy dz.

At this point you should look back at the basic properties of the double
integrals listed in Section 17.1. Similar properties hold for triple integrals.
Furthermore, there is a similar reduction to iterated integrals.
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Theorem: Reduction to Iterated Integrals

Let f(x,y,z) be integrable on the box W =[a,b] x [c,d] % [p,g]. Then
any iterated integral which exists is equal to the triple integral; that
is,

fffwf(x’y’z)dXdydz=Lq£dLbf(X,y,Z)dxdydz
=quj;bj;df(x, y,z)dydxdz

=Lqu£df(x,y,z)dydzdx,

and so on. (There are six possible orders altogether.)

The proof of this result is just like the corresponding one in Section 17.1, so we
omit it.

Example 1 (a) Let W be the box [0,1] X [— 1,0] X [0,1]. Evaluate

fffw(x +2y + 3z)2dx dydz.

(b) Verify that we get the same answer if the integration is done in the order y
first, then z, and then x.

Solution (a) According to the reduction to iterated integrals, this integral may be
evaluated as

fol/sf_ol/zfol(x+2y+3z)2dxdydz

N .[01/3f—01 /2

=fol/3f_01/2_31— [(1 +2y+32)° - 2y + 32)3J dy dz

(x +2y+3z)3 :

3 }dydz

x=

0
dz
y=-1/2

=f0‘/3514_ [(1+2y +32)* = 2y +32)*]

=f0‘/3 ﬁ (B2 +1)*=232)* + (32 - 1)*] &z

= ﬁ [Bz+1)° —2(32)° + (32 - 1y’] v

z=

_24-15(2 2) 12

(b) fffw(x + 2y + 3z)%dy dz dx

=f0‘f0‘/3f_°l/2(x +2y + 32)’dy dzdx
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Solution

17.4 Triple Integrals 863
30
(x +2y + 3z)

3 dz dx

=L1J;1/3

=j(;1f01/3%[(x+3z)3—(x+3z— 1] dz dx

y=—-1/2

11 (x+ 3z)4 (x+3z— 1)4 /3
'IOE( 2 12 ) d
z=0
=f1—71§[(x+1)4+(x—1)4—2x4]dx
0
11 s Y —2x5]t =L
—725[(x+1)+(x 1)’ —2x ]x=0 - A

Evaluate the integral of e**”*7 over the box {0, 1] X [0, 1] X [0, 1].

folf(,l_geﬁy”dx{lydz =folj(;l(e"”+z|l=o)d)’dz
=f01f01(e1+y+2 — ) dyds =f01[el+y+z - ey“];:Odz
=f01[92” —2e'** 4 ef)dz = [ — 26! 4 o]y
=e’—3+3e—1=(e—1). a

As in the two-variable case, we define the integral of a function f over a
bounded region W by defining a new function f*, equal to f on W and zero
outside W, and then setting

[ raaxdyae= [ [ j*xy.2)dcdy,

where W* is any box containing the region W.

As before, we restrict our attention to particularly simple regions. A
three-dimensional region W will be said to be of fype I if there is an
elementary region D in the xy plane and a pair of continuous functions,
v1(x, y) and y,(x, y) defined on D, such that W consists of those triples
(x, y,2z) for which (x, y) € D and v,(x, y) < z < y,(x, y). The region D may
itself be of type 1 or type 2, so there are two possible descriptions of a type I
region:

a< x<

» o hu(x) Sy < dy(x),

b
Y1(%5 ) < 2 < yy(x, p) (if D is of type 1) M
or
c< y<d, Ui(y) < x <y(p), 2
Y1(%, ¥) € 2 < y5(x, p) (if D is of type 2).

Figure 17.4.3 on the next page shows two regions of type I that are described
by conditions (1) and (2), respectively.
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864 Chapter 17 Multiple Integration

z2=7,(x,»)

z=7,(x,»)

/z =7,(x,»)

Figure 17.4.3. A region of
type I lies between two (2) (b)
graphs z = y(x, y) and

z = vy(x, y) z=7,(x,)

A region W is of type II if it can be expressed in form (1) or (2) with the
roles of x and z interchanged, and W is of type 111 if it can be expressed in
form (1) or (2) with y and z interchanged. See Fig. 17.4.4.

(b) Region of type II (c) Region of type III

Flgure 17'4’4' The three Top and bottom are Front and rear are Left and right are
types of regions in space. surfaces z = y(x, y) surfaces x = p(z, y) surfaces y = 8(x, z)

Notice that a given region may be of two or even three types at once. (See

Fig. 17.4.5.) As with regions in the plane, we call a region of type I, II, or III
in space an elementary region.

Figure 17.4.5. Regions in
space can be of more than

one type. This one is of all As a region As a region As a region
three types. of type I of type II of type III
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Example 3

Solution

Figure 17.4.6. The unit ball
described as a region of

type L.

17.4 Triple Integrals 865

Show that the unit ball x> + y* + z? < 1 is a region of all three types.

As a type I region, we can express it as
—1<x<1

—V1—x? < y <yl — %%,
Y
—yYl=xt—p? <z <yl - x2— )%

In doing this, we first write the top and bottom hemispheres as z =

1 - x2—y? and z = —1 — x> — y*, where x and y vary over the unit disk
Y J Y

(that is, —y1 — x? < y <y1— x? and x varies between —1 and 1). (See Fig.
17.4.6.) We write the region as a type II or III region in a similar manner by
interchanging the roles of x, y, and z in the defining inequalities. A

z=y,06,0)=V1 —xt —y?

<

2=y, () =~V x2 =2

As with integrals in the plane, any function of three variables which is
continuous over an elementary region is integrable on that region. An argu-
ment like that for double integrals shows that a triple integral over an
elementary region can be rewritten as an iterated integral in which the limits
of integration are functions. The formulas for such iterated integrals are given
in the following display.

Triple Integrals
Suppose that W is of type 1. Then either

fffwf(x, y,z)dxdy dz=LbL¢2(X) YZ(X’y)f(x, y.z)dzdydx  (3)

1(x) Jri(xy)
(see Fig. 17.4.3(a)) or :

d
x, y,z)ydxdydz= [ [V [P f(x, y,z)dz dx d 4
ST [ feopaydndydz= [ ¥ [ R0, y.2ydedxdy (%)

(see Fig. 17.4.3(b)).

If W is of type II, it can be expressed as the set of all (x, y,z) such that
a<z<b, d1(2) < y < ¢9y(2), p1(2, ) < x < py(2, ).
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Then
b
.y, dxdydz= $2(2) ("paAz,p) 5
[ ] feopoyaxdydz Lf (%, y.2)dxdydz. ()

z) Jei(z.p)
If W is expressed as the set of all (x, y,z) such that

c<y<d YWz R) ez 2) < x <py(z, ),
then

x, v,2)dxdydz= () "2(”) x, y,2)dx dz d 6
[ penssin [ e ris.

There are similar formulas for type III regions (Exercise 22).
Another way to write formula (3) is

[S e raasaa= [ [ | [0y aras

and for formula (4),

fffwf(x, y,z)dxdydz=fj;[fy:'(ij::)f(x, y,z)dz]dxdy.

Notice that the triple integral [, dx dy dz is simply the volume of W.

Example 4 Verify the formula for the volume of a ball of radius 1: [f(wdxdydz =%m,
where W is the set of (x, y,z) with x? + y> + z2 < 1.

Solution  As explained in Example 3, the ball is a region of type 1. By formula (3), the
integral is

TR T g
f—l —\/1—x2f—\/1—x2—y2 - ey ax.

Holding y and x fixed and integrating with respect to z yields

[ v

“lx

= 2f [f‘/ﬁ (1- x? yz)l/zdy} dx.

Since x is fixed in the integral over y, this integral can be expressed as
b4 g

[ (a* — y*)'/?dy, where a = (1 — x?)!/2. This integral represents the area of

a semicircular region of radius a, so that

a NV
S (@ =) T dy=
(We could also have used a trlgonometric substitution.) Thus

Y1—x? 20 1/2 2
I U

and so
Lori—x? 2 2n1/2 1 1—x2
2 1 - x*— dydx=2 d
f_lﬁ 1—x2( x*—y%) dydx f_lw 3 X

=f_1177(1 - xz)dx= w(x— %3) 1

=g—77.A

x=—1
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Example 5 Let W be the region bounded by the planes x =0, y =0, and z = 2, and the

surface z = x*> + y%. Compute [[[,x dxdydz and sketch the region.

Solution Merhod 1. The region W is sketched in Fig. 17.4.7. We may write this as a

Figure 174.7. W is the
region below the plane

z =2, above the paraboloid

z=x? +y2, and on the

positive sides of the planes

x=0,y=0.

Figure 17.4.8. W as a type

IT region.

region of type I with y,(x, y) = x>+ y% v,(x, ) =2, ¢,(x) =0, ¢5(x) =
V2 —x%,a=0, and b =42 . By formula (3),

fffwxdxdydz=Lﬁ{f0\/2—7(£j+y2xdz)dy}dx

V22— x? 2 2
= — 2 _ d
j(; fo x(2=x"—y ) ly dx

3/2
i s (2-X)
=j(; x| (2 — x%) I — dx
5/2 V2
-22—x%
(P 2x 5 2y 0 )
= 3(2 x%) " dx 15
0
_,. 282

z=x> 42 =7, (x,p)

¢2(x)= V2 — x2

Method 2. W can be expressed as the set of (x, y,z) with the property that
p1(z, ) =0 < x < (z — )"/ =py(z, y) and (z, y) in D, where D is the subset
of the yz plane with0 < z < 2and 0 < y < z'/2 (see Fig. 17.4.8). Therefore,
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Example 6

Solution

Figure 17.4.9. The region
W (type 1) for Example 6.

fffwxdxdydz=f£)(£ii:j)xdx)dydz

1 (252 22\ o1 (22 5
2]()(2 3 dz 2]()3 dz

2=£—
I5 I5

[
0

which agrees with our other answer. A

2

I S Y

)dydz

Evaluate fl f ¥ f : dz dy dx. Sketch the region W of integration and inter-
0 JO Jx2+ y2

pret.
Llf()xLi+yde & dx=f01f0x(1 - _yz) dy dx

3
This is the volume of the region sketched in Fig. 17.4.9. A

3
AR AP B T
0

Exercises for Section 17.4

1. Evaluate [{{y,(2x + 3y + z)dxdydz, where

W =[1,2] X[—1,1] X [0, 1}, in at least two ways. and above the plane z = 0.

2. Evaluate the integral [[[px”dxdydz, where

W =1[0,1] X [—1,1] X [0, 1], in at least two ways. z=0,x+y=4andx=z—y— L

3. Integrate the function sin(x + y + z) over the
box [0, 7] X [0, 7] X [0, 7).

4. Integrate ze**> over [0, 1] X [0, 1] X [0, 1]. 10 — x% — 2p2

Determine whether each of the regions in Exercises 5-8

is of type I, II, or III.

5. The region between the cone z =x*+ y* and
the paraboloid z = x* + y*
6. The region cut out of the ball x>+ y* +z2< 4

x+y+2z=2.

and x + y +2z=0.

by the elliptic cylinder 2x? + 22 =1 i.e. the re- x?+yt<a®and x* + 22 < @~
gion inside the cylinder and the ball.
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Find the volumes of the regions in Exercises 9-12.
9. The region bounded by z=x?+)? and z=

7. The region inside the ellipsoid x2 + 2y + z2 =1

8. The region bounded by the planes x =0, y =0,

10. The solid bounded by x2+ 2y*=2, z =0, and
11. The solid bounded by x=y,z=0,y=0,x =1,

12. The region common to the intersecting cylinders



17.5 Integrals in Polar, Cylindrical, and Spherical Coordinates

Evaluate the integrals in Exercises 13-20.

22.

869

Write general formulas analogous to (3) and (4)
for the triple integral over a region of type III.

17203
13. cos[w(x + y + z)]dxdy d:.
-ﬂ) J; fz [r(x+y+ ) dxdy 23. Do Example 4 by writing W as a region of type
14. flfxfy(y+xz)dzdydx. 1L
0 J0 /0 24. Write out the property for triple integrals corre-
15. f f fR (x?+ yz + z%)dx dydz; R is the region sponding to property 2 of double integrals (Sec-
_ , _ tion 17.1, p. 841).
;Tlgd(;i:i)i i-gy + 2= a (where a >0), x =0, 25. Show that the formula using triple integrals for
e R ] . ) the volume under the graph of a function f(x, y),
16. f f f WZ dxdydz; W is the region bounded by on an elementary region D in the plane, reduces
the planes x =0, p=0, z=0, z =1, and the to the double integral of f over D.
cylinder x? + yz =1, withx >0,y > 0. 26. (a) Sketch the region for the integral
17. x2coszdx dydz; W is the region
ffW 4 & f]fxfyf(x,y,z)dzdydx.
bounded by z=0, z=m, y=0, y=1, x=0, 0 /0 J0
and x + y = 1. (b) Write the integral with the integration order
18. f2fxfx+ydz dy dx. dxdy dz.
0 /0 Jo , . S 27. (a) Show that the triple integral of a product
19. ff f W(l — z%)dxdydz; W is the pyramid with over a box is the product of three ordinary

20.[[[

21.

top vertex at (0,0, 1) and base vertices at (0, 0),
(1,0), (0, 1), and (1, 1).

(x* + yHdx dydz; W is the same pyra-
w

mid as in Exercise 19.

If f(x, y,z) = F(x, y) for some function F—that
is, if f(x, y,z) does not depend on z—what is the
triple integral of f over a box W?

17.5 Integrals in
Cylindrical,

Polar,

integrals; that is, if D =[a,b] X [c,d] X
[7, 4], then

[ [ 100he)
= ¢ z)az.
_fa f(X)de; g(y)dyL"h( )d

(b) Use the result of part (a) to do Example 2.

and Spherical Coordinates

Problems with symmetry are often simplified by using coordinates that respect
that symmetry.

We deal first with polar coordinates. Recall that a double integral

[ [ fnasas

may be thought of as a “sum” of the values of f over infinitesimal rectangles
with area (dx)-(dy). As in Section 10.5, however, we can also describe a
region using polar coordinates and can use infinitesimal regions appropriate to
those coordinates. The area of such a region is rdr df, as is evident from Fig.
17.5.1. If u = f(x, y), then u may be expressed in terms of r and € by the
formula u = f(rcosé,rsiné).

y

Figure 17.5.1. The area of
the infinitesimal shaded
region is rdr df.

The preceding argument using infinitesimals suggests the formula in the
following box (the rigorous proof is omitted).
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Example 1

Solution

Figure 17.5.2. C, is the
shaded region between R,
and D,.

Double Integrals in Polar Coordinates

ffo(x,y)dxdy=ffl)’f(rcosﬂ,rsinb’)rdrda, (1)

where D’ is the region corresponding to D in the variables r and 4.

Evaluate ff e~ dx dy, where D, is the disk x + y* < a°.
Dﬂ

The presence of r* = x>+ y? in the integrand and the symmetry of the disk
suggest a change to polar coordinates. The disk is described by 0 < r < g,
0 < 8 < 27, so by formula (1), we get

ffDae‘("ZUZ) dxdy=szj;ae_’zrdrd0=J;2w(— %e"z) ’

0

de

= - L (e - = (1 - 7).
0

There is no direct way to evaluate this integral in xy coordinates! A

There is a remarkable application of the result of Example 1 to single-variable
calculus: we will evaluate the Gaussian integral [ "_"me_"2 dx, which is of basic
importance in probability theory and quantum mechanics. There is no known
way to evaluate this integral directly using only single-variable calculus. If we
bring in two-variable calculus, however, the solution is surprisingly simple.
Letting a go to oo in the formula [, e~ "+ dxdy = m(1 — e™*), we find
that the limit L = lim,_, [ Dae‘("z+)’z) dx dy exists and equals 7. By analogy
with the definition of improper integrals on the line, we may consider L as the
(improper) integral of e~ "+ over the entire plane, since the disks D, grow
to fill the whole plane as a — 0. The rectangles R, = [—a,a} X [—a, a] grow
to fill the whole plane, too, so we must have

ali_)n;lo fj;e e~ "+ dy=m

as well’; but

3 The technical details of the proof that

ali{gofkae—(xhyz) dxd)):ali»n;offkae_(XZHZ) dx dy

go as follows. We have already shown that

all)rrgcfﬁ) e” ) gx dy

exists. Thus it suffices to show that

aangO (fj;i e_(Xl*’yZ) dedy - fj;) Q_(Xz+y2) & d}’)

equals zero. The limit equals

i [ Joem T e

where C, is the region between R, and D, (see Fig. 17.5.2). In the region C,, Vx*+ y* > a (the
radius of D,), so e~ ¢ ¢=% Thus
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ffRe_(xz”z)dxdy=f_afe_()‘z”’Z) dxdy=f_a fje‘xze_yzdxdy

([ free) -

—a

where I, = [ “_ae_"2 dx (see Exercise 27, Section 17.4). Thus,

f‘” e dx=lim I,=1/ lim I = \/lim ff e+ dx dy
— 0 a—>w a—>oo a-—>»oo Ra

=r.

The Gaussian Integral

fw e"‘zdx=\/77.

— o0

Example 2 Find f * =2 gy,
Solution We will use the change of variables y =2 x to reduce the problem to the

Gaussian integral just computed.
o0 2 . - a — d

f e~ dx=lim {“ e dx=lim [?%e 7L

— a2 J_2a \/5

a—>oo —a

— 1 © —yz _ 1 — T
=— [ e Ydy=—\Vr=1/Z . A
ﬁf_w O

Example 3 Evaluate f fln(x2 + yz)dx dy, where D is the region in the first quadrant
D

lying between the circles x* + y? =1 and x> + y*=4.

In polar coordinates, D is described by the set of points (r,8) such that

1<r<2,0<6<7/2. Hence

ffbln(xz+y2)dxdy=fg:/ozfilln(ﬂ)rdrdo

Solution

O<ffce_("2+yz)dxdy<ffce_”zdxdy

=e area (C,) = e~ (4a? — 7a%) = (4 — m)a%e .
Thus it is enough to show that lima_,waze’“2 = 0. But, by I’Hopital’s rule (see Section 11.2),

2
. e g2 . . .
lim a’ ”=11m(a—2)=hm( 2a2)=hm (——2)—0,
a—>o0 a—>oo ea a0 2(18“ a-roeo ea

as required.
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=J(;W/2f122(lnr) - rdrdf

_ 7/2 r_2 _
_fo ( - (2Inr = 1)

=LW/2(4ln2-— %)d0=

2
) d (integration by parts)
r=1

We will now evaluate triple integrals in cylindrical and spherical coordinates.
At this point you should review the basic features of these coordinates as
discussed in Section 14.5.

Cylindrical coordinates consist of polar coordinates in the xy plane,
together with the z coordinate. Therefore the infinitesimal “volume element”

has volume r dr dfl dz. See Fig. 17.5.3.

B

Figure 17.5.3. The
infinitesimal shaded region
has volume rdrdf dz. x

As in the case of polar coordinates, this leads us to a formula for
multiple integrals, presented in the next box.

Triple Integrals in Cylindrical Coordinates

fffwf(x,)”Z)dXdde=fffwrf(rcos(),rsinH,z)rdrdez )

where W’ is the region in r, 8,z coordinates corresponding to W.

Example 4 Evaluate f f f (z%?* + z%?)dx dy dz, where W is the cylindrical region deter-
w
mined by x> +y* <1, -1 <z<L

Solution By Formula (2) we have

fjfw(z%cz + zy*)dx dydz= f_llfozwj;l(zzrz)r drdf dz

Finally, we turn to spherical coordinates. The volume in space corresponding
to infinitesimal changes dp, df, and d¢ is shown in Fig. 17.5.4. The sides of
this “box” have lengths dp, r dd(= psin¢df), and pde as shown. Therefore its
volume is p’sin ¢ dp df dp. Hence we get the following:
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Figure 17.54. The
infinitesimal shaded region
has volume p%sin ¢ dp df d¢.

Example 5

Solution

Example 6

Solution

17.5 Integrals in Polar, Cylindrical, and Spherical Coordinates 873

Triple Integrals in Spherical Coordinates
/S fo(x, y,2)dxdydz
= ff fW* f(p sin¢ cos §, psin ¢ sin b, p cos ¢)p2sin odpdfds, (3)

where W* is the region in p,8,¢ space corresponding to W; i.c., the
limits on p,8, ¢ are chosen so that the region in xpz coordinates is W.

dp

’ | ll
y

* }rd0=psin¢d9

Find the volume of the ball x*> + y®> + z2 < R? by using spherical coordinates.

The ball is described in spherical coordinates by 0 < 8 < 27, 0 < ¢ < 7, and
0 < p < R. Therefore, by formula (3),

fffwdxddefo”foz”fo"pzsimpdpdod =-’§—3f0”f02”sin¢d0d¢

3 pm 3
= ;7131‘;[0 sin ¢ do = 2—'%8—— { = [cos(m) — cos(0) ]}
_ 47R’
3 b
which is the familiar formula for the volume of a ball. Compare the effort
involved with Example 4, Section 17.4. A

Evaluate f f f exp[(x? + y? + z2)*/?|dx dydz, where W is the unit ball;
w
i.e., the set of (x, y,z) satisfying x* + y* + 2% < 1.

In spherical coordinates, W is described by
O<p<l, 0<o¢p <, 0<8<27.
Hence

fff exp[(x2 +p2+ 22)3/2] dxdy dz

w
= [ [ [exeto) - ssingdpdods = L [**[*(exp(o?)i)sing do s
_ l 27w _ . - l _ 27 _ "
=3 A fo (e — )singpdodf 3 (e l)j(; (( cos¢)|¢=0)d()

= Le- 1)[02”2da=%(e— DE7—-0)=4T(e—1). 4
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Example 7

Solution

Figure 17.5.5. The base of
"~ W for Example 7(a).

1 X

Figure 17.5.6. A cross
section of W for
Example 7(b).

Chapter 17 Multiple Integration

It is important to spend a few moments of reflection with each integral to
decide whether cylindrical, spherical, or rectangular coordinates are most
useful; usually the symmetry of the problem provides the needed clue.

Find the volumes of the following regions:

(a) The solid bounded by the circular cylinder r = 2acos#, the cone z = r,
and the plane z = 0.

(b) The solid bounded by the cone z = \/x2 + y? and the paraboloid of
revolution z = x* + y.

(c) The region bounded by y = x%, y=x+2,4z=x>+y* and z = x + 3.

The formula for the volume of a region is [ [, dxdydz.

(a) Since we can write r = 2acosf as r? = 2ax or (x — a)’ + y? = a*, we see
that the base of the solid is a circle in the xp plane centered at (a,0) with
radius a. (See Fig. 17.5.5.) The xz plane is a plane of symmetry, so the. total
volume is twice the volume over the shaded region. In cylindrical coordinates,
the total volume is -

2[()”/2f()2“°°s”f0’rdzdrd0= 2[()”/2f02"°°s”(rz|;=o)drd0

=2 [ [** 2 dr dp= 2L”/2(%3

_~(7/28a%c08°8 5 [ 1643\ (7/2,y _ 2
=2 [/ 8acost do_(—3 )fo (1 — sin% )cos 0 db.

Let u=sinf to get (16a>/3)f4(1 — u?)du = (16a>/3)(u — u®/3)|s =
324%/9. _
(b) In cylindrical coordinates, the solid is bounded by z=r and z = r* (Fig.
17.5.6.) The solid is obtained by rotating the shaded area around the z axis.
Thus, the volume is

LZW}(;IX:rdZdrd0=£2""£1(rzlrz=rz)drdo=j(;z-nj(;l(rz ~ rS)drdo‘

_fz'”(r3__r4)1
o 3 4 'm0

(c) This part does not require cylindrical or spherical coordinates; y = x
x + 2 has the solutions x = —1 and x = 2, so the volume is

2acosé
) df

r=0

=1 (P
da-lzfo do= 7.

2=

2 rx+2 rx+3 2 rx+2 x2 +y2
dz dy dx= +3)- 2" |@d
.[—l-[cz £x2+y2)/4 Zdydx f—ILZ |:(x ) 4 :| yax

’ x+2
= dx
—1 - 2 ‘
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Exercises for Section 17.5

1.

&~ W

10.

11.

12.

13.

14.

15.

16.

17.

. Evaluate f ®
. Evaluate f ® 3e_8" dx.
. Integrate x? + y? over the disk of radius 4 cen-

Evaluate f f p(x*+ y3*/?dx dy, where D is the
disk x2 + y? < 4.

. Evaluate f f p(x*+ y?*/2dxdy; D is the disk

x2+
y ——10x dx.

tered at the origin.

. Find f f 1= Sin(x* + y?)dydx by convert-

ing to polar coordmates

. Integrate ze™ 45 over the cylinder x2 + y% < 4,
2<z2<3.
. Integrate x% + y? + z2 over the cylinder given by

x2+22<2, -2< y<3.

. Evaluate

dx dydz

fffW\/I + x2+ y* + 22
where W is the ball x*> + y2 + 2% < 1.
Evaluate [[[p(x?+ y>+ 2% dxdydz; W is
the ball x> +y2 +z22< 1.
Evaluate

dxdyd.
1) vt

where S is the sohd bounded by the spheres
X2+ y?+22=a% and x* +y* + 2 —b2 where
a>b>0.

Integrate yx2 + y? + 22 e~ 7'+ over the re-
gion in Exercise 11.

Find the volume of the region bounded by the
surfaces x2 + y* + z> =1 and x2+yr=14

Find the volume of the region enclosed by the
cones z=vx*+y* andz=1-— 2yx% + y2.
Find the volume inside the ellipsoid x* + y* +
427 =6.

Find the volume of the intersection of the ellip-
soid x2 + 2(y* + z%) < 10 and the cylinder y* +
22< 1.

Find the normalizing constant ¢, depending on o,
such that [°_°wce_"2/"dx =1.

18.

*19.

*20.

*21.

*22.

Integrate (x + yz)z over the part of the cyhn-
der x2+ y* < 1 inside the sphere x*+ y?+ 22
=4,

The general change of varlables formula in two
dimensions reads

| fD f(x, p)dxdy
a(x, y)

—ffh(uv) A 0)

where A(u,v) = f(x(u,v), y(u,v)) and where
|3(x, y)/3(u,v)| is the absolute value of the de-
terminant

du dv,

ax Ox
du o
dy 3y
du Ao

Here x(u,v) and y(u,v) are the functions relat-
ing the variables (#,0) to the variables (x, y),
and D* is the region in the uv plane which
corresponds to D.

(a) Show that this formula is plausible by using
the geometric interpretation of derivatives
and determinants.

(b) Show that the formula reduces to our earlier
one when « and v are polar coordinates.
Using the idea of Exercise 19, write down the
general three-dimensional change of variables
formula and show that it reduces to our earlier

ones for cylindrical and spherical coordinates.

By using the change of variables formula in

Exercise 19 and u = x + y, y = uv, show that

1 rl—x —1
Y+ gy dx= € .
fo-ﬂ) e ly dx 3

Also graph the region in the xy plane and the uv
plane.

Let D be the region bounded by x+y=1,
x=0, y=0. Us¢ the result of Exercise 19 to
show that

el

and graph D on an xy plane and a uv plane, with
u=x—yandv=x+y.

)dxdy—_zl,
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17.6 Applications of
Triple Integrals

The calculation of mass and center of mass of a region in space involves triple
integrals.

Some of the applications in Section 17.3 carry over directly from double to
triple integrals. We can compute the volume, mass, and center of mass of a
region with variable density p(x, y,z) by the formulas in the following box.

Volume, Mass, Center of Mass, and
Average Value

Volume = f f dex dy dz,

Mass = ffpr(x, y.z)dxdydz.

Center of mass = (X, 7,Z), where

fffoP(x, y,z)dxdydz

mass

f f nyp(x, y,z)dx dy dz

mass ’ ©)

f f fWZP(x, y,z)dx dydz

mass
The average value of a function f on a region W is defined by

fffwf(x, y,z)dxdydz

: 3
f f dexdydz |

(1)

x

b

|
]

z

Example 1 The cube [1,2] X [1,2] X [1,2] has mass density p(x, y,z) = (1 + x)e’y. Find
the mass of the box.

Solution The mass of the box is

flzflzflz(l + x)e’ydxdydz
=2

=f12j;2[(x+ %)ezy]: ldydz=f12£2%ezydydz
2

= (P15 o g, [ 15 2
—fl 4edz [4e]z=l

=%(e2—e).A |
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Example 2

Solution

Example 3

Solution

17.6 Applications of Triple Integrals 877

Find the center of mass of the hemispherical region W defined by the
inequalities x2 + y2 + z2< 1, z > 0. (Assume that the density is constant.)

By symmetry, the center of mass must lie on the z axis, so ¥ = y = 0. To find
Z, we must compute, by formula (2), I = [ [, zdxdy dz. The hemisphere is of
types I, II, and III; we will consider it to be of type III. Then the integral I
becomes

I= ff“l a Vl —r’- zdxdydz
y1-2z2 - y -z2
Since z is a constant for the x and y integrations, we can bring it out to obtain

I= N2 (V-2 g dy)d

f (f f 1- y —z2 ray e
Instead of calculating the inner two mtegrals explicitly, we observe that they
are simply the double integral [[,dxdy over the disk x*+y*<1-2z?
considered as a type 2 region. The area of this disk is 7(1 - z?), so

> 1 1 2 41!
I=77J(; z(1 - z%)dz= 'rrf0 (z—z3)dz=w[%-—%]0=%.

The volume of the hemisphere is (2/3)7, so Z = (7/4)/[(2/3)7] =3/8. A

The temperature at points in the cube W=[-1,1]X[~1,1]1X[-1,1] is

proportional to the square of the distance from the origin.

(a) What is the average temperature?

(b) At which points of the cube is the temperature equal to the average
temperature?

(a) Let ¢ be the constant of proportionality. Then 7' = ¢(x* + y* + z°) and the
average temperature is T = § [ [ [, T dx dy dz, since the volume of the cube is
8. Thus

T———f f f (x +y* + 2% dxdydz.

The triple integral is the sum of the integrals of x?, y?, and z*. Since x, y, and z
enter symmetrically into the description of the cube, the three integrals will be
equal, so

T LS e AT )

The inner integral is equal to the area of the square [—1,1] X [—1,1]. The
area of that square is 4, so

_'—E- ! 2 =_3_9 Z_3
T—Sf_l4zdz 2(3)

1
=C.
-1

(b) The temperature is equal to the average temperature when c(x?+
»?+ z%) = c; that is, on the sphere x> + y* + z* = 1, which is inscribed in the
cube W. A
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Example 4

Solution

pyr un 11”} Thass
A

Figure 17.6.1. The
gravitational potential at
(xy, y1,2,) arising
from the mass
dm = p(x, y,z)dx dy dz
at (x, y,z) is

—[Go(x, y,z)dx dydz]/r.

Historical Note

The moment of inertia about the x axis of a solid S with uniform density p is
defined by

Ix=fffsp(y2+zz)dxdydz.

Similarly, »
| I, =fffsp(x2 +2dxdydz, 1, =ffj;p(x2 + y*)dxdydz.

For the following solid, compute I, ; assume that the density is a constant: The
solid above the xy plane, bounded by the paraboloid z = x? + y* and the
cylinder x2 + y* = a%

The paraboloid and cylinder intersect at the plane z = a®. Using cylindrical
coordinates, we find

1, =f0af02ﬂj;r2pr2- rdzdfdr = pj;afozwj;rzﬁdz dé dr= m;aG . A

An interesting physical application of triple integration is the determination of
the gravitational fields of solid objects. Example 3, Section 16.2, showed that
the gravitational force field F(x, y,z) is the negative of the gradient of a
function V(x, y,z) called the gravitational potential. If there is a point mass m
at (x, y,z), then the gravitational potential,at (x,, y,,z,) due to this mass is

=Gml(x — x,* + (y — y))* + (z — 2,)’]7'/2, ‘'where G is the universal gravita-
tional constant.

If our attracting object is an extended domain W with density p(x, y,z),
we may think of it as made of infinitesimal box-shaped regions with masses
dm = p(x, y,z)dx dy dz located at points (x, y,z). The total gravitational po-
tential for W is then obtained by “summing” the potentials from the infinites-
imal masses—that is, as a triple integral (see Fig. 17.6.1):

V(x, p1020) =G p(x, y,z)dxdydz N 4
o fffw \/(x_x1)2+()"')’1)2+(z“21)2 ©

(xl,J’1:Z1)

¥ (x,3,2)

The evaluation of the integral for the gravitational potential is usually
quite difficult. The few examples which can be carried out completely require
the use of cylindrical or spherical coordinate systems.

Newton withheld publication of his gravitational theories for quite some time,
until he could prove that a spherical planet has the same gravitational field
that it would have if its mass were all concentrated at the planet’s center.
Using multiple integrals and spherical coordinates, we shall solve Newton’s
problem below; Newton’s published solution used only euclidean geometry.
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Example 5 Let W be a region of constant density and total mass M. Show that the

Solution

X

Figure 17.6.2. The
gravitational potential at
(x1, y1,21) is the same as at
(0,0, R), where

R=\/x%+y%+zf.

gravitational potentialfis given by e~ a wuniT asd

V(X yzy) =~(_%_)GM

where (1/r) is the average over W of

f(x ,2) = L
Vx = xi + (r =y + (2 = 2,)°

According to formula (4),

V(xp, y1r2) =G o(x, y,z)dx dy dz
(_ Y1) fffw\/(x—x1)2+(}’—y1)2+(z-zl)2

=prffw dx dy dz

V= x)2+ (=) + (2~ 2,)?

IS e

x—x)+(y -y +(z-2)

=-G[p volume (W)] volume (7)

as required. A

Let us now use formula (4) and spherical coordinates to find the gfavitational
potential ¥(x,, y,,z,) for the region W between the concentric spheres p = p,
and p = p,, assuming the density is constant. Before evaluating the integral in
formula (4), we make some observations which will simplify the computation.
Sinice G and the density are constants, we may ignore them at first. Since the
attracting body W is symmetric with respect to all rotations about the origin,
the potential V(x,, y,,2z,) must itself be symmetric—thus V(x,, y,,z,) de-

pends only on the distance R =1/x? + y? + z2 from the origin. Our computa-

tion will be simplest if we look at the point (0,0, R) on the z axis (see Fig.
17.6.2). Thus our integral is

V(0,0,R) ={ffW \/xz +j:j-y(iz— Ry’

In spherical coordinates, W is described by the inequalities p; < p < p,,
0<8< 27 and 0 < ¢ < m, so by formula (3) in Section 17.5, '

2 .
V(0,0,R) {pzf f2vr p“sin¢df dé dp
P \/p sin’p(cos’ + sin’d) + (pcos¢ — R )’

Replacing cos + sin® by 1, so that the integr%md no longer involves 8, we
may integrate over 8 to get
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po (7 p’singdpdp

o <0 \/pzsin2¢(p cos¢ — R

=__2Wfpzp2 f” sinp d¢
o 0 2 2
! \/p —2Rpcoso + R

I
th
3

V(0,0,R) =

dp.

The inner integral is easily evaluated by the substitution u = —2Rp cos ¢:
it becomes

- 2Rp
1 fZRp (p2+u+R2) "2 gy = 172

. 2 42 2
IRo )2, 2Rp(p +u+ R7)

—2Rp
1/2-

- RLp [(02+2Rp + R — (o~ 2Rp + R?)

e+ 77" ~[0-&7]")

=Rip(p+R—Ip—-R|)-

The expression p + R is always positive, but p — R may not be, so we must
keep the absolute value sign. (Here we have used the formula \/)7 = |x].)
Substituting into the formula for ¥V, we get

o P2
V(0,0,R) =27 | —(p+ R—|p— R|)dp
(0.0.R) =2a [" 4 (p+ R = lp = R])

='27" f”zp(p + R — |p — R|)dp.
4}
We will now consider two possibilities for R, corresponding to the gravita-
tional potential for objects outside and inside the hollow ball W.
If R > p, (that s, (x;, y,;2,) is outside W), then |p — R| = R — pfor all p
in the interval [p,, p,], so ‘

V(0,0,R) ="2L [Polo+ R=(R=p)]dp
01

= % *p*dp= k{— 43—”(103 - pi)-
The factor (47 /3)(p3 — p3) is just the volume of W. Putting back the constants
G and the mass density we find that the gravitational potential is GM / R, where
M is the mass of W. Thus V is just as it would be if all the mass of W were
concentrated at the central point (see Example 3, Section 16.2.)
If R < p, (thatis, (x;, y,,Zz,) is inside the hole), then [p — R| =p — R for
p in [py,p,], and '

V(O,Y’O,R) ='2TW fpzp[p + R~ (p— R)] dp=-4x | "pdp =-277(p§ - pf)
01 01 :

The result is independent of R, so the potential V is constant inside the hole.
Since the gravitational force is minus the gradient of V, we conclude that there
is no gravitational force inside a uniform hollow planet!

We leave it to you (Review Exercise 47) to compute ¥ (0,0,R) for the
case p; < R < p,. i

A similar argument shows that the gravitational potential outside any
spherically symmetric body of mass M (even if the density is variable) is
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¥ =-GM / R, where R is the distance to its center (which is its center of mass)

(Exercise 17).

Example 6

Find the gravitational potential of a spherical star with a mass M = 3. 02 X

10® kilograms at a distance of 2.25 X 10'! meters from its center (G = 6.67 X
10~!" Newton meter? /kilogram?).

Solution The potential is

- -1
p=GM _ 6.67 X 10~"  3.02 X 10% __g 5 10 meters?/sec’. A

R

2.25 x 10"

Exercises for Section 17.6

1. (2) Find the mass of the box [0,3]} X [0, 1} X [0, 2],
assuming the density to be uniform. (b) Same
Exercise as part (a), but with a mass density
o(x, y,2) = x4+ 3y2 +z+4+ 1

2. Find the mass of the solid bounded by the cylin-
der x2+z*>=2x and the cone z2= x>+ i
the density is p = \x? + 2.

Find the center of mass of the solids in Exercises 3 and
4, assuming them to have constant density.

3. Sboundedbyx+y+2:=2,x=0,y=0,z=0.

4. S bounded by the parabolic cylinder z = 4 — x?
and the planes x =0,y =0,y =6, z=0.

5. Evaluate the integral in Example 2 by consider-
ing the hemisphere as a region of type 1.
6. Find the center of mass of the cyhnder x2+ y
< 1, 1<z <2if the density is p = (x* + y?)z°.
7. Redo Example 3 for the cube

W=[—cclx[—cclxl=ccl

[Hint: Guess the answer to part (b) first.]
8. Find the average value of x? + y? over the coni-
cal region 0 < z < 2, x* +y2 <z
9. Find the average value of sin’z cos
cube [0, 2] X [0, 4] X [0, 6].

10. Find the average value of e~ over the ball
x*+ y2 +22< 1.

11. A solid with constant density is bounded above
by the plane z = a and below by the cone de-
scribed in spherical coordinates by ¢ = k, where
k is a constant 0 < k < 7 /2. Set up an integral
for its moment of inertia about the z axis.

12. Find the moment of inertia around the y-axis for
the ball x2 + y? + z2 < R? if the mass density is
a constant p.

13. Find the gravitational potential of a spherical
planet with mass M =3 X 10* kilograms, at a
distance of 2 X 10® meters from its center.

14. Find the gravitational force exerted on a 70-
kilogram object at the position in Exercise 13.
(See Example 3, Section 16.2.)

15. A body W in xyz coordinates is symmetric with
respect to a plane if for every particle on one side

2rx over the

*16.

of the plane there is a particle of equal mass

located at its mirror image through the plane.

(a) Discuss the planes of symmetry for the body
of an automobile.

(b) Let the plane of symmetry be the xy plane,
and denote by W+ and W — the portions
of W above and below the plane, respec-
tively. By our assumption, the mass density
o(x, y,z) satisfies p(x, y, —z)= p(x, y,2).
Justify these steps:

z -ffpr(x,y,z)dx dydz

.—_fffwzp(x, y,zydxdyd:z
=fffw+zp(x, y,z)dxdydz{
+fffW_zp(x, y,z)dxdydz

=ffjw+zp(x, y,z)dxdydz

+fffw+—wp(u,o, —w)dudvdw = 0.

(¢) Explain why part (b) proves that if a body is
symmetrical with respect to a plane, then its
center of mass lies in that plane.

(d) Derive this law of mechanics: “If a body is
symmetrical in two planes, then its center of
mass lies on their line of intersection.”

If a body is composed of two or more parts

whose centers of mass are known, then the center

of mass of the composite body can be computed.
by regarding the component parts as single parti-
cles located at their respective centers of mass.

Apply this consolidation principle below.

(a) Find the center of mass of an aluminum
block of constant density p, of base 4 X6
centimeters, [height 10 centimeters, with a
hole drilled through. The cylinder removed
is 2 centimeters in diameter and 6 centime-
ters long with its axis of symmetry 8 centi-
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meters above the base and symmetrically
placed.

(b) Repeat for a solid formed by pouring epoxy
into a hemispherical form of radius 20 centi-
meters which contains a balloon of diameter
8 centimeters placed at the center of . the
circular base.

*17. Show that the gravitational potential outside of a
spherically symmetric body whose density is a
given function of the radius is V(x,, y;,z;)
= GM /R, where M is the mass of the body

and R=yx}+y?+ 2z} is the distance to the

center of the body.

Review Exercises for Chapter 17

Evaluate the integrals in Exercises 1-10.

L

3 8 3 .
j; L [x” + sin(x + y)ldx dy.

2. f f [x* + sin(x + y)]dxdy; D is the rectangle
D

3.

j;zj;jj:(x +y+ z)dxdyd:.
“J

[1,2] X [-3,2).

ff [e*+(y+ z)S]dxdydz; W is the cube
w

[0, 1] X [0, 1] X [0, 1].
f (x® + y2x)dx dy; D = region under the graph
D

ofy=x2fromx=0tox=2.

6. fff (x*+ y2 + 2% dxdydz; W =solid hemi-

7.

8.

9.

10.

spherex +y +22<1,z>0.
} f sec(x? + y?)dx dy, where D is the region

defined by x? + y? < 1.
f f f (x? + 8yz)dx dy dz, where W is the region

bounded by the surfaces z=x2—y% z=0,
y==x1,and x =0,4.

j(;l-nggyxyzdzdydx.

o costs 4 sy

Find the volume of each of the solids in Exercises
11-20.

11.

12.

13.
14.

15.

16.

17.

18.

19.

The region bounded by the five planes x =0,
x=1,y=0, y=2, z=0, and the paraboloid
z=x¥+ yz.

The cone defined by (x —$2z)* + y? < 422, and
0<z<3.

The ellipsoid x2/a® + y2/b? + z2/c? < 1.

The intersection of a ball B of radius 1 with a
ball of radius 1 whose center is on- the boundary
of B.

The spherlcal sector x? + y +2%2<1, z>0,
x2+ y < az?

The region between the graphs of f(x, y)=
cos’(y + x) and g(x, y) = —sin’(y + x) on the
domain D = [0, 1] X [0 1].

The “ice cream cone” defined by x2 + y? <1z

0<z<5+y5—x2—)2.

The region below the plane z + y = 1 and inside
the cylinder x2+ 2 < 1,0< z < L

The sohd bounded by x2+y?+22=1 and
22> x2+ y

20. The solid bounded by x% + y? + z2 =1 and
> x>+ y2.
Sketch and find the volume under the graph of f
between the planes x =a, x =5, y=¢, and y=d in
Exercises 21 and 22
2L fix, y)y=x*+ sinRy)+ 1l;a=-3,b=1,c=0,

d=m.
22, fx, p)=10—x*—y% a= -2, b=2, c= —1,
d=1.

23. Find the average value of f(x, y) on D =[a,b] X
{c,d] for the function and region given in Review
Exercise 21.

24. Find the average value of f(x, y) on D =[a,b] X
[c,d] for the function and region given in Review
Exercise 22.

25. The tetrahedron defined by x >0, y > 0, z > 0,
x+y+z<1is to be sliced into n segments of
equal volume by planes parallel to the plane
x + y + z = 1. Where should the slices be made?

26. Show that the volume obtained by cutting the
rectangular cylinder a < x < b, c < y<d by
the planes z =0 and z = px +qy+ris equal to
the area of the base times the average of the
heights of the four vertical edges. Assume that
px+qy+r>0 for all (x,y) in the rectangle
[a,b]) X [c,d]. (See Fig. 17.R.1.)

Z )

h

Figure 17.R.1. The volume
of solid PQRSKLMN is
equal to the area of the
base PQRS times the
average of the lengths of
PK, QL, RM, and SN.
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27

28.

29.

30.

. Show that the surface area of the part of the
sphere x%+ y? + z2 =1 lying above the rectan-
gle [—a,a] X [—a,a] in the xy plane is

S — )dx Qat < 1).

—a 1—x

A=2(" sin“(
The sphere x2+ y*+z2=1 is to be cut into
three pieces of equal surface area by two parallel
planes. How should this be done?

Use cylindrical coordinates to find. the center of

mass of the “dish”:
24y <1, 24y +(z-27<25/4, z<0.

Use cylindrical coordinates to find the center of
mass of the region

Y +22<1/4, (x -1+ +22<1, x< 1.

Using polar coordinates, find the surface area of the
graph of each of the functions in Exercises 31-34 over
the unit disk x2+ y% < 1 (express your answer as an
integral if necessary).

31
32
33
34

. Xy
. x2+y2
L xt=y?
(2 + )

Evaluate the integrals in Exercises 35-38.

35

36
37

38

39

40.

. fo i fo /2 fo $in 6 2in & dp dep dlf.

: fo‘fo”/zfows"rz drdf dz.

. ff dx dy/(x2+y2), where D is the region in
D

the first quadrant bounded by the circles x2 + y*
=landx?+ y?=2.
. f f e’ dy dx. (Use a power series to eval-
[0,11x[0,1] i

uate to within 0.001.)

. As is well known, the density of a typical planet
is not constant throughout the planet. Assume
that planet LK.U. has a radius of 5 X 10® centi-
meters and a mass density (in grams per cubic
centimeter)

3% 10*
P(x’ Y Z) = r
3, r < 10* centimeters,

where r = \/xz +y2 + z? . Find a formula for the

gravitational potential outside I.K.U.

Derive the following three laws (see Exercise 15,

Section 17.6). :

(a) If a body is symmetrical about an axis, then
its center of mass lies on that axis.

, r > 10 centimeters,

(b) If a body is symmetrical in three planes with

a common point, then that point is its center
of mass.

41.

42.

43.

Review Exercises for Chapter 17 883

If a body has spherical symmetry about a
point (that is, if the density depends only on
the distance from that point), then that
point is its center of mass.

The flexural rigidity EI of a uniform beam is the
product of its Young’s modulus of elasticity E
and the moment of inertia I of the cross section
of the beam at x with respect to a horizontal line
! passing through the center of gravity of this
cross section. Here

I= fJ;[D(x, y)]2 dx dy,

where D(x, y) = the distance from (x, y) to /,
R = the cross section of the beam being consid-
ered.

(a) Assume the cross section R is the rectangle
—1<x<1l, ~1<y<2and /is the x
axis. Find 1.

Assume the cross section R is a circle of
radius 4, and / is the x axis. Find I, using
polar coordinates.

Justify the formula

S J g pydsdy= [ {49 x, )

for an integral over a region of type 1 by using
the slice method.
Find f°° e~ dx.

— o0

©

(b

44. Find f ® (5 + xVe " dx.
— o0

45.

(a) Interpret the result in Exercise 26 as a fact
about the average value of a linear function
on a rectangle.

*(b) What is the average value of a linear func-

tion on a parallelogram?

*46. If the world were two-dimensional,* the laws of

*47.

*48.

physics would predict that the gravitational po-
tential of a mass point is proportional to the
logarithm of the distance from the point. Using
polar coordinates, write an integral giving the
gravitational potential of a disk of constant den-
sity. . ’
Find the gravitational potential in the situation
of Fig. 17.6.2 when p, < R < p,. [Hint: Break
the integral over p into two parts.]
There is an interesting application of double
integrals to the problem of differentiation under
the integral sign.® Study the following theorem:
Let D =[a,b] X [c,d] and let g(x, y) be con-
tinuous, with g,(x, y) continuous on D. Then

d (d d
= [(end=["axd, a<x<b.

4 See Flatland by Edwin A. Abbot (Barnes and Noble, 1963) for an amusing (but sexist) description of such a world.

5 See “Fubini implies Leibniz implies F.=F~ by R. T. Seeley, American Mathematical Monthly 68(1961), 56-57.
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The idea of the proof is this: By the fundamental
theorem of calculus,

fcdg(x, ) dy=£d[Lxgx(s, y)ds + g(a, y)] .

Interchanging the order of integration, we get

x d . d
[ U gx(s,y)dy]dﬁf g(a, y) dy.
a (4 c
We can show that [?g.(s, y)dy is a continuous

function of s, so we can use the fundamental
theorem of calculus (alterdative version) to get

- [ex = e f:[fcdgx(s, ”) dy] ds
+ 4 Ucdg(a, y)dy]

d
= [“gCx ) dy+0
C
as asserted.

(a) Verify by direct integration that

i 7/2 - W/Zi :
I j(; sin(xy) dy fo i sin(xy) dy.

*49.

*50.%

*51.

(b) Show that F(k)= fo /2 dx /1 = k cosx ,

for 0 < k < 1, is an increasing function of k.
How fast is it increasing at k = 0?
Use the discussion of the theorem in Exercise 48
to show that interchanging the order of integra-
tion allows one to prove that the mixed partials
of a function are equal.
Show that each of the following functions has the
curious property that the volume under its graph
equals the surface area of its graph on any re-
gion:
@ flx, =1,
(b) f(x,y)=cosh(xcosa + ysina + ¢), (a,c
constants) and

© flx,y)= cosh(\/x2 +y% +¢) (¢ constant).

(Compare Review Exercise 85, Chapter 8).
Suppose that f(x, y) = cosh[u(x, y)] has the
property considered in Review Exercise 50. Find
a partial differential equation satisfied by u(x, y)
if u is not identically zero (i.e., find a relation
involving u, u, and u,).

6 Suggested by Chris Fisher.
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Chapter 18

18.1

Vector Analysis

The fundamental theorem of calculus is extended from the line to the plane and
to space.

The major theorems of vector analysis relate double and triple integrals to
integrals over curves and surfaces. These results have their origins in problems
of fluid flow and electromagnetic theory; thus, it is not surprising that they are
very important for physics as well as for their own mathematical beauty.
Enough applications are given in this chapter so that the student can appreci-
ate the physical meaning of the theorems.

Line Integrals

A vector field may be integrated along a curve to produce a number.

The integration of vector fields along curves is of fundamental importance in
both mathematics and physics. We will use the concept of work to motivate
the material in this section. In later sections, we establish Green’s and Stokes’
theorems, which relate line integrals, partial derivatives, and double integrals.

The motion of an object is described by a parametric curve—that is, by a
vector function r= o(z). By differentiating this function, we obtain (see
Section 14.6):

V= %;—' = ¢’'(?) = velocity at time #;
v = |lv|| = |l6’(¢)|| = speed at time ¢;
—- dV o . . :
a= prie o’(t) = acceleration at time ¢.
According to Newton’s second law,
2
F=ma= md—; = mo”(t),
dt

where F is the total force acting on the object. If the mass of the object is m,
the kinetic energy K is defined by

2

K=1imo*=1lmv-v.

To investigate the relationship between force and kinetic energy, we
differentiate K with respect to ¢, obtaining
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Example 1

Solution

Figure 18.1.1. Paths (a) and
(b) follow the solid line;
path (c) follows the dashed
line.

=m=-v=ma-v=F-.v

%)t

The total change in kinetic energy from time ¢, to ¢, is the integral of dK/dt,
so we get :

f;, s ft. vt ftletdt

The integral

bp, dr :
J; F dtdt’ (1)

denoted W, is called the work done by the force F along the path r = o().

It is often possible to express the total force on an object as a sum of
forces which are due to identifiable sources (such as gravity, friction, and fluid
pressure). If F represents a force of a particular type, then the integral (I) is
still called the work done by this particular force.

Let us now suppose that the force F at time ¢ depends only on the
position r = a(#). That is, we assume that there is a vector field ®(r) such that
F = ®(a(¢)). (Examples of such position-dependent forces are those caused by
gravitational and electrostatic attraction; frictional and magnetic forces are
velocity dependent.) Then we may write the integral (1) as

W= f, lt2<I>(a‘(t)) - a'(f)dt. @)

In the one-dimensional case, (2) can be simplified, by a change of
variables from time to position, to

W= LbF(x) dx,

where a and b are the starting and ending positions. This formula agrees with
that found in Section 9.5. Notice that the work done depends only on F, a,
and b and not on the details of the motion. We shall prove later in this.section
that, to a certain extent, the same situation remains true for motion in space:
the work done by a force field as a particle moves along a path does not
depend upon how the particle moves along the path; however, if different paths
are taken between the same endpoints, the work may be different.

Find the work done by the force field ®(x, y,z) = yi — xj + k as a particle is
moved from (1,0,0) to (1,0, 1) along each of the following paths:

(@) (x, y,z) = (cost,sint, t/2m); 0 < t < 2m; '
(b) (x, y,2z) = (cost’,sint>, /27); 0 < 1 < P
(©) (x, y,z) = (cost, —sint,t/2m); 0 < t < 2.

The (helicél) paths are sketched in Fig. 18.1.1.

z

(1,0,1)

/&\:’
N | // g

x  (1,0,0)
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(a) By formula (2), with ¢, =0, t, = 27, o(¥) = costi+ sintj+ (¢/2m)k, and
o'(1) = —sinti+ costj+ (1/27)k, the work done by the force along path (a)
is

TN ST s, 1
Wa—[) (sinti cost.|>+k)( Slntl+COStJ+2Wk)dt

= f 2"( —sin® — cos¥ + =1 ) dt
0 27

=27r(-‘1+%)= 27+ 1~ —528.

(b) This time,
2
o'(t) = —(sin*)(313)i + (cos )(31%)j + 32_th

=372 —sin % 3:, 1
3t[ sint’i+ cost’j ok

and

W, =fOJ2_'”(sint3i— cost3j +k)-(3t2)(——sint3i+ costj + %k)dt

3
=f 2"T(—sin2t3 —cos¥ + L )3t2dt
0 27

om

t=0

=f03’27(—1 + %)Btzdt=(—l+ %)ﬁ

=(—1+%)(2w)=1—2’”,

just as in part (a).
(c) Here

o'(t) = —sinti— costj + 5=k,

SO

W, =f2"(—sinti—costj +k) - (——sinti— costj+ %k)dt
0

= j 27T(sinzt +cos¥ + L ) dt
0 27

=27r(1 + l) =27+ 1~7.28.
2aq
In the case of path (c), the motion is “with the force,” so the work is
positive; for paths (a) and (b), the motion is “against the force” and the work
is negative. A

The equality of work along paths (a) and (b) in Example 1 is no accident: it is
a consequence of the fact that the two paths are simply two different param-
etrizations of the same curve in space. Shortly, we will prove that the work
along a path is always independent of the parametrization, and in Section
18.2, we will identify those special force fields for which the work is indepen-
dent of the path itself.
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Example 2

Solution

Example 3

Solution

Suppose that in the force field of Example 1, you pick up a unit mass at
(1,0,0), carry it along path (a), and leave it at (1,0, 1). How much work have
you done?

Since the kinetic energy is zero at the beginning and the end of the process,
the change in energy is zero and the total work is zero. The two sources of
work are you and the force field; since the work done by force field is — 5.28,
by part (a) of Example 1, the work done by you must be 5.28. A

Consider the gravitational force field defined (for (x, y,z) # (0,0, 0)) by

—1
<I>(x,y,z)= > . -
(x*+y + 29

Show that the work done by the gravitational force as a particle moves from

7 (xi+ yj+ zKk).

(%1, ¥1,21) 10 (x5, p,,2,) depends only on the radii R, =x? + y? + z} and

Ry=vx3+yi+z2.

Let the path be given by (x, y,z) = &(f), where a(t)) = (x,, y|,z,) and o(t,)
= (X3, y5,2;)- Think of x, y, and z as functions of . Then ¢’(¢) = (dx/df)i +
(dy/dt)j + (dz /df)k, and so

-1
“(xT+yt+2Y
ft x(dx/dt)+y(dy/dt)+z(dz/dt)
2 (x2+y* +z)

ey, b

= dz
W= 3/2(x1+y.|+zk) ( dt"+dtk)dt

=ft2~ (1/2)(d/ dt)(x* + y* + 27) @
h (x2+y2+ 22)3/2
- _ o(12)
=ft2 4 (x*+ 2+ %) 2 4t = (P +y*+ 2% 12
n dt o(t)

_ —-1/2 1
=(x3+y5+ z3) = (xi+ i+ ) R2 R

Thus, the work done by the gravitational field when a particle moves from
(x1, y1,21) to (x,, ¥5,2,) is 1 /R, — 1/ R,. Notice that, in this case, the work is
independent of the path taken between the two points. A

To define the line integral, we use formula (2) abstracted from its physical
interpretation.

The Line Integral

Let ® be a vector field defined in some region of space, and let r = o(?)
be a parametric curve in that region defined for ¢ in [¢,, ¢,]. The integral

IR ORIOL 3

is called the line integral of the vector field ® along this curve.

. | . .
The work done by a force field on a moving particle is therefore the line
integral of the force along the path travelled by the particle.
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Example 4 Find the line integral of the vector field e’i + e*j + ek along the curve
0,2,%), for 0 < ¢t < In2. :

Solution The velocity vector o'(¢) is j + 21k, so the line integral is
In2 2 ’ 2
[ i+ ey G+ 20 =f'“2(1 + e”2t)dt
=(t+e )= In2 + ™ — |
=n2+2"2-1~131. A

The next theorem shows that the line integral does not depend upon how the
path of integration is parametrized.

Theorem: Independence of
Parametrization

Given @ and o as in the preceding box, let ¢ = f(u) be a differentiable
function defined on the interval [u,, u,] such that f(u,) = ¢, and f(u,) =
t,. Let o,(u) be the parametric curve defined by o,(n) = o(f(un)). Then

fu:‘z@(o,(u)) <ol (u)du = ftltztb(a(t)) - o’'(t)dt.

The basic idea of the proof was illustrated in Example 1. We apply the chain
rule to o,(u) = o(f(u)), obtaining o () = o'(f(u))f'(u). Hence

\Start =a(t;) fuzd)(cl(u)) <oy (u)ydu = fusz(a(f(u))) . o"(f(u))f’(u) du.
Figure 18.1.2. A geometric “ “
curve must be parametrized We next change variables from u to ¢ = f(u). Since dt = f'(u)du, the integral

in a specified direction. becomes [ (o (2)) - o'(¢)dt as required. B

A geometric curve C is a set of points in the plane which can be traversed

by a parametrized curve; the direction of travel along C is specified, but not a

o(t;) = o(ty) specific parametrization (see Fig. 18.1.2). The theorem shows that the line
integral of a vector field along a geometric curve is well defined.

c A parametric curve o(¢) defined on [¢,,1,] is called closed if its endpoints

coincide—that is, if o(¢;) = o(¢,). A geometric curve is closed if it has a

parametrization which is closed. When C is a closed curve, any point of C

Figure 18.13. Any point may be taken as the initial point for the parametrization, but we must be sure
may be taken as the to.go around C just once (see Fig. 18.1.3 and Example 5.)

starting point for In summary, there are two reservations which must be noted in choosing
integration around a a parametrization of a geometric curve: the parametrization must go in the
closed curve. correct direction and it must trace out the curve exactly once.

Example 5 (a) Let C be the line segment joining (0,0,0) to (1,0,0) and let ,(¢) = (1,0,0),
0 < ¢ < 1. Find the line integral of ®(x, y,z) =1 along this curve. If C is -
parametrized by a,(¢) = (1 —~ 1,0,0), 0 < ¢ < 1, find the line integral.
(b) Let C be the circle given by x>+ y? =1, z = 0. Let o(¢) = (cos,sinz,0),
0 < ¢ < 27. Find the line integral of ®(x, y,z) = — yi + xj along this curve. If
C is parametrized by o,(f) = (cost,sint,0), 0 < ¢ < 47, find the line integral.
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Solution (a) Here o}(¢) =i, t,=0,¢=1,and ®(o,(9)) =1, so formula (3) gives

Figure 18.14. o, and o,
traverse C in opposite
directions.

Figure 18.1.5. o, goes
around C once while o,
goes around twice.

ftltzq’(”l(t)) - oy(t)dt =f01i-idt =j(;ldt= L

For 6,, we similarly have t=0,t,=1, 65t) = —i, and D(o,(0) =1, so

ftltzib(az(t)) -.og(t)dt=f01—i-idt= —fo'dt= ~1.

Here the geometric curve C is the same, but the two parametrizations, o, and
o), traverse C in opposite directions. See Fig. 18.1.4.

z

Finish
for o,

¢ / Start
Start / for g;
for o, \

Finish for ¢;

<y

X

(b) The line integral for o, is obtained from formula (3) by substituting
ty = 0,1, = 27, 0/(t) = (cost,sint,0), P(x, »:2) = =yi+ xj, ®(oy(¥) =
—sinti+ costj, 0y(f) = costi+ sintj, and 6(¢) = —sinti + costj, as follows:

IR CORAICEE L *(sin% + cost) dr= 2.
1

Notice that we get the same result if we choose any § and parametrize C by
the equation o(z) = (cos(t + 8),sin(z + 8),0), 0 < ¢ < 2x; this will start and
finish at (cos 4, sin 8, 0). If we go backwards along C, using the parametrization
o (1) = (cos(— 1), sin(— £),0), we will get the negative of our earlier answer.

If we use a,(), the only change is that ¢, is changed to 4, so we get

[lt2¢(02(t)) - o4(r)dt = 4.

This is double our first answer, since o, traverses C twice. See Fig. 18.1.5. A

4
9,

=
0, "‘//_/ g

% Start = Finish

A useful notation for the line integral is suggested by the Leibniz notation. Let
us write r = () so that ¢'(#) = dr/dt and (3) becomes [7®(r) - (dr/df)dt. It
is tempting to change variables to r and write ' 2@(r) - dr, where r, = o(#,) and
r, = o(t,), but this notation does not display the curve traced out by r = a(¥),
only its endpoints. If we use the letter C to denote the path of integration,
however, we can define

fc ®(r) - dr = ft] ®(a (1)) - o (1) dt, » 4

where o(?) is.any parametrization of C (subject to the reservations discussed
above). The notation dr for o’(f)dt is consistent with our other uses of
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" Figure 18.1.6. Ar~ o'(1) At r=o()

Ar=a(t + A _ o(t) = a'(t)At

r+Ar=a(t + A1)

0

infinitesimal notation. The change in r over a small time interval Atz is
Ar~ o'(¢) At (see Fig. 18.1.6). As At becomes the infinitesimal df, Ar passes
over into dr, and the approximate equality becomes exact.

Example 6 Let C be the straight line segment joining (2, 1,3) to (—4,6,8). Find

fctl)(r) . dr,
where ®(x, y,z) = xi — yj + xyk.
Solution We may choose any parametrization of C; the simplest is probably
o(t)=(1—-16)(2,1,3)+1t(—4,6,8)
=(2—6¢,1+ 51,3 + 50), 0<t<1.

As t varies from 0 to 1, o(f) moves along C from (2,1,3) to (—4,6,8). By
formula (4), we get

fcrb(r) cdr
=f01[(2 — 62)i — (1 + 50)j + (2 — 6£)(1 + 50)k) | - (— 61 + 5] + Sk)dt

=f1(—7+ 31— 1502y de= - 8 a
0

Example 7 Suppose that &(r) is orthogonal to o’(¢) at each point of the curve (7). What
can you say about the line integral [-®(r) - dr?

Solution Since [ ®()- dr= [P®(a (1) o'()dt, this integral will be zero because
®(o(2))- o'(1) =0, as ® and ¢’ are orthogonal. A

The formulas

b c c
x)dx+ x)dx= x)dx 5
[ rds+ [ foods= [ fx) | O
G+ Gy and
b a
dx= — d 6
. < [7fax ’ [ ey ©)
(@ for ordinary integrals have their counterparts in line integration. If we choose
a point on a curve C, it divides C into two curves, C; and C, (see Fig..
18.1.7(a)). We write C = C; + C,. Then (4) and (5) give
}' D) dr=| P)-dr+ | P(r)-dr. 7
= Lo 20 dr= [ @) dr+ [ @) o
Let — C be the curve C traversed in the reverse direction (see Fig. 18.1.7(b)).
(b) Then (4) and (6) give ‘
Figure 18.1.7. “Algebraic” o . ‘
operations on curves. f - C(I)(r) dr = fc(l)(r) dr. ®)
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Figure 18.1.8. If
C=C+---+C,,
then [ ®(r) - dr
=271/ @) - dr.

Example 8

Solution
y
G
0,1 - (1,1
Gy “CZF
ol ¢ GO *

Figure 18.1.9. The
perimeter of the unit square
broken into four pieces.

Addition formula (7) suggests a way to define line integrals over curves
with “corners”—that is, continuous curves on which the tangent vector is
undefined at certain points. If C is such a curve, we write C = C, + C, +
Cs + - -+ + C, by dividing it at the corner points, and we define [ ®(r) - dr to
be

2 f(b(r) ~dr  (see Fig. 18.1.8).
i=1YC

Let C be the perimeter of the unit square [0, 1] X [0, 1] in the plane, traversed
in the counterclockwise direction (see Fig. 18.1.9). Evaluate the line integral
[c®(r) - dr, where ®(x, y) = x%i + xpj.

We do this problem by integrating along each of the sides C,,C,,C;,C,
separately and adding the results (see Fig. 18.1.9). The parametrizations are

Cp: (1,0),0< £ < 1; 0y(f) = fi.
Cy: (1,),0< £< 1; 0,(0) =i + 4.

Co: (1—1,1),0<t < 1; o5(8) = (1 — Di+]j.
Cy: 0,1 —10),0< 1< 1; 0,8)=(l — 1.

Thus, by (4),
! 1
e dr = 2t = =
fc Ifl)(r) r fo t 3

fccb(r)-dr—ftdt—%,

1
fcp(r) dr—f(l—t)(-—l)dt -3
®(r)-dr=| 0dt =
IRCIIN
Adding, we get
c 3 2 3 2°

Another notation for the line integral arises if we write our vectors in
components. Suppose that ®(x, y,z) = a(x, y,2)i + b(x, y,2)j + c(x, y,z)k.
The expression for the derivative,

ar _ dx; dy . dz
a - a taitak

can be written formally as
dr=dxi+ dyj+ dzk,

and so

fc(l)(r) - dr =fc[a(x, y,2)i+ b(x, y,2)j -il c(x, y,z)k] ~(dxi+dyj+ dzk)

?fc[a(x, »,2)dx + b(x, y,z)dy + c(x, y,z)dz]. (9-)‘
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The expression inside the last integral is called a differential form. To evaluate
the integral, we choose a parametrization of C. Then x, y, and z become
functions of #; dx,dy,dz are expressed in terms of 7 and df, and the integrand
becomes an ordinary integrand in ¢ which may be integrated over the
parametrization interval.

Example 9 Evaluate fcoszdx + e*dy + ¢’ dz, where C is parametrized by (x, y,z) =
c
(1,t,e"),0< £ < 2.

Solution We compute dx = 0, dy = dt, dz = e'dt, and so

x y — 2 1 2t
fc[coszdx+e dy + e’dz] fo(0+e + e*)dt

A

- 1 ,27°_ 11
[et+2e ]0 2e+2e 5

The following box summarizes the notations and definitions developed so far.

Line Integrals

The line integral of a vector function (x, y,z) along a curve o(z),
L <t< 1, is

ft I”(I)(or(t)) - o'(t)dt.

If ®(x, y,z) = a(x, y,2)i+ b(x, y,2)j + ¢(x, y,z)k, and
o(t) = x(Oi + y(1)j + z(k, then
J:Z(I)(a(t)) < o'(1)ydt = ftltza(x(t), y(1)2(1) L ar

d

P ly t dz
+-£| b(x(1), y(),2()) v dt+ft, c(x(1), y(1),2(2)) 7 dt,
which is also written

dx+ bdy + cd ®(r) - d impl b
fcax ly +cdz or fc(r) rormmpyfc

Example 10  Find f sinmx dy — cosmydz, where C is the triangle with vertices (1,0,0),
c .
(0,1,0), and (0,0, 1) in that order.

Solution We write C = C, + C, + C;, where C, is the line segment from (1,0,0) to
(0,1,0), C, is the line segment from (0, 1,0) to (0,0,1), and C, is the line
segment from (0,0, 1) to (1,0, 0). Parametrizations on [0, 1] for these segments
are

Ci: (x,y,2)=(1-1,t,0)s0dx = —dt, dy=dt, dz = 0;
Cy: (%, 3,2)=0,1-t,0)sodx=0,dy= —dt, dz = dt;
Cy: (x, »,2)=(,0,1 -0 sodx=dt dy=0,dz= —dt.
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Then

3
fc sin(7x) dy — cos(my)dz = > fc sin(7x) dy— cos(my)dz
. i=1Y¢

=folsin[7r(1 — £) ] dt— cos(wt) - 0

+f01sin(vr -0)(—dr) — cos[w(l - t)k] dt

+£lsinwt- 0 — cos(m - 0)(— dr)

=f0‘sin[w(1 - t)]dt—folcos[qr(l - t)]dt+f0‘dt

- %{—cos[vr(l - t)]}ll

_ (_ %){sin[w(l - t)]}4;+ 1

0

= %(cosO —cos7) + %(SinO— sin7) + 1

=-;-[1—(—1)]+%(0—0)+1=

2

ki

+1. A

Exercises for Section 18.1

1.

Calculate the work which is done by the force
field ®(x, y,z) = xi+ yj when a particle is
moved along the path (31%,1,1),0 < ¢t < 1.

. Find the work done by the force field in Exercise

1 when a particle is moved along the straight line
segment from (0,0, 1) to (3,1, 1).

. Find the work which is done by the force field

®(x, y) = (x2 + y)(i + j) around the loop (x, y)
= (cost,sint), 0 < ¢ < 2.

. Find the work done by the force field in Exercise

3 around the loop (x, y)=(1+ cost,1 +sint),
0<1t<27.

. Suppose that you pick up a unit mass which was

at rest at (1,0,0) and carry it to (1,0, 1) along the
path (1,0,7) under the field xpi + (x + y)k. If
you leave the particle with velocity vector i + 2j
at the end of the trip, how much work have you
done?

. Do as in Exercise 5, except that the particle is left

at rest at the end of the trip.

. Show that if a particle is moved along the closed

curve (cost,sint,0), 0 < ¢ < 27, then the force
field in Example 1 does a nonzero amount of
work on the particle. How much is the work?

. Show that if a particle is moved along a closed

curve (that is, o(#)) = 0(t,)), then the work done
on it by the gravitational field in Example 3 is
Zero.

Let ®(x, y) =[1/(x? + y))(~yi + xj) be a force field

in the plane (minus the origin). Compute the work done

by this force along each of the paths in Exercises 9-12.
9. (cost,sint); 0< <7

10.

(cost, —sinf); 0< 1< 7w

11.
12.

(cost,sint); 0 < t < 2
(—cost,sin?); 0< t < 27

In Exercises 13-20, evaluate the integral of the given
vector field @ along the given path.

13.

14.

15.

16.

17.

18.

19.

20.

o(f) =(sint,cos1,1), 0 < t < 2,

D(x, y,z) = xi + yj + zk. '
o()=(Lt0;0<1<1,

D(x, y,z) = xi — yj + zk.

o(t) =(cost,sint,0); 0 < t < /2,

D(x, y,z) = xi ~ yj + zk.

o(t) = (cost,sint,0); 0 < ¢t < 7/2,

D(x, y,z) = xi — yj + 2k.

() =(sint,#%,1); 0 < t < 2,

D(x, y,z) =sinzi + cos\/'fj + x3k.
o(t)=(cost,sect,tant); —a/4 <t < n/4,
D(x, y,z) = xzi + xyj + yzk.

s()=((1+ 22 1Ln;0<t< 1,

B(x, y,z) =T1/*+ D]i + x(1 + y?)j + e’k.
o(D)=3i+(-Dj+k0< <1,

B(x, y,z) = (x> + x)i + i_;“% j+(z — 2k

Let @(x, y,z) = x%i — xyj + k. Evaluate the line inte-
gral of @ along each of the curves in Exercises 21-24,

21.
22.

23.

24.

The straight line joining (0, 0,0) to (1,1, ).

The circle of radius 1, center at the origin and
lying in the yz plane, traversed counterclockwise
as viewed from the positive x axis.

The parabola z = x2, y =0, between (—1,0,1)
and (1,0, 1),

The straight line between (—1,0, 1) and (1,0, ).

. Let C be parametrized by x = cos¥, y = sin%,

z=48, 0< 6 <7w/2. Evaluate the integra
fcsinzdx + coszdy — (xy)l/3 dz. :
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18.2 Path Independence 895

26. Evaluate [cx?dx + xydy + dz, where C is para- 29. f(x, y,z) = x + y + yz, where
metrized by o() = (1,5, 1), 0 <t < L. o(f) = (sint, cost,t); 0<t<2m.

27. Evaluate [ ®(r) - dr, where ®(x, y,z) =sinzi+ 30. f(x,y,2) = x + cos? z, ¢ as in Exercise 29.
cosyyj+ x’k and C is the line segment from . 3L f(x, y,z) = xcosz, o(r)=ti+ P 0<r< .
(1,0,0) to (0,0,3). 32. f(x, y,z) =expVz, 6(t) = (1,2,6); 0 < 1< L

28. Evaluate [ce**7~%(i+j—Kk)-dr, where C is 33. f(x, y,2) = yz, 6(£) = (1,3£,21); L < t < 3.
the path (Int,1,¢) for 2 < ¢ <'4. 34 f(x, y,2)=(x +y)/(y + 2),

The line integral of a scalar function f along a paramet- o() =124 1<t <2

ric curve a(1t), t; < t < 5, is defined by

f, 2 (e (1)) a"(£)]| dt.

%x35. Show that the value of the line integral of a
scalar function over a parametric curve, defined
after Exercise 28, is unchanged if the curve is

Note that if f = 1, this is just the arc length of the curve. reparametrized.
Evaluate the line integrals of the functions along the
indicated curves in Exercises 29-34.

18.2

G

G
Figure 18.2.1. C, and C,
have the same endpoints
when C= C, +(—C))is
closed.

Path Independence

The line integral of a gradient vector field depends only on the endpoints of the
curve.

We saw in the last section that the line integral of a vector field along a curve
from a point A to a point B depends not just on 4 and B, but on the path of
integration itself. There is, however, an important class of vector fields for
which line integrals are path independent. In this section and the next, we
shall give several different ways to recognize and use such vector fields.

A vector field ®(x, y,z) defined on some domain D in space (or a vector
field ®(x, y) defined on a domain in the plane) is called conservative if,
whenever C, and C, are curves in D with the same endpoints, the line
integrals [, ®(r) - dr and f c,@(r) - dr are equal.

Our first observation is that a vector field on D is conservative if and only
if its integral around every closed curve in D is zero. (A conservative force
field is thus one in which no net work is done, i.e., energy is conserved if a
particle goes around a closed path.)

To justify this observation, we consider Figure 18.2.1, which can be
interpreted in two different ways. First of all, if C, and C, are given curves
from A to B, then C = C, + (— C,) is a closed curve (from 4 to 4). If ® has
the property that its integral around every closed curve is zero, then by
formulas (7) and (8) in Section 18.1,

fCZ(I)(r)-dr—fCI(I)(r)-dr=fcz+(_Cl)<I>(r)-dr=L<I>(r)-dr=0

s0 [ ®@(r) - dr = [ ®(r) - dr. Since this is true for all curves C, and C, with
common endpoints, ® is conservative.

The second way to look at Figure 18.2.1 is to consider the closed curve C
as given; the pieces C, and C, are then manufactured by choosing points A
and B on C so that C = C, + (— C,). Now if ® is conservative, then

0 fc o) dr fc () - dr fC o 2 dr fc @(r) - dr;
so the integral of @ around a closed curve C is zero.

The argument just given to connect path independence with integrals
around closed curves has many applications in mathematics. A related geo-
metric example is given in Exercise 37.
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Example 1

Figure 18.2.2. Paths for
Example 1.

Solution

Example 2

Solution

Conservative Fields

A vector field @ is conservative when the line integral of ® around any
closed curve is zero, which is the same as the line integrals of ® being
path independent.

Let @ be a conservative vector field in the plane. If the line integral of & along
the curve 40B in Figure 18.2.2 equals 3.5, find the integral of ® along the
broken lines: (a) ACB, (b) BDA, (c) ACBDA.

¥y

A D

(a) Since AOB and ACB have the same endpoints, and ® is conservative, the
integral of ® along ACB is 3.5.

(b) BDA has the same endpoints as BOA, which is — AOB, so the integral
is —3.5.

(c) ACBDA is a closed curve, so the line integral around it is zero. A

Using examples from the previous section, show that neither of the vector
fields yi — xj + k and — yi + xj is conservative.

In Example 1, Section 18.1, the line integrals of yi — xj + k along the paths (a)
and (c) are different, although the curves have the same endpoints. In
Example 5(b), the line integral of — yi + xj around a closed curve is not zero,
0 it cannot be conservative. A

Conservative vector fields are easy to integrate because we can replace
complicated paths by simple ones, but we still do not know how to recognize
these fields. A first step in this direction is the following result.

Theorem: Gradient Vector Fields Are
Conservative

If @ =V, then ® is conservative. In fact, if @ =V, then for any curve
C from A4 to B,

J @) - de = j(B) - fa).

To, prove this theorem, we let o(f) be a parametrized curve on [f,,2,]
representing C and going from A4 to B, so that

fc l@(r)-drf ft “B(o(1)) - o' (1)l = f, “Vf(o (1) (1)
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Example 3

Solution

18.2 Path Independence 897

By the chain rule for gradients and curves (Section 16.1), Vf(a(2))- o'(¢)
= (d/d)[f(e(1)), so
[2)-dr = [ & [ f(o()]di=flo()) = f(#(2) = [(B) = ().

In the next-to-last equality, we used the fundamental theorem of calculus
(Section 4.4). B

Evaluate [.ydx + xdy if C is parametrized by (¢°,sin’(71/2)), 0 < t < 1.

We recognize the vector field ® = yi + xj (by guesswork) as the gradient of
f(x, y) = xy, since
fe=y and f =x.

The path of integration goes from (0,0) at ¢ =0 to (1,1) at =1, so the
theorem above gives

fcqr(r) cdr=f(1,1) — f(0,0)= 1. A

Note the resemblance of the formula
J.vr) - dr=f(B) = f(4),

in the box above to the fundamental theorem of calculus. By analogy with the
one-dimensional case, wé call a function f such that Vf= & an antiderivative
for f (the term primitive is sometimes used). The theorem also shows a big
difference between the one-dimensional and multi-dimensional cases: whereas
every continuous function of one variable has an antiderivative (see Section
4.5), in several variables, only conservative vector fields can have antideriv-
atives. In fact, every conservative vector field does have an antiderivative.

Theorem: Every Conservative
Vector Field is a Gradient

If ®(x, y) is a vector field defined in a region D, and @ is conservative,
then there is a function f defined on D such that @ =Vf.

To prove this theorem, we must construct an antiderivative for any given
conservative vector field ®. We do so by “integrating ®” as follows. Arbitrar-
ily choose a point O in the domain D of the vector field. For every point 4 in
D, we define f(4) by integrating ® along some path from O to 4. (The word
“path” is synonymous with “curve.”) Since ® is conservative, we get the same
result no matter what path we choose. (We are implicitly assuming that D is
connected, i.e., that it consists of just one piece, so that every point may be
joined to O by some path in D. If D has several pieces, the argument is still
valid if we work with one piece at a time.)

To show that Vf=®, we shall show that [ Vf(r):dr= [ ®(r)- dr for
every curve C. Once we have done this, it follows that

J[o@) - Vi) -dr=0

for all C; but this implies that ®(r) — Vf(r) is identically zero (if not, its
integral over a suitably chosen short straight path would be nonzero—see
Exercise 36), so @ = V.
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Figure 18.2.3. C and
(= Cy) + C, are both paths

from A to B.

Example 4

Solution

To prove that [ Vf(r):dr= [ ®(r)-dr for any path C, we refer to
Figure 18.2.3. Since we know that [ Vf(r) - dr = f(B) — f(4) by the previous
theorem, we need to show that [ ®(r)-dr= f(B)~ f(4). Now f(B)=
Jc,@(@) - dr and f(4)= [, ®(r)-dr. Thus f(B)— f(4)= f(—C,)+C2(D(r) odr
= [¢®(r) - dr since (—C)) + C, and C have the same endpoints and @ is
conservative. ll ‘ .

A

0 K

Calculate the work done in moving a mass m from a distance r, out to a
distance r, in the gravitational field of mass M which produces the force field
F = —(GMm/r’)r, where r = xi+ yj + zk and the mass M is located at the
origin.

From Example 4, Section 16.1, F= —VV, where V= —GMm/r. Let the
curve C join the points 4 and B at distances r, and r, from the origin. The
work done by F is

W=fCF-dr= —fCVV-dr= —(V(B) - V(4))

= V(4) - V(B) = GMm(l - i).
r, n
The work done in doing this move is therefore GMm(1/r, — 1/r,). If the signs
confuse you, note that a spacecraft moving a payload from a distance r, to a
distance r, > r; does positive work. A

We still do not know how to tell whether a vector field is conservative just by
looking at a formula like ®(x, y,z) = cos yzi + e*j+ k, nor do we have a
computationally efficient way of finding antiderivatives. The following theo-
rem provides the method we need. For simplicity, we present it for two
variables; the analogous result for three variables is given in Exercise 30.

Theorem: The Cross-Derivative Test

A vector field @(x, y) = a(x, y)i + b(x, y)j defined on the whole plane
is conservative if and only if a, = b,.

The following proof gives an explicit method for finding an antiderivative of
®. First, we note from pages 896 and 897 that ® is conservative if and only if
it is of the form Vf, ie, if and only if we can solve the simultaneous
equations'

ko= o | 0

We notice that if (1) and (2) have a solution f, then (1) implies fo=a,
while (a) implies f,, = b,. By the equality of mixed partial derivatives (Section
15.1), fxy = _fyx’ so we must have a, = b, whenever the vector field a(x, y)i +
b(x, y)j is conservative. J

! These are called partial differential equations, since they involve partial derivatives of the
unknown function f.
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To prove that a, = b, implies that a(x, p)i + b(x, y)j is a gradient, we
begin by solving equation (1). We do this by integrating (1) with respect to x,
thinking of y as being held fixed just as we do in partial differentiation, to get
a trial solution f(x, y) of our equations. (You may wish to skip ahead and read
Example 5 before finishing this proof.) For instance, we may take

Feo )= [a(t, )t

The choice of 0 as the starting x value for integration was arbitrary, and
indeed we get other solutions of equation (1) by adding any function g(y),
since the x derivative of f(x, y) flx, y) + g(y) is still a(x, y). The function
g(y) plays the role of the “arbitrary constant” in this partial indefinite
integration; what we must do next is to choose it so that equation (2) as well
as (1) will be satisfied. With f(x, y) = f(x, y) + g(y), equation (2) becomes

5,0+ g(»)=b(x, ),
ie, g(y)=b(x, p) = [,(x: y)- (3)

We have written g'( y) rather than g,(y) since g is a function of one variable.

Equation (3) can be solved by ordinary integration with respect to y
provided that the right-hand side is a function of y alone ie., if the x
derivative of b — f is zero; but (b — fy) =b,—fx= fxy =b,—a,
which is zero by the hypothesis a,=b,.

Example 5 Show that the vector field (2x + 3y*)i + (9xy* + 2y)j is conservative, and find
an antiderivative.

Solution With a(x, y) 2x + 3y” and b(x, y) = 9xp? + 2y, we have @ (X, p) = 9y? and
b.(x, y) = 9y~ so the cross-derivative test shows that the glven field is conser-
vative. To f1nd an antiderivative f, we first solve the equation

[ y) =2x +3)° |
by integrating with respect to x to obtain the trial solution x> + 3xy>. To this
we may add an arbitrary function g(y) without destroying the property that
its x derivative is 2x + 3y>. Thus, our trial solution is f(x, y) = x? + 3xy® +
g(»). Now the equation J, = b becomes

9xy? + gy = 9xy? + 2y,
so g'(y) = 2y. (The fact that the equation for g’(y) does not involve x is a

consequence of the condition a, = b,.) A solution of g’(y) =2y is g(y) = »4
so we may take f(x, y) = x* + 3xp° + »? as our antiderivative. A

Example 6 Show that the vector field x%i + xyj is not conservative.

Solution With a(x, y) = x* and b(x, y) = xy, we have a,=0 and b, = y. Since these
cross-derivatives are unequal, the field cannot be conservative. A :

The next example illustrates the importance of the condition in the previous
theorem that the vector field be defined in the entire plane.
Example 7 (a) Show that the vector field

D(x, y)= i+ X
(%, ») X2+ y? X2+ 2

is not conservative by integrating it around the circle x> + y* = 1.
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Solution

(b) Verify that the cross-derivative condition a, = b, is nevertheless satisfied
for this vector field.
(c) What is going on here?

(a) Parametrizing the unit circle C by a(z) = (cos Ni + (sin?)j gives

j) (- sin i + (cost)j)dt

2 g .
fd)(r)-dr=f 7T( - sin ¢ i+ = ZCOSt 5
C 0 sin“t + cos“t sin“t + cost

f 27 gin’t + coszt di=2m.
o sin’ + cost

Since this is not zero, ® is not conservative.
(b) With a(x, y) = —y/(x*+ y? and b(x, y) = x/(x? +y2), we have

=D = (—¥)2 e
ay(x,y)=( )’)(2 )2(2 y)()’)= yz .
(X +.y) (x +y)
and
b.(x,y)= (x2+y2)2(1) —2(ZX)(2x) _ yzz_ x222 |
(x +59) (x + %) |

so the cross-derivative condition is satisfied. »
(¢) The vector field ®(x, y) is not defined at the origin, so the cross-derivative
test does not apply. A

Exerciées for Section 18.2

Let @ be a conservative vector field in the plane.
Suppose that the integral of @ along AOF is 3, along
OF is 2, and along AB is —5. Compute the integral of
@ along the paths in Exercises 1-4.

1. AODEF
2. FEDO
3. BOEF
4. BAODEF

Y
A F

0

B E
X
Figure 18.2.4. Paths for

¢ Exercise 4.

In Exercises 5-8, evaluate the integral of the given
vector field around the given closed curve to demon-
strate that it is not conservative.
-5. @ = yi + yj + k, C the path consisting of straight
lines joining (0, 0,0), (0, 1,0), (1,.1,0) and (0, 0,0).
6. @ = 2i + xj, C the path in the plane consisting of
straight lines from (0,0) to (1,1) to (—1, 1) to
(0,0).
7. ® = 3i + xj, C the unit circle x2 +y =1.
8. @ = yi — xyj, C the unit circle x? +y =1.

In Exercises 9—12, recognize the vector field as a gradi-
ent and use this to evaluate the given integral.
9. [c2xpdx + x*dy, C parametrized by x = cos8¢,
y=>5sinl6,0< 1< 7/4
10. [coye” dx + xe™ dy, C parametrized by x =57,
y=—0,-1<t<1l
11. [3x%%dx + 2x% dy, C parametrized by
x=32+1,y=2,0<t< 1
12. [cysin(xy)dx + xsin(xy)dy, C parametrized by
x=cos2t, y=13sin2.,0< 1< /2.

13. A certain force field exerted on a mass m is given
by F= —(Mm/r’r. Find the work done in
moving the mass m from a distance r, out to a
distance r, > ry.

14. The mass of the earth is approximately 6 X 107
grams; the mass of the sun is 330,000 times as
much. The gravitational constant (in units. of
grams, seconds, and centimeters) is 6.7% 1078,
The distance of the earth from the sun is about
1.5 X 10'? centimeters. Compute, approximately,
the work necessary to increase the distance of the
earth from the sun by 1 centimeter.

15. Suppose that the kinetic .energy of a particle
which moves in a circular path increases after it
makes one circuit. Can the force field governing
the particle’s motion be conservative?

16. In the earth’s gravitational field, show that if a

' mass is taken on a journey, however compli-
cated, the net amount of work done against the
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17.

18.

19.

20.

21.

22.

gravitational field is zero, provided the mass ends
up in the same spot it began, with the same
speed.

Is 2xyi + (x? + cos »)j conservative? If so, find
an antiderivative.

Is x%i+ (3 x° + ye)j conservative? If so, find
an antiderivative. '

Is 4x cos’( y/Di— x%in yj conservative? If so,
find an antiderivative.

Is 2xy sin(xzy)i + (e’ + xzsin(xzy))j conserva-
tive? If so, find an antiderivative.

Consider the vector field in Example 7. Show
that if we restrict its domain to be those (x, y)
with y > 0, then it is conservative. (Show that
f(x, y) =tan"( y/x) is an antiderivative.)

In Exercise 21, what prevents f from being an
antiderivative for ® on the whole plane minus
the origin?

In Exercises 23-26, recognize ® as a gradient and
computie the work done in moving a particle along the
given path with the given force.

23.

24.

25.
26.

27.

28.

o()=(cost,sint,1); 0<t <2, B(x, p,z)=
xi+ yj + zk.

o(1) = (cost,sint,0); 0< 1 <27, B(x, y,z)=
xi+ yj+ zk.

Same as Exercise 24 but with 0 <
o(t)=(acost,0,bsinz); 0 < ¢

—r/|irl>.

Let ®(x, y,z) = (2> + 2xp)i + x% + 3xz%k. Show

that the integral of @ around the circumference

of the unit square [0, 1] X [0, 1] in the xy plane is

zero by:

(a) Evaluating directly.

(b) Demonstrating that ® is the gradient of
some function f.

Let

< 7.
2

t
< 2m, ®(r)=

f(x, y,z) = e*cos(yz + x®) + [sin( yz)lIn(1 + x?).

Show that
fo(r)-dr=f Vf(r) - dr,
C, c,

where C| is the straight line joining (0, 1,0) to
(1,1,0) and C, is the curve parametrized by
(sint,cos4t,sin4r); 0 < ¢t < 7/2.

18.3 Exact Differentials

29.

18.3 Exact Differentials 901

If f(x, y,z) = x> — y* + sin(nyz /2), evaluate
[V f(r) - dr along the curve

3
a(z)=( ! ,sinEtS,t2+2); 0<t<l
1472 4

*30.

Extend the cross-derivative test to vector fields
in space: show that ®(x, y,z) = a(x, y,2)i +
b(x, y,z)j + c¢(x, y,z)k is conservative if and
only if ¢, = b,, ¢, = a, and a,=b,.

Use the cross-derivative test in Exercise 30 to determine
whether each of the vector fields in Exercises 31-34 is
conservative. If it is, find an antiderivative.

*31.
*32.
*33.
*34.

*35.

%*36.

*37.

2xyi + (x% + 29j + yk
xyi + yzj + xzk

e’i + xze”’j + xye’’k
cos(xp)i + yxj — sin( yz)k

Show that any two antiderivatives. of a vector
field in the plane or space differ by a constant.
Show that only the zero vector field is totally
path independent in the sense that its integrals
over all paths, even with different endpoints,
are equal.

Two-color problem. Several intersecting circles
are drawn in the plane. Show that the resulting
“map” can be colored with two colors in such a
way that adjacent regions have different colors
(as in Fig. 18.2.5). [Hint: First show that every
closed curve crosses the union of the circles an
even number of times. Then divide the regions
into two classes according to whether an arc
from the region to a fixed point crosses the
circles an even or odd number of times. Com-
pare your argument with the proof of the basic
properties of conservative vector fields.]

Figure 18.2.5. Adjacent
regions have opposite
colors.

Gradient vector fields correspond to exact differentials.

In the preceding section, we established the cross-derivative test: a vector field
®(x, y) = a(x, y)i + b(x, y)j defined on the whole plane is the gradient of
some function if and only if a, = b,. In this section, we shall use this result to
solve a class of differential equations called exact equations. In doing this, it is
convenient to use the notation of differential forms, so we begin by summariz-

ing this notation.

Copyright 1985 Springer-Verlag. All rights reserved



902 Chapter 18 Vector Analysis

G

(x,y)

&)

(0,0 x,0) x

Figure 18.3.1. The path
used to construct

u=f(x, y).

Exémple 1

Solution

Just as the differential notation [f(x)dx was convenient for functions of one
variable, we have seen that the notation

fC(D(x, y). dr=fca(x, y)dx+ b(x, y)dy

is a good one for the line integral of a vector field ®(x, y)=a(x, y)i+
b(x, y)j. The expression a(x, y)dx + b(x, y)dy is called a differential form;
such an expression is often written as P dx + Qdy, where P = a(x, y) and
Q = b(x, y). The differential form Pdx + Qdy is called exact if there is a
function u = f(x, y) such that P=03u/dx and Q =9u/dy, so Pdx + Qdy
= (du/0x)dx + (du/dy)dy. We call u = f(x, y) an antiderivative of the differ-
ential form. Using this notation, we can rewrite the cross-derivative test as
follows.

Cross-Derivative Test for Differential Forms

Let Pdx + Qdy be a differential form defined in the plane. If P and Q
have continuous partials and 9P/dy =93Q/dx, then Pdx + Qdy is
exact—that is, there is a function u = f(x, y) such that P = 9u/dx and
Q =9u/dy. (In other words, the vector field Pi+ Qj is the gradient of

)

Given a differential form Pdx + Qdy satisfying 9P /9y = 3Q/dx, there are
two ways of finding u = f(x, y). The first is the method we used in Example 5,
Section 18.2.

Method 1. If P =9u/dx, integrate to give u = [Pdx + g(y), where g(y)
is a function of y to be determined. Differentiate u with respect to y and
equate your answer to Q. This will give an equation for g'(y) which may be
integrated to yield g(y) and hence u.

Method 2. 1f C is a curve from (x,, yo) to (x, y) and if ®(x, y) =V f(x, y)
then from p. 896,

f(x’)’)_f(xo,)’o)=fc¢'dr.

Choose C to be the curve from (0,0) to (x, y) shown in Figure 18.3.1. We can
also adjust f by a constant so that £(0, 0) = 0. This leads to the explicit formula

f(x, ) =f0"a(t, O)dt+f0yb(x, ndt : (1)

for u = f(x, y), where P = a(x, y) and Q = b(x, y). In (1), [3a(z,0)dt is the
integral of Pdx + Qdy along C,, while [$b(x,¢)dt is the integral along C,.

Is (2xpcos y + x*)dx + (x*cos y — x%sin y)dy an exact differential? If so,
find an antiderivative; that is, find # such that du/dx = 2xy cos y + x* and
du/dy = x*cos y — x?sin y.

To test for exactness, we let P =2xycos y + x* and Q = x%cos y — x?sin y
and compute that

%—; = —2xysin y + 2xcos y = %g— ,
and so a u exists. To find u, we can use either of the two methods above.
Method 1. We must have

py P and 3y 0,
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Hence
g_u =2xycos y + x* and %}-‘f = x%cos y — x?ysin y.

Integrating the first equatlon with respect to x gives u = x%cos y + x*/3 +
g(y); the “constant” of integration g must be a function of y alone. Differ-
entiating w1th respect to y gives du/dy = x?cos y — x%sin y + g’(p). Since
du/dy = x’cos y — x%sin y, g'(y) =0, and so we may take g(y) = 0. Thus
u=x>/3+ x%cos y.

Method 2. We use formula (1) above:

f(x, y) = f “a(1,0)dt+ f Yb(x,1)dt,

where P = a(x ») and Q = b(x, y). In this case, a(x, y) = 2xy cos y + x? and
b(x, y) = x*cos y — x%sin y, so we get

f(x, ) =f0 t dt+f0 (x*cost — x’ sint) dt.

Evaluating the last integral by integrating by parts gives

y
u=f(x, y)= f costdt—f x*costdt + x*t cost .

3
= x? + x% cos y,

which agrees with the answer using Method 1. We check that du/dx = P and
du/dy = Q, as required. A

Exact Differentials

To determine whether there is a function u = f(x, y) such that du/dx
=P=a(x,y) and du/dy = Q = b(x, y), check whether BP/ay =
900 /0x.

If so, f may be constructed by formula (1) or by integrating:
u= [Pdx + g(y); equating du/dy and Q determines g'(y) and hence,
by integration, g(y).

If 0P/9dy # 0Q/3dx, no such f can exist.

Example 2 Show that, in place of formuia (1), we can also choose
1
f(x, ») =f0 [xa(tx, y) + yb(ix, ty)] dt.

Solution The function f is the integral of Pdx + Qdy along any path from (0,0) to
(x »)- (In the proof, we used paths parallel to the axes.) The expression
Jolxa(ex, ty) + yb(1x, ty)ldt is just the integral of Pdx + Qdy along the path
(1x,tp), 0 < £ < 1; that is, the straight line segment joining (0,0) to (x, »)- A

In Chapters 8 and 12, we studied a number of useful classes of differential
equations. A new class may be solved by the methods of this section. A
differential equation of the form

P+ 060 2L =0 @

will be called exact if the corresponding differential form Pdx + Qdy is exact.
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Example 3

Solution

Example 4

Solution

These equations may be solved as follows: there is a function f(x, y) such that
P =f and Q = f,. The curves

fxy)=¢C , 3
for C a constant are solutions of (2) assuming that they define y as a function
of x. Indeed, differentiating (3) implicitly by the chain rule, we get

dy _ . dy
fx+]fva—0, Le., P+Q?l;_ .

Exact Differential Equations

To test if the equation
dy _
P+ Q o 0

is exact, see if
ap _ 90
dy  ox
To solve an exact equation P + Q(dy/dx) =0, find f(x, y) such that
P=f and Q=f,.

(See the preceding box.) The solutions are f(x, y)= C for any con-
stant C.

Find the solution of the differential equation

2xycos y + x* + (x%cos y — x%sin y) % =0

that passes through (1,0).

By Example 1, this equation is exact with

3
f(x, »)= x? + x% cos y.

The solution is thus (x*/3) + x% cos y = C. Since y =0 when x =1, C = 1.

Thus our solution is given implicitly by

x>

2 =1
3 +xycosy—3.A

(@) Let (x, y) = (e’ sin(w /1)), 1 < t < 2, be a parametrization of the curve
C. Calculate f 2x cos ydx — x’sin ydy.
* c
(b) Find the solution of 2x cos y = x’sin y(dy/dx) that satisfies y(3) = 0.
(a) The curve C goes from (1,0) to (e, 1). Since 3(2xcos y)/dy = —2xsin y
= 3(— x7sin y)/dx, the integrand is exact. Thus we can replace C by any

curve having the same endpoints, in particular by the polygonal path from
(1,0) to (e, 0) to (e, 1). Thus the line integral must be equal to

IEZtCOSOdt+f1—e2sintdt =(e*—1) —'T e*(cos1—1)
1 )

=ecos 1 — 1.
Alternatively, using the antiderivative u = f(x, y) = x?cos y, which may be
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found by the methods of Example 1,
fbmmyw-x%my@=IVﬂqwh=ﬂ@n—ﬂLm
C C

= e’cos1 — 1.

(b) The general solution is x%cos y = C. Since y =0 when x =3 we have
x%cos y = 9; that is, y = cos~1(9/x?). A

(a) Verify that 3P/dy =9Q/dx and find u = f(x, y) such that P = du/dx
and Q = du/dy in each case:
@) P=x2+y3; Q=3x2+1.
(i) P=ycosx; Q =y +sinx.

(b) Solve the following differential equations with the given conditions:
(@) x*+ >+ GBxp? + Ddy/dx = 0; y(0) = 1.
(1) ycosx + (y +sinx)dy/dx =0; y(n/4) = 1.

(a) (i) We have P, =3y* and Q, = 3y and so P, = Q,. Let f(x, y) be such
thatfx—x{+y and f,=3xy’ + 1. Then f(x y)=[fodx=x/3+
xy + g(y). Thenfy(x y) 3xy +g(y) 3xy + 1 implies g'(y) = 1,
so g(y) =y + C. Thus, f(x, y)=x3/3+ xp> + y + C.
(i) We have 0P/0y = cosx and 9Q/dx = cosx; thus dP/dy =39Q/dx.
Integrating, f(x, y)= [f.dx= ysmx+g(y), J,=sinx + g'(y) =sinx
+y implies g'(p)=y or g(y)=y*/2+ C. We thus have f(x, y)
= ysinx+y?/2 + C.

(b) (i) The differential equation x> + y* + (3xy* + 1)(dy/dx) = 0 is exact by
our calculation in part (a)(i). From that calculation we find that
f(x, yy=x*/3+ y>x + y = K is a solution. Applying the condition
»(0) =1 gives K = 1. Thus the solution is x*/3 +y’x+y=1
(i) Similarly, using the result of part (a)(ii), we get the solution f(x, y)
= ysinx + y*/2 = K. Applying the condition that y(7/4) = 1 gives K
= (2 + 1)/2. Thus the solution is ysinx + y2/2= (2 + 1)/2. A

A differential equation

dy _
M+N--= | @)
which is not exact may sometimes be made exact if we multiply it through by
a function p(x, y). The equivalent equation is uM + uN dy /dx = 0, which is
exact if d(uM)/0y = 9(uN)/0x. This is a condition on p, which can be
written as

wM + pM, = p N+ pN, . &)

Any function p(x, y) satisfying equation (5) is called an integrating factor for
the original equation (4).

In general, it is not easy to solve (5), but occasionally it is possible to
solve it with a p which is a function of x alone, i.e., p(x, y) = p(x), in which
case p, = p’ and p, = 0. In this case (5) becomes pM, = p'N + pN, or

M,— N ¢

Y x [ ’

—=—=1 .
N 0 (In )
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Example 6

Solution

This can be solved for p if (M, — N,)/N is a function of x alone, in
which case In p = [[(M, — N,)/N|]dx, and so the integrating factor is

M,— N
= 4 ol
p,—exp[f ~ dx].

Having found an integrating factor, one may now solve the exact equa-
tion uM + pN dy/dx = 0 by the methods described earlier in this section. The
following example shows how linear equations may be solved by this method
(compare this approach with the methods of Section 8.6).

(a) Solve the equation xdy/dx — x°> + x% — y = 0.
(b) Solve the linear equation dy/dx + P(x)y + Q(x) = 0 using the method of
integrating factors.

(a) Comparing the equatlon with (4), we see that M = —x° + x% — y and
——x ThusM—x—landN—lHence(M N)/N = (x—l—l)/x

=x?—-2/x. Therefore the 1ntegrat1ng factor is p=exp[[(x?—2/x)dx]

=exp(x®/3 — 2lnx) = exp(x3 /3)/x% According to formula (1) applied to

uMdx + pN dy,

F(x, y) =f"a(t,0) dt+fyb(x, 1) dt
f exp(t /3 ) )dt+f xp(x /3)
0

12

= fo t3exp( 3 )dt+ Zexp(x’/3)=C

If we rearrange and use the indefinite integral notation

ftexp( )dt+C fxexp( )dx,

we get
- —x’
y= xexp( 3 )fx exp( 3 )dx
(b) Here, M = P(x)y + Q(x), and so M, = P(x); N=1, so N, =.0. Thus

(M, - N,) /N = P(x). Therefore, the 1ntegrat1ng factor is u = exp( [ P(x)dx).
Applylng (1) to pM dx + uN dy, we find that the solution is

f(x,)’)=f0 a(t,O)dt+f0yb(x,t)d,
= fo “oxp( [ P(t)dr) Q(r)di+ fo exp( [ P(x)dx)
- f exp f P(x)dx)Q(x)dx+ »exp( I P(x)dx) =

Absorbing the constant into the first integration and solving for y gives

y= _e—fP(x) dx[f Q(x)efl’(x) dde].

(The methods of Section 8.6 yield the same answer.) A
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Exercises for Section 18.3

1. Is [2x + e (xy + 1)]dx + x%™ dy an exact dif-
ferential? If so, find an antiderivative.

2. Is (cos xy — xy sin xy) dx — (x’sin xy) dy an exact
differential? If so, find an antiderivative.

3. Is there a function u = f(x, y) such that du/dx
= xyx»*+1 and du/dy = yyx3? + 17 If so,
find it.

4. Is there a function u of (x, y) such that du/dx
=2xcos y+cosy and du/dy = —x%sin y —
x sin y? If so, find it.

In Exercises 5-8, determine which differentials are ex-
act.

CxYydx + (X% /3)dy

x?dx + (x*/3)dy

. X%y dx + (x3/3)dy

Cxytdx + (¥ /) dy

. Show that we can use
) = (b0, 0)dr+ [ a(s, y)dr
f e 9y = [7b(0,0)de+ ["a(z, y)

in place of formula (1).

10. Use the path (Vf x,x), 0 < t < 1 to find another

formula (other than those in Example 2 and
- Exercise 9) that may be used in place of (1).

11. Let C, be parametrized by (£* + 1,¢sin(7t/8)),
0<t<4,and C, by (£ + D)cos 7, 1) 0 < £ < 4.
Determine whether
JePdx + Qdy = [c,Pdx + Qdy, where
Pdx + Qdy = 3(x* + y)dx + (xy + €)dy.

12. Let P=In(x>+1)—2xe™” and Q0 =x%"" -
In(y* + 1). Determine whether [ Pdx + Qdy
= [¢,Pdx+ Qdy, where C; and C, are two
curves with the same endpoints.

Solve the differential equations satisfying the given con-
ditions in Exercises 13-16.

13. ye* + e’ + (xe’ + e*)dy /dx =0, y(0) = 2.

14. e’ + (xe’ + 2y)dy/dx =0, y(0) = 1.

15. 3x2 4+ 2xy + (x* + y?)dy/dx =0, y(1) = 2.

16. cos ysinx + sin ycosxdy/dx =0, y(v/2) = 1.
Determine which of the equations in Exercises 17-20
are exact and solve the ones that are.

17. xdy/dx +y + x3* - 1=0.

18. y — x>+ (x + y¥)dy/dx = 0.

19. xy? + 3x% + (x + y)x*dy/dx = 0.

20. e*sin y — e’sinxdy/dx = 0.

21. (a) Let (x,y)=(—-1,1~1), 0< <1 para-
metrize the curve C. Calculate

2p(x2+1
22x dx — y(x 2)dy.
L\ 72+ (e

O 0N W

(b) Find the solution of

x _x*+1 &

Y oy 41 dx
that satisfies y(1) = 1.

22. (a) Let (x,y)=(e’,e'*!), —1<¢<0 be a
parametrization of the curve C. Calculate

f [ cos(xy?) — xy*sin(xy?) ] dx— 2x% sin(xy?) dy.

c

(b) Find the solution of

cos(xp?) — xysin(xpy?) = 2x?% sin(xy?)

that satisfies y(1) = 0.

23. Solve the equation in Exercise 21(b) using the
method of separation of variables (Section 8.5).

24. Solve the equation dy/dx=(1—y)/(x+ 1),
y(0) = 2 using (a) the method of exact equations
and (b) separation of variables. Verify that the
two answers agree.

25. Find an integrating factor ;L(x) for the equation

dy
dx

2ycosy+x+(xcosy—xysiny)a =0.

26. Solve the equation dy/dx = 3x% + x by finding
an integrating factor. (Leave your answer in the
form of an integral.)

217. Solve the equation x dy / dx = xy* + g by using
the integrating factor 1/y%

28. Use the integrating factor xy to solve

l+l+(l+ )dy 0.
x oy x y)dx

29. Find the equation which must be satisfied by a
function p of y alone if it is to be an integrating
factor for M + Ndy/dx =0.

30. (a) Find a solution of the equation 3x%?+
2(x% + x%%dy/dx =0 in the form u(x, y)
= constant.

(b) If y = f(x) is a solution of the equation with
f() =1, what is f(2)?

*31. If Pdx + Qdy satisfies 0P/dy =9Q/0x, show

that functions g(y) and h(x) can always be
found such that [Pdx + g(y) = [Qdy + h(x).

*32. Generalize the assertion in Exercise 31 to P.dx +

Qdy + Rdz.
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18.4

Figure 18.4.1. The

boundary C of a region D

must be oriented

counterclockwise in Green’s

theorem.

Figure 18.4.2. The

boundary of this type 1

region consists of the

graphs y = ¢((x) and
y = ¢,(x) and segments of

the lines /; and /.

Lemma

Green’s Theorem

A line integral along a closed curve can be converted to a double integral over a .
region. '

Green’s® theorem relates the line integral of a vector field (or differential form)
around a closed curve to the double integral of a certain function over the
region bounded by the curve. Among the many applications of this theorem is
a formula for the area of a region in terms of a line integral around its

boundary.
Green’s theorem states that
_ 99 _ap
fCde+ Qdy_ffD( 3 3 )dxdy, )

where C is the curve bounding a region D, C is traversed counterclockwise
(see Fig. 18.4.1), and P and Q have continuous partial derivatives. We have
seen that Pdx + Qdy is exact when 9Q/0x = 9P /9y; in this case, Green’s
theorem is obviously true because each side of (1) is zero.

We shall prove Green’s theorem for regions which are of type 1 and 2
and then indicate through examples how the result may be proved for more
general regions.

Consider a region of type 1 in the plane, as shown in Fig. 18.4.2. The
boundary of this region is defined to be the closed curve C which goes once

y
y=6,()

Iy

y=9,0x)

|
|
|
|
]
H
T
a

X

around the region in the counterclockwise direction. If we start at the upper
left-hand corner, the boundary curve first traverses the vertical line /; (call this
C)), then goes along the graph of ¢, (call this C,), then up J, (call this C3), and,
finally, backwards along the graph of ¢, (call this C,). The following lemma is
a preliminary form of Green’s theorem.

Let D be a type 1 region as above, with C its bounding curve. Let P = f(x, y)
have continuous partial derivatives in D and on C. Then

fCde= —fﬁ)%gdxdy. ¥

2 George Green (1793-1841), an English mathematician and physicist, was one of the early
investigators of electricity and magnetism. His work on potentials led to what is commonly called
Green’s theorem (although it may also be due to Cauchy). This theorem, as generalized to three
dimensions by Lord Kelvin, Stokes, Gauss, and Ostrogr“édsky, was crucial to later developments
in electromagnetic, gravitational, and other physical theories. Some of these applications are
discussed later in this chapter. For more history, see “The history of Stokes’ theorem™ by V. L.
Katz, Mathematics Magazine, 52 (1979) 146-156.
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Figure 18.4.3. The
boundary of this type 2
region consists of the two
curves, x = y(y) and

X = Y,(y), and segments of
the lines, /; and /,.

Green’s Theorem

18.4 Green’s Theorem 909

Since the double integral may be evaluated as an iterated integral (see p. 850),
we have

ff P ixdy= ff:z(")j;(x y)dy dx

- f [£(x,02(%)) = (3, 5:(x)) ] .

The latter equality uses the fundamental theorem of calculus.
To compute the line integral, we parametrize each of the segments of C:

Ci: (x,y)=(a, —1); tin [—¢y(a), —¢(a)]; dx =0, dy = —db.

Cy: (x, y)=(t,¢,(2)); ¢t in [a,b]; dx = dt, dy = ¢j(t)dr.

Cs: (x, p) = (b,1); t in [¢(D), y(D)]; dx =0, dy = dI.

Cyot (5, )=(—t,0)(—0); tin[—b, —a]; dx = — dt, dy = —¢X(—t)dt.

Now [-Pdx is the sum of the line integrals over the four C;’s. The integrals
over Cy and Cj; are zero, since dx = 0 on those curves (x is constant). The
integrals over C, and C, are given by

Jpax=|  f(t (1)) dt

and
L4P dx= L;“f(_ 1,y —1))(— dr)

= f “f(t,0,(r))dt  (substituting — ¢ for )
b

— f " (1, ba(0)) d
Thus

b b
fCde=fa f(t,¢1(t))dt—fa (2, (1)) at
= = [[TA(082(0) = St ()

= —ffl)%—)[:dxdy.l

In exactly the same way, we can prove that if D is a type 2 region with
boundary curve C traversed counterclockwise (Fig. 18.4.3), then for Q=
g(x, y) with continuous partial derivatives,

fCQdy=ffD%—gdxdy. 3)

If we have a region which is of both types 1 and 2, then équations (2) and
(3) are both valid. Adding them yields formula (1).

If D is a region of types 1 and 2 with boundary curve C traversed counterclock-
wise, and if P = f(x, y)and Q = g(x, y) have continuous partial derivatives in D
and on C, then

dex+Qdy ff(a—Q ap)d dy.
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Example 1

Solution

Example 2
Solution

D

Figure 18.4.4. Is Green’s
theorem valid for D?

D, 1”521!‘ D,

Figure 18.4.5. Breaking a
region up into smaller
regions, each of which is
both type 1 and type 2.

Verlfy Green’s theorem for P =x and Q = xy, where D is the unit disk
x?+y*< 1

We can evaluate both sides in Green’s theorem directly. The boundary C of D
is the unit circle parametrized by x = cosz, y =sin#, 0 < 7 < 2, so

dex+ Qady =f27r[(cost)(—sint) + costsinicost] dr .
c o

=[ cos’t ]2"+ [ _ cos ]2”= 0.
2 b 3 0o
On the other hand,

ff( )#@’ffyﬂ@g

which is zero also, since the contributions from the upper and lower half-
circles cancel one another. Thus Green’s theorem is verified in this case. A

Green’s theorem applies as well to many regions other than just those of types
1 and 2. Often one can show this by dividing up the region, as in the following
example. '

Show that Green’s theorem is valid for the region D shown in Fig. 18.4.4.

Figure 18.4.5 shows how to divide up D into three regions, D,, D,, D,, each of
which is of types 1 and 2. Let C,,C,,C; be the boundary curves of these
regions. Then

ff( ”)a@ fpa+g@

The double integral over the D,’s adds up to the double integral over D, so

ff(—un—)d@ fPﬁ+Q@+fPﬁ+Q@+fPﬂ+Q@.

However, the dotted portions of the boundaries shown in Fig. 18.4.5 are
traversed twice in opposite directions; these cancel in the line integrals. Thus
we are left with

ff( )ﬁ@szﬂ+Q@,

and so Green’s theorem is valid. A

Example 2 illustrates a special case of the following procedure for a region D:

(a) Break up D into smaller regions, D,,D,, ..., D,, each of which is of
types 1.and 2.
(b) Apply Green’s theorem as proven above to each of Dy, ..., D,, and ‘add

the resulting integrals.
(c) The line integrals along interior boundaries cancel, leaving the line integral
around the boundary of D.

This procedure yields Green’s theorem for D. It is plausible that this method
applies to any region bounded by piecewise(smooth curves, and so we may

expect a general form of Green’s theorem. |
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Green’s Theorem

If D is a region and C is the boundary of D, oriented as in Fig. 184.1,
then

fpdx+ Qdy = ff(————)d dy.

Example 3 Let ®(x, y) = yi — xj and let C be a circle of radius r traversed counterclock-
wise. Write [ ®(r) - dr as a double integral using Green’s theorem. Evaluate.

Solution If ®(x, y) = Pi+ Qj, then &) dr= Pdx + Qdy. Now we apply Green’s

theorem to the case where D is the disk of radius r, Q = —x, and P = y, so
3Q/0x —9P/dy = —2. Thus [ B()-dr= [[,(— 2)dx dy = (—2)(area of D)
= —2ar’. A

Example 4 Let C be the boundary of the square [0, 1] X [0, 1] oriented counterclockwise.
Evaluate

f(y“ + x%)dx+ 2x%dy.
c

Solution We could, of course, evaluate the integral directly, but it is easier to use
Green’s theorem. Let D be the unit square (bounded by the lines x =0, y = 0,
x =1, and y = 1). Then

4, .3 6 7, — 0 5.6_ 0, 4, 3
fc(y + x7)dx+ 2x dy-ffb[ 8x2x 8y(y +x)]dxdy{
=ff(12x5—4y3)dxdy
D
1 1
= 12x° — 4y° a
fOUO( x y)dX]y

= [fe-v)o=1.a

Example 5 Show that if C is the boundary of D, then

LPde+PQdy=ijQ(g—§ %}I:)+P(%%—8—Q)dedy

Solution By Green’s theorem,

LPde+vPQdy=ffD:%(PQ)—-%(PQ)]dxdy
=IL(3—§Q+P%—3 9P 4 _ Pag)dxdy
—ff[ (aP aP)+P(%%—%%)dedy.A
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We can use Green’s theorem to obtain a formula for the area of a region
bounded by a curve C.

Corollary: Area of a Region

If C is a curve that bounds a region D, then the area of D is

_ 1
A—Efcxdy—ydx. | 4)

The proof is as follows. Let P = —y, Q = x; then by Green’s theorem we have

2fxdy ydx—sz( _X y))dxdy fIdxdy

which is the area of D. R

Example 6 Verify formula (4) in the case where D is the disk x? + y* < r

Solution  The area is #r2. Formula (4) with x = rcost, y = rsint, 0 < ¢ < 27, gives

A= —fxdy ydx = —f (rcost)(rcost)dt— (rsint)(—rsint)dt

2
-1 "Pdt=mr?,
2

so formula (4) checks. A

Example 7 Use formula (4) to find the area bounded by the ellipse C: x?/a* + y?/b* = 1.

Solution  Parametrize C by (acost, bsint), 0 < ¢ < 27. Then (4) gives °

2

= % " abdt = abr. A

0

xd dx = 2Wacost bcost)dt — (bsint)(— asint)dt
ly —y o( ) (

Exercises for Section 18.4

1. Check the validity of Green’s theorem for the
region between the curves y = x* and y = x be- 5.
tween x =0 and x = 1, with P = xy and Q = x.

2. Verify Green’s theorem when D is the disk of
radius r, center (0,0), and P = xy?, Q = —yx~.

3. Verify Green’s theorem for P =2y, Q = x, and
D the unit disk x>+ y? < 1.

4. Verify Green’s Theorem for P = cos(xy?)—
xysin(xp?), Q= —2x%sin(xy?), and D the el-
lipse x2/4 + y*/9 < 1. [Hint: do not evaluate the y
line integral directly.] 7.

Exercises 5-8 refer to Fig. 18.4.6. Show how to decom-
pose each region into subregions, each of which is of
types 1 and 2.

Figure 18.4.6. Subdivide
each of these regions into
subregions of types 1 and 2.
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9. Let C be the ellipse x*/a® + y?/b? =1, and let
®(x, y) = xpti — yx?j. Write [c®()-dr as a
double integral using Green’s theorem. Evaluate.

10. Let @(x, y) =2y + )i+ (x + sin(yz))j and C
be the circle x? + y? = 1. Write [®(r)- dr as a
double integral and evaluate.

11. Let C be the boundary of the rectangle [1,2] x
[1,2]. Evaluate [cx% dx +3yx®dy by using
Green’s theorem.

12. Evaluate [o(x°—2xp?)dx — 3x5/2 dy, where C
is parametrized by (¢5,1'%), 0 < 1 < 1.

Let C be the boundary of the rectangle with sides
x=1,y=2,x =3, and y = 3. Evaluate the integrals in
Exercises 13-16.

13. f(2y2 + x%)dx + 3y5dy.
C
14. fc(xyZ = pdx + (=53 + y¥)dy.
15. f(3x4 +5)dx + (y5 + 3y — 1) dy.
x+ e

16[ 2y +sinx dx +
1+ x? 1+ y?

17. Suppose that Pi+ Qj is parallel to the tangent
vector of a closed curve C.
(a) Show that Qi — Pj is perpendicular to the
tangent vector.
(b) Show that [[,(3P/0x+3Q/dy)dxdy =0,
' where D is the region whose boundary is C.
We call V% =0%/9x> + 9% /dy® the Laplacian of
u = f(x, y). Prove the identities in Exercises 18 and 19.
18. ff uVidcdy = — ff Vu-Vodxdy

+ f udv dy —u g—; dx, (Green’s first identity).

— V2 =((yd0 _,0u
19. ff(uVo v Vau)dx dy f(yax ax)dy
(ua—v au )dx (Green’s second identity).
oy

[Hint: Write down Green’s first identity again
with u and o interchanged and subtract.]

20. Suppose that 9% /3x? + 3% /3y* = 0 on D. Show
that

du
cdy
Use formula (4) to determine the area of the regions in
the plane bounded by the figures in Exercises 21 and
22.
21. The triangle with vertices (1,0), (3,4), and
G, —1.
22. The rhombus with vertices (0.
and (4, 3).

du , _
dx— xdy—O.

s T 1)! (370)7 (1’2)$

23.
24.

25.

26.

27.

28.

29.

30.

*31.

18.4 Green’s Theorem 913

Show that the area enclosed by the hypocycloid
x=acosd, y=asin¥, 0< <27 is }ma’
(Use Green’s theorem.)

Find the area bounded by one arc of the cycloid
x =a(f —sind), y = a(l — cos§), where a >0,
0<0<2m

Find the area between the curves y = x
y =yx by using Green’s theorem.

Use formula (4) to recover the formula A4
=1 (5,2 df for a region in polar coordinates (see
Sectlon 10.5).

Sketch the proof of Green’s theorem for the
region shown in Fig. 18.4.7.

3 and

Figure 18.4.7. Prove
Green’s theorem for this
region.

Find the work which is done by the force field
(3x +4y)i+ (8x +9y)j on a particle which
moves once around the ellipse 4x2 + 9y2 = 36 by
(a) directly evaluating the line integral and by (b)
using Green’s theorem.

Let P=y and Q = x. What is [oPdx + Qdy if
C is a closed curve?

Use Green’s first identity (Exercise 18) with
v = u to prove thatif Vi =0on D and u=0on
C, then Vu =0 on D, and hence u =0 on D.
Green’s theorem can be used to. give another
proof that a differential form Pdx + Qdy de-
fined on the plane is exact if dP/dy =3Q/dx.
(In fact, the argument in Section 18.3 or the one
outlined here also works in other regions, such as
a disk.) Define f by

(%) =j;xa(t, 0) dt+J;yb(x, 1,

where P=a(x, y) and Q= b(x, y) and set u
= f(x, ). Show that 0u/dy = Q. The function f
is the line integral of Pdx + Qdy along a hori-
zontal segment C; and a vertical segment C,.
Define another function # = f(x, ) by letting ¢
be the path which consists of the vertical seg-
ment C; from (0,0) to (0, y), followed by the
horizontal segment €, from (0, y) to (x, y) and -
setting f(x W= [é+éPdx + Qdy. Show that
94 /9x = P. Apply Green’s theorem to the rec-
tangle D bounded by C; + C, + (- &) + (= &)
to get

S5

)dx dy
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(P dx+ Q dy)

but the double integral over D is zero, since
dP/dx =3Q/dy by assumption. Conclude that
If Pdx+ Qdy satisfies. 0P/dy =3Q/9x, use
Green’s theorem to show that Pdx + Qdy is

conservative by showing its iritegral around “ev-

3fcxdy — ydx is the

914 Chapter 18 Vector Analysis
= N . (Pdx+ Qdy)
Ci+ G+ (- )+ (= C)
= (Pdx + Qdy) — f
G+ G
=u— 4
u = i1, to complete the proof.
*32.
ery” closed curve in zero.
%*33. Project: The formula 4 =

basis for the operation of the planimeter, a me-
chanical device for measuring areas. Find out
about planimeters from an encyclopedia or the
American Mathematical Monthly, Vol. 88, No.
9, November (1981), p. 701, and relate their

-%34. (a) If D is a region to which Green’s theorem

applies, write the identity of Example 5 this way:

ff( a—Q-—PaQ)dxdy

=fCPde+ PQdy

ff(an )d Y-

How is this like 1ntegrat10n by parts?

(b) Elaborate the following statement: Green’s
theorem is “the fundamental theorem of calcu-
lus” in the plane since it relates a double integral
to an integral around the boundary, just as the
fundamental theorem relates an integral over an
interval to a sum over the boundary of the inter-
val (that is, the two endpoints).

operation to this formula for area.

18.5 Circulation and Stokes’

Figure 18.5.1. The velocity
field of a fluid.

Theorem

The line integral of a vector field around the boundary of a surface in space
equals the surface integral of the curl of the vector field.

If @ is a vector field defined at points in the plane, we can write ® = Pi + Qj.
The line integral of @ around a curve C, namely

L@(r)-dr=fCde+ Qdy,

occurs on the left-hand side of the equation in the statement of Green’s
theorem. The expression “circulation of ® around C” is often used for the
number [ ®(r) - dr. This terminology arose through the application of Green’s
theorem to fluid mechanics; we shall now briefly discuss this application.
Imagine a fluid moving in the plane. Each particle of the fluid (or piece
of dust suspended in the fluid) has a well-defined velocity. If, at a particular
time, we assign to each point (x, y) of the plane the velocity V(x, y) of the
fluid particle moving through (x, y) at that time, we obtain a vector field V on
the plane. See Fig. 18.5.1. The integral [ V(r) - dr of V around a closed curve

Path of a
fluid particle

V(x,y) = velocity of a
fluid particle

|

|
" C represents, intuitively, the sum of the tangential components of V around C.

Thus, if C is traversed counterclockwise, and [ V(r) - dr > 0, there is a net
counterclockwise motion of the fluid. Likewise, if [V(r)+dr <O, the fluid is
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18.5 Circulation and Stokes’ Theorem 915

circulating clockwise. This explains the origin of the term “circulation™ and is
illustrated in Fig. 18.5.2. '

v
\
A
C [l el
Figure 18.5.2. The intuitive
meaning of the possible
signs of {cV(r) - dr. S V@) dr>0 S V@ - ar<o S V@) dr=0

In Section 18.1, we interpreted the line integral of a force vector field
along a curve as the work done by the force on a particle traversing the curve.
Notice that the single mathematical concept of a line integral is subject to
_different interpretations, depending on what physical quantity is represented
by the vector field.

The integrand on the right-hand side of Green’s theorem,

99 _ap

ax ay ’

is important because, when integrated over the region whose boundary is C, it
produces the circulation of ® around C according to Green’s theorem.

The Scalar Curl
If @ = Pi+ Qj is a vector field in the plane,
90 _op
ax dy

is called the scalar curl of ®.

Example 1 In the plane, the vector field

Vix, y)= bl _
(%, 7) XAyt x4yl

approximates (the horizontal part of) the velocity field of water flowing down
a drain (see Fig. 18.5.3). (a) Calculate its scalar curl. (b) Is Green’s theorem
valid for this vector field on the unit disk D, defined by x* + y* < 1?

Figure 18.5.3. The velocity
field near a drain.
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Solution Here P(x, y) = y/(x* + y*) and Q(x, y) = — x /(x> + »?), so the scalar curl is

a_Q_Q_B__i(_x_)_i(_)’_)

x Ox \ x2 + 2 Wy \x2+ 2
(P yhy +2x? N —(x¥+ yH) + 22
(x*+ y2)2 (x*+ y2)2

The circulation of V about the circle x2 + y? =1 is
dex+ Qdy =fydx— xdy =2 (area of disk) = — 27,
c c

(See formula (4), Section 18.4.) This is an apparent contradiction to Green’s
theorem! The explanation is the fact that the hypotheses of Green’s theorem
are not satisfied; V is not defined at (0,0). A

If we write (scalar curl ®) =0Q/dx — dP/dy, then Green’s theorem becomes

fc D(r) - dr= f fp (scalar curl @) dx dy,

where C is the boundary of D. Now choose a point P, in the plane and let D,
be the disk of radius & about P, and C, the circle of radius e. By the mean
value theorem,

f f (scalar curl @) dx dy = scalar curl ®(P,)|[area D,]
D,

for some point P, in D,. Dividing by (area D,) and letting e >0 gives

1 ‘
(scalar curl ®)(P,) = 11m[ arca D, fc E(I>(r) dr],

>0
L.e., the scalar curl may be thought of as the circulation per unit area.

A fluid moving in space is represented by a vector field ®(x, y, z) in three
variables. The generalization of Green’s theorem to this case is called Stokes’
theorem. We shall next prove a special case of this theorem.

Consider a region D in the xy plane and a function f defined in D. The
equation z = f(x, y) defines a surface over D. If we refer to Section 15.2, we
see that a normal vector to this surface is given by —f.i— fi+k and soa
unit normal is -

_ —hi=fitk

ﬁﬁ+ﬁ+1-

The area element on the surface is given by

dA =\1+ f2+ f? dxdy

as was shown in Section 17.3. Thus nd4 = (—fi—fi+Kdxdy.

n

The Surface Integral

If ®= Pi+ Qj+ Rk is a vector field in space and S is the surface
z = f(x, y), the surface integral of ® over S is the integral of the normal
component of ® over S: |

ffscp-ndA =ffD(—Pfx— ny+R‘/)dxdy. 0

We shall discuss a physical interpretation of this definition in Section 18.6.
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18.5 Circulation and Stokes’ Theorem 917

Example 2 Let ® = x% + y%j + zk. Evaluate [[ ®-ndA, where S is the graph of the
function z=x + y + 1 over the rectangle 0 < x < 1,0< y < L.

Solution By formula (1), with P(x, y,z)=x% Q(x, y,z)=y% R(x,y,z)=z, and
z=flx,p)=x+y+1, :

ffsq)'"dA=ffD[—x2'l_)’2‘1+(x+y+l)]dxdy

1,1
=f0f0(x+y+1—x2—y2)dxdy

Stokes’ theorem will involve the concept of cur! defined as follows.

The Curl of a Vector Field

Let @ = Pi+ Qj + Rk be a vector field in space. Its cur/ is defined by
cul®= (R, — Q,)i+ (P, — R)i+ (2 — P )k

If @ is a vector field in the plane, but regarded as being in space with R =0
and P, Q independent of z, then the curl of @ is just the scalar curl of ®

times k. 5 " 5
Formally, we can write V= x| + @ j+ 3 k, treating it as if it were a
vector; then
i j k
- |2 9 3
curld =VXb= ax 3y 9z
P 0 R
which helps one remember the formula.
Example 3 Find the curl of xyi —sinzj+ k.
Solution ; i X
- |8 3 3
curl®=VX®P= A% 3y 3z
xy —sinz 1
9 3 9 3 a3
=| dy 9z li—| dx 9z [j+| ox ay |k
—sinz 1 xp 1 xp —sinz

=coszi— xk. A

Example 4 If fis a twice differentiable function in space, prove that VX(Vf)=0.
Solution Let us write out the components. Since Vf= (3f/9x,3f/dy,df/dz), we have
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918  Chapter 18 Vector Analysis

i j k
9 3 3
VXVf= dx  dy o0z
d of of
3% dy 3z

2 2 2 2 2
(¥ ¥ (5 - i )i (5L - 2L
oy 9z 0zay dz0x 0x0z d0xdy dydx
Each component is zero because of the symmetry property of mixed partial

derivatives. A

Now we are ready to state Stokes’ theorem. Like Green’s theorem, it relates an
integral over a surface with an integral around a curve.

Stokes’ Theorem

Let D be a region in the plane (to which Green’s theorem applies) and S
the surface z = f(x, y), where f is twice continuously differentiable. Let
9D be the boundary of D traversed counterclockwise and 9.5 the
corresponding boundary of § (see Fig. 18.5.4). If @ is a continuously
differentiable vector field in space, then

j;sd)(r) . dr =IL(V X®)-ndA.

Figure 18.5.4. As you
traverse 0.5

counterclockwise, the
surface is on your left.

X

Proofof Let ® = Pi+ Qj + RK, so that
Stokes VX®=(R,— Q,)i+(P,— R)j+ (0.~ P, )k.
Theorem (R, = Q)i+ ( i+ ( Q" 2
We may use formula (1) to write

[ femenan=f []( 5= 32)(- §2)

9P _ OR 9z 0Q 9P
+(E E)( 8y)+(8x ay)]dA 2)
On the other hand, if o(?)= x(¢)i + y(¢)j parametrizes 0D, then n(f) =

x(Di+ y(0j + f(x(1), y(1))k is an orientation-preserving parameterization of

the oriented simple closed curve dS. Thus q‘

—{ascp(r).dr:j;( +Qdy+Rdz)dt 3)
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Example 5

Solution

Example 6

18.5 Circulation and Stokes’ Theorem 919

but, by the chain rule,

dz_azd_x+azd_)’

dt  dx dt  dy dr’

Substituting this expression into (3), we obtain
b 9z \ dx L p 0z \
D(r) - dr = = )& == |dt
fas (r) - dr fa [(P+Rax) = +(Q+Ray)dt}
= [ (P+REZ)ax+ Q+Rﬁ)dy. )
oD dx dy
Applying Green’s theorem to (4) yields

9(Q+ R9z/dy) (P + RIz/dx)
ffp[ dx B dy

}dA.

Now we use the chain rule, remembering that P, 0, and R are functions of x,
», and z, and z is a function of x and y, to obtain

fa () - dr

_ 9Q . 9Q 3z L R 9z L dR ¥z 9z , p. 0%
‘fﬂ(aﬁ@ ax T ax dy T ez ax ay K —axay)

_ (0P L, 9P 9z , OR 9z |, OR 0dz 0z 0%z
(8y+8z 3y "9y ax 8z dy 8x+R8y8x”dA'

The last two terms in each set of parentheses cancel each other, and we can
rearrange terms to obtain the integral (2). H

As with Green’s theorem, Stokes’ theorem is valid for a much wider class
of surfaces than graphs, but for simplicity we have treated only this case.

Let ® = yei + xe’j + xye“k. Show that the integral of ® around an oriented
simple closed curve C that is the boundary of a surface S is 0. (Assume S to
be the graph of a function.)

By Stokes’ theorem,

fasd)(r)-dr=ffs(v><(b)-ndA.

However,
i j k
|9 9 3 _
Vxe=l5c 3 |7
ye* xe® xye’

so [o®(r)-dr= [[(VX®-ndA
=[[s0-nd4d=0. A

Find the integral of F(x, y,z) = x% + y% — zk around the triangle with verti-
ces (0, 0, 0), (0, 2, 0) and (0, 0, 2), using Stokes’ theorem.
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920 Chapter 18 Vector Analysis

Solution Refer to Fig. 18.5.5. C is the triangle in question and S is a surface it bounds.
By Stokes’ theorem, v

fCF- dr=fL(VxF)-ndA.
Now

i j Kk
94 9 9 C e
x2 oyt -z

Therefore the integral of F around C is zero. A

Figure 18.5.5. The curve C
of integration for
Example 6. x

Example 7 Evaluate the integral [[ (V XF)-ndA, where § is the portion of the surface
of a sphere defined by x>+ y>+ z*>=1 and x + y+z > 1, and where F =
rX@{i+j+k), r=xi+yj+zk

Solution The surface S and its boundary 9.5 are shown in Fig. 18.5.6. We choose the
orientation shown.

xty+z=1

2 42 452 =
(1,0,0) XAytrat=l

Figure 18.5.6. The surface
S in Example 7.

Method 1. Using Stokes’ theorem directly. We need to parametrize the
boundary circle 35, which consists of all unit vectors v = xi + yj + zk satisfy-
ing the equation x + y + z = 1. The vectors i, j, and k point from the origin to
points on 35, and m = 1(i + j + k) points from the origin to the center of the
circle 3. The radius of the circle 38 is || +j+ k) — i =(§ +5 + H2=
%\/g = \/5/_3 . To describe the general point on 3S, we choose orthogonal
unit vectors parallel to the plane x + y + z =1, sayu=(1/ V2)i-j)andv=
1/ V6 )i + j — 2k). The general point on 95 is m+ \/2_/—3 [(cos Hu + (sin £)v].
As f goes from 0 to 2, the circle is traversed once. The orientation is correct if
the triple product (u X v) - m is positive® (Figure 18.5.7). Up to positive factors,
this triple product equals the determinant |

R S VT R T T
1 -1 o|=|1 -1 o=3|1 l.‘=3-2=6-
11 -2 1 1 =2 e |

3Qur original computation of (uX v)-m when writing this solution came out negative, so we
interchanged u and v.
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18.5 Circulation and Stokes’ Theorem 921

Figure 18.5.7. w,v,m are
oriented so that rotations
about m counterclockwise
in the uv plane correspond
to the correct orientation
for Stokes’ theorem.

Nowr=m+y2/3 (costu +sinrv) and dr = v2/3 (—sintu + costv)dt, so by
Stokes’ theorem,

ffS(VxF)-ndA
= F-dr=j;s[r><(i+j+k)]-dr=fas(dr><r)-(i+j+k)

as
_IZW 2 ( . 2 .
=) 3 = intu+costv)| X |m+ 3 (costu +sintv)

Now i+ j+k=23m, so the term involving m drops out, and the integral
becomes

S +j+K)dr

I

2 (27 ) 2 e 4. 2 2= ] 1
= — (sin’t + cost)(u X v) - (i+j+Kydt = — = — - — -6dr
3[0 (U Xv) - ( ) 3f0 e 7

4q

h

- E .
Method 2. Simplifying the Surface. We compute VXF = —2i —2j - 2k.
By Stokes’ theorem,

ffS(VXF)-ndA =faSF-dr=fL(VxF)-ndA,

where P is any surface having 35 as its boundary. We take for P the portion
of the plane x + y + z = 1 inside the circle in Fig. 18.5.6; n=(i+j+k)/{3
is a unit vector orthogonal to the plane, so (V XF) - n is constant and equal to
—6/y3 . In method 1, we found the radius of P to be \/E/_.’; . Thus

6 6
VXF)-nd4d = ——dd=— f P
f L ( ) f fp 7 A (area of P)
6 2 47
_ — —— '77' . —_ = ee—
(5%
which agrees with the answer in Method 1. A

Just as with the scalar curl, we can show that n - curl ®(Py) is the circulation
per unit area at Py in the plane through P orthogonal to n.
Indeed, let D, be the disk centered at P, with radius ¢ and lying in the
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922 Chapter 18 Vector Analysis

plane orthogonal to m, and let 3D, be its boundary. See Fig. 18.5.8. By Stokes’
theorem, '

ffDe(Vx(I))-ndA =faDe<I)-dr.

In one variable calculus we have seen that a mean value theorem holds for
integrals (see p. 435). There is a similar result for double and triple integrals;

Figure 18.5.8. The curl thus there is a point P, in D, such that |

gives the circulation per f f VX®)-ndd =[(VX®)(P )+ nl(arca D).

unit area. De( ) m [( ) Ee) n]( aD,)
Thus

n-(Vx(I))(Pe)=—7;—2faD<I>-dr, andso n-(VX®)(Py)=1lm L [ @ ar,

=0 qe? Jap,

as we wanted to show.

Example 8 Let E and H be time-dependent electric and magnetic fields in space. Let S be
a surface with boundary C. We define

f E. dr = voltage drop around C,
c

f f H- ndA = magnetic flux across S.
s

Faraday’s law (see Fig. 18.5.9) states that the voltage around C equals the
negative rate of change of magnetic flux through S.

Figure 18.5.9. Faraday’s
law.

Show that Faraday’s law follows from the following differential equation
(one of the Maxwell equations):

VXE=— 3H
ot

Solution In symbols, Faraday’s law states [ E-dr= —(3/37)([¢H -ndA. By Stokes’
theorem, [cE-dr= [[o(VXE)-ndA4. Assuming that we can move 9/9¢
under the integral sign (see Review Exercise 48, Chapter 17), we get

_%ILH.ndA=fL~%—It{-ndA.

Since the two integrals

fL(—(GH/Gt)-n)dA and ffS(VxE).ndA

are equal for all S, it must be the case that VXE = —9H/d¢ (compare the
proof of the theorem following Example 3 in Section 18.2). A
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18.5 Circulation and Stokes’ Theorem 923

Exercises for Section 18.5

Calculate the scalar curl of the plane vector fields in
Exercises 1-4.
1. V(x, y) = yi — xj.
2. V(x, y) = xyi — e”]j.
3 V(x, p)=—20_ A
(. ) xz+yz x2+y2
4. V(x, y)=e¥i—

xt+ yz ¥
Evaluate the surface integrals of the vector fields over
the surfaces given in Exercises 5-8.
5. ®=3x%—2yxj+8k; S is the graph of z=
2x — y over the rectangle [0, 2] X [0, 2].
6. ® = xi—2yj + xzk, S is the graph of z= —x —
y — 1 over the rectangle [0, I] X [0, 1].
7. @ = xk, S is the disk x> +y2 < 1 in the xy plane.
8. @ =j, S is the disk x? + z% < 1 in the xz plane.

Calculate the curl of the vector fields in Exercises 9—-12.

9. F(x, y,z) = e’i — cos(xp)j + zyk.
10. ®(x, y,z) = xzcosxi — yzsin xj — xy tan yk.
)z . Xz
11. &(x, y,z2) = —F—r-—"ri~—
‘ x2 + yZ + z2
x
2 )2) 2 k.
Xty +z
12. F(x, y,z) = (VX®)(x, y,z), where ® is given in
Exercise 10.
13. Prove the identity curl(f®) = fcurl® + Vf X ®.
14. If r = xi + yj + zk, prove that VXr=0.
15. Show that Stokes’ theorem reduces to 0 =0 for
® = V{, by evaluating each side directly.
16. Prove the identity

ffs(vjfx Vg)-ndd =faSng-dr= —faSgi-dr.
17. Let

S 2. 2}
)62+)12+Z2

_ i xj _ xk
y+z  (y+z27? (p+z)

Show that the integral of @ around an oriented
simple curve C that is the boundary of a surface S
is zero.

18. Let @ = (yze* + xyze*)i + xze*j + xye*k. Re-
peat Exercise 17.

19. Let ® = 2xi — yj + (x + z)k. Evaluate the integral
of @ around the curve consisting of straight lines
joining (1,0, 1), (0, 1,0), and (0,0, 1), using Stokes’
theorem.

20. Let C consist of straight lines joining (2,0,0),
(0,1,0), and (0,0,3). Evaluate the integral of
PD(x, y,z) = xyi + yzj+ xzk around C by using
Stokes’ theorem.

21. Let @ be perpendicular to the tangent vector of
the boundary 9S of a surface S. Show that
[[s(VX®D)-ndAd =0.

22. Let ® = axi+ byj+ czk and let C be a curve in a
plane with normal m and enclosing the area A.
Find an expression for [.® - dr using Stokes’ the-
orem.

23. Evaluate [[g(V XF)-ndA, where S is the portion
of the sphere x2+ y? + z2 =9 defined by x + y
> 1, and where F =r X (i + j).

24. Evaluate [{g(V XF)-ndA, where S is the por-
tion of the surface of a sphere x*+ y*+ z*> =4
and 3x + 2y — z > 1, and where F is the vector
field r X (3i + 2j — k).

25. Ampere’s law states that if the electric current
density is described by a vector field J and the
induced magnetic field is H, then the circulation
of H around the boundary C of a surface S equals
the integral of J over S (i.e., the total current
crossing S). See Fig. 18.5.10. Show that this is
implied by the steady-state Maxwell equation V X
H=J.

Current / = flux
of J

Figure 18.5.10. Ampere’s
law.

26. Let F = x% + (2xy + x)j + zk. Let C be the circle
x?+ y? =1 oriented counterclockwise and § the
disk x? + y? < 1. Determine:

(a) The integral of F over S.

(b) The circulation of F around C.

(c) Find the integral of VXF over S§. Verify
Stokes’ theorem directly in this case.

*27. Imagine a fluid moving in space. Take a paddle
wheel on the end of a stick and put it in the fluid.
Move the stick around until the paddle wheel
rotates the fastest in a counter-clockwise direction.
Your stick now points in the direction of the curl.
Justify. _

*28. Generalize Example 7 by replacing x + y + z > 1
by ax+by+cz>d and F=rX(i+j+k) by
F =r X (ai + bj + ck). (What inequality is needed
to ensure that the plane ax + by + ¢z = d inter-
sects the sphere x2 + y2 + z2 = 17)

%29. Prove that Stokes’ theorem holds for the surface
2+ 2+ 2=1z>—1/2.
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18.6

Figure 18.6.1. The amount
of fluid crossing C per unit
time is the normal
component of V times the
length of C.

Flux and
the Divergence Theorem

The integral of the normal component of a vector field over a closed surface
equals the integral of its divergence over the enclosed volume.

Let V be the velocity field of a fluid moving in the plane. In the previous
section, we explained why the line integral of V around a closed curve C is
called the circulation of V around C. The line integral is the integral of the
tangential component of V. The integral around C of the normal component
of V also has physical meaning.

Imagine first that V is constant and C is a line segment; see Fig. 18.6.1.

Suppose we consider a parallelogram consisting of a unit area of fluid, the
shaded area in Fig. 18.6.1. The parallelogram’s base is one unit in length along
C and has its other side parallel to V. Since its area is one, the other side has
length d=1/cos§, where § is the angle between n and V. It takes this
parallelogram ¢ =d/||V||=1/[cos@|[V|] units of time to cross C. Thus
cos || V|| square units of fluid cross each unit length of C per unit time. Since
n has unit length, this rate equals V - n. ‘

If we now imagine C to consist of straight line segments and V to be
constant across each one, we are led to interpret the integral of the normal
component of V along C, that is,

fCV-nds,

as the amount of fluid crossing C per unit of time. This integral is the flux of
V across C. .

Let C be parametrized by o(¢#) = x(#)i + y(#)j. Then a unit tangent vector
is

x'i+y'j
VY + ()
The element of length is

ds =\[(x' + (y')* dt

and a unit normal is
yi—xj

Jor+ oy “

This n has length 1 and is perpendicular to t, as is easily checked. We chose

t= , where x'=dx/dt and y' =dy/dt.
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18.6 Flux and the Divergence Theorem 925

this n and not its negative so that if C is a closed curve traversed counterclock-
wise, n will be the unit ourward normal, as in Fig. 18.6.2. If V = Pi+ Qi
then substitution of the above formulas for n and ds gives

Vends = (Py’ — Qx')dt.

This leads to the following definition.

Figure 18.6.2.
yi— x'j

n= Y+ (Y The Flux of a Vector Field

is the unit outward normal. The flux of V across a curve C is defined to be

fCV-nds=fCde—— Qdx.

If C is parametrized by o(f) = x()i + y(2)j, @ < t < b, the flux equals

L(Pex 300 G - 00x1 5(0) & )

as our calculations above show.
The divergence theorem relates the flux of a vector field V across C to the
integral of the divergence of V over D defined as follows.

Divergence in the Plane
The divergence of a vector field V = Pi + Qj is the function given by

divv =v.y= 9P, 90
0x ay

We can remember the formula for divV in the plane by writing the “dét
product” of V=(3/0x)i + (0/3y)j with V, where instead of multiplying 8 dx
and P, we let 9/9x operate on P. This is similar to the way we regarded curl
® =V X® as the cross product of V=(3/3x)i + (3/3y)j+ (3/9z)k with @
(see Example 3, Section 18.5).

Gauss’ Divergence Theorem in the Plane

Let D be a region in the plane to which Green’s theorem applies and let
C be its boundary traversed in a counterclockwise direction. Then

fcv-nds=ffD(divV)dxdy.

The proof is as follows. The left-hand side equals
f Pdy— Qdx.
c

By Green’s theorem, this equals (with P replaced by — Q and Q by P in the
statement of Green’s theorem)

ff( i Q))dxdy=ffD(divV)dxdy.l
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926 Chapter 18 Vector Analysis

Example 1

Solution

Figure 18.6.3. A
compressing,
incompressible and
expanding fluid.

Example 2

Figure 18.6.4. Find the sign
of divV.

Solution

Calculate the flux of V= xcos yi—sin yj across the boundary of the unit
square in the plane with vertices (0,0), (1,0), (1, 1), and (0, 1).

The divergence of V is '
) 9 9 .
divV = a(xcosy) + 5(—5111)}) =cos y —cos y =0,

so by the divergence theorem, the flux across any closed curve is zero. Thus
the flux across the given boundary is zero. (Notice that directly computing the
flux across C is possible, but more tedious.) A

A vector field in the plane is called incompressible or divergence free if
divV =0. This terminology arises from the divergence theorem and the
example in which V is the velocity of a fluid. In fact, the divergence theorem
implies that the flux across closed curves is zero, that is, the net area of fluid
entering and leaving the region enclosed by C is zero. For a compressible
fluid, it can happen that the fluid inside C is squeezed so that the net flux
across C is negative. In this case, divV would be negative. Likewise, if
divV > 0 in a region, the fluid is expanding. See Fig. 18.6.3.

\4

v v

div V<0 divV=0 div V>0

Figure 18.6.4 shows some flow lines for a fluid moving in the plane with
velocity field V. What would you guess* the sign of divV to be at points 4, B,
C,and D?

The fluid appears to be emerging from small regions near 4, B, and C, so at
these points it is reasonable to suppose divV > 0. At D the fluid appears to be
converging, so there divV < 0. A ’

We saw that a generalization of Green’s theorem to three dimensions which
relies on the idea of circulation is given by Stokes’ theorem. It is natural to
also seek a generalization of the divergence theorem to three dimensions.

Let V be a vector field defined in space. Reasoning as we did in the
plane, we see that if V represents the velocity field of a fluid and S is a
surface, then the surface integral [[¢V -ndA is the volume of fluid crossing
the surface S in the direction of the normal m per unit time. Thus we call
[[sV +ndA the flux of V across S.

If V=Pi+ Qj+ Rk, we can generalize our definition of two-
dimensional divergence by setting

0P . 99 | 3R

leV=‘a——x-+W E,

again called the divergence of the three-dimensional vector field V.

*One has to guess, because one cannot really tell from the picture without knowing how fast the
fluid is moving.
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Proof of
Gauss’
Theorem

z=f1(x,y)

z=f,0x,»)

Figure 18.6.5. A region W
of type 1. The four sides of
W, namely S;, S, S5, S
have normals perpendicular
to the z axis.

18.6 Flux and the Divergence Theorem 927

Gauss’ Divergence Theorem in Space

Let W be a region in space which is of type I, II, and III (see Section
17.4), and let 0 W be the surface of W with n the outward pointing unit
normal. Let V be a vector field defined on W. Then

fffw(diVV)dxdydz=ffaW(V-n)dA.

In words, the total flux across the boundary of W equals the total divergence
in W.
It is sufficient to prove the three equalities

S pionaa=[ [ f 5% dxaya, m
ffaWQj-ndA =fffW%% dx dy dz, (2)

ffaWRk-ndA =fffW%—f dx dy dz. 3)

This is because

fffw(divV)dxddefffWg—f: dxdydz+fffW%—)Q} dydy d
+fffw%—]; dxdydz,

and
f | Venaa =ffaW(Pi+ Qj + RK)-ndA

=ffaWPi-ndA +ffaWQj-ndA +f [ Rk-ndd.

The equality (3) will be proved here; the other two are proved in an analogous
fashion.
Express W by the inequalities

f2(x9 y) <z< f[(x, )/), (X,_y) in D

for functions f; and f, on a domain D in the xy plane. (See Fig. 18.6.5.) The
boundary of W is closed surface whose top S, is the graph of z = f,(x, y),
(x, y) in D, and whose bottom S, is the graph of z = fo{x, ¥), (x, y)in D. The
four other sides of 9 W (if they are not reduced to curves) consist of surfaces
83, 84, S5, and Sg whose normals are always perpendicular to the z axis. We
claim that

fffW%—I;dxdydz=ffD[R(x, P fi(x ) = R(x, p, fo(x, p)) | dx dy.
4

Indeed, by the fundamental theorem of calculus and the reduction to iterated
integrals,

fffw%lzj dzdydx=ffD[R(x,y,z)

=ffD[R(x, P [i(%, 2)) = R(x, y, fo(x, y)) | dx dy.

f1(x.p)
z]=f2(x,y)] d-y dx
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928 Chapter 18 Vector Analysis

Next we break up the left side of (3) into the sum of six terms:

ffaWRk-ndA =f [ Rk mdd +ffS2Rk-n2dA, +i§3ffSiRk-nidA. (5)

Since on each of S, Sy, S5, and S¢, the normal n, is perpendicular to k, we
have k - n, = 0 along these faces, and so the integral (5) reduces to

RKk-ndA = RKk-n,dA .
[ [, Rk:ma { (Rk-n,d +f [ Rkemdd. 6)
The surface S, is defined by z = f)(x, ), so

(82/3x)i+ (3f2/3)i—k

= : (7
V(@h/3x) + @f,/p) + 1
Thus
n, k= —1 ,
V@f/0x) + 3/ + 1
and so

ffszR(k-nz)dA

] 2 2
=ffDR(x,y,fz(x,y)) 2_1 - \/(2—];?) +(2—j;2) +1dd
VI ()
- —ffDR(x,y,fz(x, y))dxdy. ®

The formula for n, is similar to formula (7) for n,. However, n, points upward,
so the numerator of n, is —(3f,/3x)i— (3f;/9y)j + k (Note the positive k
component). Thus

a1
“l""[(a—x) ()1
and so ,
J [ RO myaa= [ [ RGx i p)deds: 9)
Substituting (8) and (9) in (6) gives
f f R(k - m)dA
aw

=ILR(X,)’, fl(x,y))dxdy—fLR(x, ¥, fo(x, y))dxdy
= f fD[R(x, Y, fi(% ¥)) = R(%, v, fo(x, »)) | dx dy

- f f fw%lzi dx dy dz, by formula (4).

This proves that

ILWRk-ndA =fffwaa—§ dx dy dz

which is the identity (3) which we wanted to show. Bl
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As with Green’s and Stokes’ theorems, Gauss’ theorem holds for regions
more general than those of types I, II, and III. This assertion may be
established by breaking up a region W into smaller subregions W, ..., W,
each of which is of types I, II, and TII. We apply Gauss’ theorem to each of
these smaller regions and add the results. The surface integrals along common
boundaries interior to W cancel, and we are left with Gauss’ theorem for the
original region W.

Example 3 Evaluate
ffF ndA, where F(x, y,z) = xy2i + xzyj + yk
s
and S is the surface of the cylinder W defined by x*+ y*< 1, —1<z< 1.

Solution One can compute the integral directly, but it is easier to use the divergence
theorem.
Since S is the boundary of the region W, the divergence theorem gives
[[sF+ndd = [[[,divFdxdydz. Now

AvE = 3 (97) + 5 (9) + 52()

- x2+y2,

and so

f f deidexdydz= f f fW(x2+ y))dxdydz
=£l(ffx2+y2gl(x2+y2)dxdy)dz

= 2ffxz+y2<l(x2 + y*)dx dy.

We change variables to polar coordinates to evaluate the double integral:
x = rcosé, y = rsinf, 0<r<i, 0<80<27.
Replacing x? + y* by r* and dxdy by rdrdf, we have

ff)c2+yz<l(x2+)’2)dx‘1)’=j;2w(f01r3dr)d0= La.

Therefore
ffSF-ndA =ffdeidexdydz=w. A

Example 4 LetV =2xi+ 2yj+ 2zk and let S be the unit sphere x* + y* + 2z = 1. Calcu-
late the flux of V across S.

Solution By the divergence theorem, the flux of V across S equals
fff divV dx dy dz,
w
where W is the ball x> + y? + z? < 1. However,
. 0 0 0
divV(x, y,z) = I (2x) + y 2y + 3 (2z) =6.
Thus the flux is
87. A

6 X volume( W) = 6-%77

Copyright 1985 Springer-Verlag. All rights reserved
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Example 5

Solution

Example 6

Solution

Example 7

Solution

Calculate the flux of V(x, y,z) = x% + y% + z°k across the surface of the unit
sphere x? + y* + z2 = 1.

For V(x, y,z) = x% + p’j + z°k, divV = 3x? + 3y? + 322, By Gauss’ theorem
in space, the flux equals

f f fW(divV) dx dy dz.

Using spherical coordinates (Section 17.5), this becomes

fo2”f0”fo’3p4sin¢dpd¢do= —15277. A

Prove the vector identities (a) V-(f®) = (Vf)-® + fV-® (b) V- (VX P) =
Suppose that ® = ai + bj + ck.
(a)

d( fa ] d fe
(g = S

PP P PR S

(b)

b _ dc d {dc _ da d {da _ 3b
V- (Vx®) = (5; 8y)+8y( az)+az(ay ax)'

By commutativity of partial derivatives, all terms cancel to give 0 as the result.
A

A basic law of electrostatics is that an electric field E in space satisfies
divE = p, where p is the charge density. Show that the flux of E across a
closed surface equals the total charge inside the surface.

Let W be a region in space with boundary surface S. By the divergence
theorem,

serons 5} =J [JErmatd
=fffwdivdedydz
=ffpr(x, y,z)ydxdydz,

since divE = p by assumption; but since p is the charge per unit volume,

Q=ffprdxdydz

is the total charge inside S. A

Exercises for Section 18.6

Calculate the divergence of the vector fields in Exer- 5. Calculate the flux of ®(x, y) = x% — y°j across

cises 1—4.

the perimeter of the square whose vertices are

L. @(x, y) = x% — x sin(xp)j. (=1, =1, (=1, 1,1, 1,1, —1).

2. B(x, y) = yi —xj.

6. Evaluate the flux of ®(x, y,z)=3xp% + 3x%j

3. F(x, y) = sin(xy)i — cos(xﬁz)j. out of the unit circle x? + y2 = 1 in the plane.
4. F(x, y) = xe’i— [y /(x + p)lj.
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7. Calculate the flux of ®(x, y) = yi+ e*j across
the boundary of the square with vertices (0, 0),
(1,0), (0, 1) and (1, 1).

8. Calculate the flux of x’i+ y% out of the unit
circle x2 + y2 = 1,

9. Fig. 18.6.6 shows some flow lines for a fluid
moving in the plane. Let V be the velocity field.
At which of the indicated points 4, B, C, D can
one reasonably expect that (a) divV > 0?
(b)divv < 0?

Figure 18.6.6. The flow
lines of a fluid moving in
the plane.

10. Fig. 18.6.7 shows some flow lines for a fluid
moving in the plane. Let V be the velocity field.
At which of the indicated points 4, B, C,D can
one reasonably expect that (a) divV > 0? (b)
divvV < 0?

Figure 18.6.7. Where is
divV > 07 < 0?

Find the divergence of the vector fields in Exercises
11-14.

1. V(x, y,z) = e¥i — e¥j + k.

12, V(x, y,z) = yzi + xzj + xyk.

13. V(x, y,2) = xi+ (y + cosx)j + (z + e k.
14 V(x, y,2) = i+ (x + p)%j + (x + y + 2)%k.

18.6 Flux and the Divergence Theorem 931

15.

16.

17.

18.

20.

21.

22.

23.

24.

*25.

Find the flux of ®(x, y,z) = 3xy2i + 3x2yj + 2%k
out of the unit sphere.

Evaluate the flux of ®(x, y,z) = xi + yi+ zk out
of the unit sphere.

Evaluate [[;,F-nd4, where F(x, y.z)y=xi+
»j — zk and W is the unit cube in the first octant.
Perform the calculation directly and check by
using the divergence theorem.

Evaluate the surface integral [[,sF - ndd4, where
F(x, y,2)=i+j+ z(x*+ »?’k and 9S is the
surface of the cylinder x2+ »? < 1,0 < z < 1.

. Suppose a vector field V is tangent to the bound-

ary of a region W in space. Prove that
I/ w(divV)dxdydz = 0.
Prove the identity

V-(F><<I))=(I>°(V><F)—F'(V><<I)).
Prove that

fij(Vf)o(Ddxdydz

=fj;wfq).nd,4 —fffwfv-cbdxdydz.

Prove that (9/9:)V-H)=0 from the Maxwell
equation VXE = —3H/dr (Example 8, Section
18.5).

i(i) Prove that V-J=0 from the steady state
Maxwell equation VXH =J (Exercise 25,
Section 18.5).

(i) Argue physically that the flux of J through
any closed surface is zero (conservation of
charge). Use this to deduce V-J =0 from
Gauss’ theorem.

(a) Use Gauss’ theorem to show that

ffSleF-ndA =f SZVXF-ndA,

where §, and S, have a common boundary.
(b) Prove the same assertion using Stokes’ Theo-
rem.
(c) Where was this used in Example 7, Section
18.5?
Let p be a continuous function of q = (x, ¥, z)
such that p(q) = 0 except for q in some region .
The potential of p is defined as the function

s =[[f 4w|fnf(? q OV

where lp — q|| is the distance between p and q.

(a) Show that for a region D in space
[feoVé ndA = [[[ppdxdyd:z.

(b) Show that ¢ satisfies Poisson’s equation
V¢ =p.
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Review Exercises for Chapter 18

Evaluate the line integrals in Exercises 1-10.
1. f xydx + xsin pdy, where C is the straight line
c

segment joining (0,1, 1) to (2,2, —3).

2. fxdy, where C is the unit circle x2+y2=1
c

traversed counterclockwise.

3. f xe¥ dx — ye*dy where C is the straight line
C
segment joining (0, 1,0) to (2,1, 1).

4. fxzdx + y2dy, where C is the circle x? + y?
c

= 1, traversed counterclockwise.
5. fV(xyzcosz) «dr where C is a curve in space
c

joining (0, 1,0) to (8,2, m).

6. fV(cos(xyz)) - dr, where C is a curve in space
c

joining (0,0,0) to (1,7/2,1).
0 9 9
7. — (e™* — (eV? 2 (e¥*)dz,
fcax (e Ydx+ 3 (e97)dy + 2= (e¥7) dz

where C is a curve in space joining (1,1,1) to
0,2,0).

0 0
= + 2
8 f 2 (x cos yz)dx 3y (x cos yz)dy

+ ai(x cos yz)dz, where C is a curve in space
z

joining (0,0,0) to (1,7, 1).

9. fsinxdx—lnzdy+xydz, where C is para-
c

metrized by 27+ 1,1n¢, 2, 1<t<2.
10. fxyz dx + (y + z)dy + [sin(e”)]dz, where C is
c

parametrized by (sin 2z, cos¢t,5), 0 < ¢ < 27,

11. Let f(x, y) = x’sin y — xp°. Evaluate the integral
{c(@f/0x)dx + (3f/0y)dy, where C is
parametrized by:

(a) (tanat,In(t+1)); — 4 <t <4
(b) (tcos’(mt/4),e'*); 0< <2
(©) (13 =262+ 1,sin’(mt/2) - 2637, 0 <t < 1.

12. I f(x, p,2) =¥ —In(z> + 1), evaluate the
line integral [-Vf(r)-dr along the curve given
by o(f)=(~t5 2+ LtsinBmt), 0< £ < 1.

In Exercises 13-16, let f(x, p,z) = xze’ — 2° /(1 + y?).
Evaluate the line integral [~(3f/dx)dx + (8f/dy)dy +
(3f/0z) dz, where C has the given parametrization.

— T 2, 2=\
13. a(t)—(\/f51n4(1+t),t 1,2 2),

+ ¢
O0<r< 1. )
14. ¢(1) = (cos™t, ™7/ 2 — 1); 0 <

t
15. a(t)=(cosg-t,singt,t); -I<r< L.

16. o(r)=(e’,e 1,13, 0< t < 1.

< L

17. Find the work done moving a particle along the
path o(2) = (¢,1%), 0 < ¢ < 1 subject to the force
D(x, y) = e*i — xeV].

18. Find the work done moving a particle from
(0,0,0) to (1,1, 1) along the path

(x, y,2) = (,1,1%)
subject to the force ®(x, y,z) = z cosxj + 8yzk.

In Exercises 19-22, determine if the given vector field @
is conservative; if it is, find an f such that ® = V.

19. @(x, y) = x tan yi + x sec%j.

20. ®(x, y) = tan yi + x sec?j.

21. ®(x, y) = 3xH% + 2xH.

22. ®(x, p) = 3x3% + 2xYj.

23. In Exercise 30, Section 18.2, it was shown that a
vector field

D(x, y,z) = a(x, y,2)i + b(x, y,2)j + e(x, y,2)k

defined in all of space is conservative if and only
if a,=b,, a,=c¢,, and b,=¢,. Is V(x, y,2)
= 2xyi + B2+ xHj+ 9yzzk conservative? If so,
find a function f such that Vf= ®.

24. (a) If @ is conservative, prove that VX ® = 0.

(b) Find an f such that

Vf=tan’1(yz)i+(1 + X )j a4

y222+1 " yr+ 1 K
Which of the differential forms in Exercises 25-28 are
exact? Find antiderivatives for those that are.

25. (e’sinx + xe’cosx)dx + xe’sin x dy.

26. (ycosx +sinz)dx + (zcos y +sinx)dy +
(xcosz + sin y)dz. {You may wish to study Re-
view Exercise 23 first.)

27. xe¥ dx + ye™dy.

28. exp(x? + y)(xdx + y dy).

Solve the differential equations in Exercises 29-32.

29. ycosx + 2xe” + (sinx + x%” + 2)% =0,
y(m/2)=0.

30. 327~ 2 + %’ + (e~ 2x + 4)% =0,
y(0)=0.

31 2xp + (x* + 1)% =1Ly()=1

32. 2xp —2x + (X7 4 1)% =0.

Test each of the equations in Exercises 33-36 for exact-
ness and solve the exact ones.

d
33 0y~ (2 + 3 2L —o.
3oxp —(x +3y)dx 0
. dy
34. sinx sin y — xe’ + (e’ + cos x cos y)a =0.
3,4 , 5 \
35. 5x%* =2y + 3x% +x) - =0.

36. 9x2+y=(4y-x)% + 1.
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37

38.

. If D is a region in the plane with boundary curve
C traversed counterclockwise, express the follow-
ing three integrals in terms of the area of D:

(a) [exdy, (b) [y dx, (¢) fcxdx.

Use Green’s theorem to calculate the line inte-
gral [o(x? + y*)dy — (x* + y)dx, where C is the
circle x? + p® = 1 traversed counterclockwise.

Calculate the curl and the divergence of the vector
fields in Exercises 39-42.

39

40.
41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

L ®(x, y,zy=xi+[py/(x + 2)]j — zk.
D(x, y,z) =2xe’i — yzezj + ze* "7k,
D(x, y,z) =1 X (xi — yj— zk),

where r = xi + yj + zk.

® =V XF, where

F(x, y,z) = 3x% + cos(yz)j — sin(xp)k.

(a) Let F=yi— xj+ zx3)12k. Calculate VXF
and V-F.

(b) Evaluate [[5(VXF):nd4 where S, is the
surface x>+ y* + 22 =1,z < 0.

(c) Evaluate [[¢ F-nd4 where S, is the surface
of the unit cube in the first octant.

(a) Let F=(x*+y—di+3xpj+ (2xz + 2Dk
Calculate the divergence and curl of F.

(b) Find the flux of the curl of F across the
surface x> +y2 +22=16,z > 0.

(c) Find the flux of F across the surface of the
unit cube in the first quadrant.

Express as a surface integral the work done by a

force field F going around a closed curve C in

space.

Suppose that divF > 0 inside the unit ball

x?+ y*+ z% < 1. Show that F cannot be every-

where tangent to the surface of the sphere. Give

a physical interpretation of this result.

Calculate the surface integral [[g(VXF)-ndA,

where S is the hemisphere x? +y2 +z2=1,

z>0and F=x%— 7.

Calculate the integral of the vector field in Exer-

cise 47 over the hemisphere x2 +y2 +z2=1,

z<0.

Calculate the integral [[sF -ndA, where S is the

surface of the half ball x? +y2 +22<1,z>0,

and F = (x + 3yMi + (y + 10x2)j + (z — xp)k.

Find [[4(VX®)-ndA, where S is the ellipsoid

x?+ y* 4272 =10 and ® = sinxyi + e*j — yzk.

For a region W in space with boundary dW, unit
outward normal n and functions f and g defined on W
and 0 W, prove Green’s identities in Exercises 51 and 52,

51.

o ¥F .
where V= —L 4+ ~2 + 7 s the Laplacian of f.
/ dx? 8y2 922 P f
[[ f(Vg)-nda
ow

=fffW(fV2g+ Vf-Vg)dxdyd:.

52. ffaw(ng— gV/)-ndd

=f f fW(szg— gV dx dy dz.

53.

54.

55.

*56.

*57.

Review Exercises for Chapter 18 933

Show that div® at a point Py in space is the
“flux of ® per unit volume” at P,,.

In Section 18.4, we gave an example of a region
to which Green’s theorem as stated did not ap-
ply, but which could be cut up into small-
er regions to which it did apply. In this way,
Green’s theorem was extended. Give an example
of a similar procedure for Stokes’ theorem.
Surface integrals apply to the study of heat flow.
Let T(x, y,z) be the temperature at a point
(x, y.z) in W where W is some region in space
and T is'a function with continuous partial deriv-
atives. Then

vr=3T;4 0T, 3T
dax ay dz

represents the temperature gradient, and heat
“flows” with the vector field —kVT =F, where
k is the positive constant. Therefore [[F-ndA
is the total rate of heat flow or flux across the
surface S. (n is the unit outward normal.)

Suppose a temperature function is given as
T(x, y,z)= x? +y2 + 2%, and let S be the unit
sphere x?+ y2+ z2=1. Find the heat flux
across the surface S if k = 1.
(a) Express conservation of thermal energy by
means of the statement that for any volume W in
space

B[ v

where F= —kVT, as in Exercise 55 and e
= ¢poT, where ¢ is the specific heat (a constant)
and py is the mass density (another constant).
Use the divergence theorem to show that this
statement of conservation of energy is equivalent
to the statement
AT _ k wor
dat cpo
where V27T = divgrad T = 9T /0x? + 927 /dy?
+ 9°T /922 is the Laplacian of T.
(b) Make up an integral statement of conserva-
tion of mass for fluids that is equivalent to the
continuity equation

(heat equation),

dp . _
T + div(pV) =0,

where p is the mass density of a fluid and V is
the fluid’s velocity field.

(a) Let @ be a vector field in space. Follow the
pattern of Exercise 31, Section 18.4, replacing
Green’s theorem by Stokes’ theorem to show that
@ = V{ for some f (that is, ® is conservative) if
and only if VX® = (.

(b) Is F=(2xpz + sinx)i + x%zj + xYk a gradi-
ent? If so, find f.
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*58.

*59.

Chapter 18 Vector Analysis

(a) Use Green’s theorem to find a formula for
the area of the triangle with vertices (xi, y1),
(x2, y2), and (x3, y3).

(b) Use Green’s theorem to find a formula for
the area of the n-sided polygon whose consecu-
tive vertices are (x;, y1), (X2, ¥2)s - + - » (X5 V)
Let f be a function on the region W in space

2 2 2
9f L9 L3
ax?  ayr  9z?
where on W and (ii) Vf is tangent to the bound-
ary o W at each point of 3 W. Use the identity in

such that: (i) =0 every-

*60.

*61.

Exercise 51 to prove that f is constant.

Show that the result in Exercise 59 is true if the
condition (ii) is replaced by (ii’) f is constant on
aw. .

Considering a closed curve in space as the
boundary of two different surfaces, discuss the
relation between:

(a) the divergence theorem;

(b) Stokes’ theorem;

(c) the identity V-(VX®) =0.
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Chapter 13 Answers

13.1 Vectors in the Plane 3. vy
1. 4,9 3. (—15,3) 3T
5 y=1 7. No solution
9. No solution 11. No solution
13.a=4,b=—1 15.a=0,b=1
17. L, y)+ 0,00 =(x, + 0, y, +0) = (x,, y)) } -
19. [(xy, y1) + (%2, p2)] + (x3, ) ’
=+ x4 X3, 1+ ya+y3)

= (x1, y1) + [(x2, y2) + (x5, y3)]

21. a(b(x, y)) = a(bx, by) = (abx,aby) = ab(x, y) 33. y
i
J x
35. y
25. (a) k(1,3)+1(2,0) = m(1,2)
®d) k+2l=mand 3k +0=2m x
(c) k=4,/=1 and m = 6; i.e. 4505+ S, = 650,
27. (a) d
(b) e
29. (a) c+d=(6,2)
Y
iy
37. (a)
d
24 vy
C
c+d
| Q
6 . T if
v w
1+ r R
u
t—t—rt -
2 3 4 X
(b) —2e+ja=(-1,0)
®) v=(1,2); w=(I, =2); u=(-2,0)
(c) 0
v 39. (a)
Ry
1+
v
T 1 -
\ . 3 X 1 X
—2e
24
() ©. 1
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(©) (0,5/2) 9. 9
¥
5/2
| L
-V
2 |
} —
1 ¥
I
v
1 X
(d) (0, -2) 2
i
i
| - X
X
11.
v3
24+
(e) (L, y) (" v=0,») ¥
41. (a) Yes (c) Eliminate r and s.
d) v=—(s/rw (d) Solve linear equations.
13. —i+2j+ 3k 15. 7i+ 25+ 3k
13.2 Vectors in Space 7.1k 1. 1-j+k
i 21. i + 4j, 8 =~ 0.24 radians east of north
L -4 23. (a) 12:03 p.M.
(b) 4.95 kilometers
25. 4
100 e F=501b.
F, = 50sin(50°) Ib ~ 383 Ib.
v 50°
Y
3 z
. F,=50c0s(50° Ib =~ 32.1 Ib.
//_5
Pt
GBS 4 27. The points have the forms (0, y,0), (0,0, 2),
?/ 4 (x, »,0), and (x,0,2).
—
rd ’
L -
X

5. (11,0, 11)
7. (=3, -9, —15)
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31.
35.

-39.
41.

43.

9i + 12j + 15k 33. 26i + 16j + 38k

a=%b=—13 37.a=55b=2

(4.9,4.9,4.9) and (—4.9, —4.9,4.9) newtons.

(a) Letting x, y, and z coordinates be the number
of atoms of C, H, and O respectively, we get
p(3,4,3) +¢(0,0,2) = r(1,0,2) + s(0,2, ).

by p=2,r=6s5=4,9=5

(©) 0
2(3.4,3)+5(0,0,2) =
6(1,0,2) +4(0,2,1).
10+
6(1.0.2)
5(0.0.0)
4(0,2,1)
2(3.4,3)
+
10 "
10

.

(8) Poy=(=1,—1,=1), Py=(1,0,0)
P,=@GL1,P,=(522)

(b) Y

(c) The line through (1,0, 0) parallel to the vector
2, 1D,

13.3 Lines and Distances

1.

~3 U W

Use vectors with tails at the vertex containing the
two sides.

. Use the distributive law for scalar multiplication.
(L -3)

x=1—-ty=1—-tz=t

L X=Ly=tz=1

11.
13.
15.
19.

23,

27.
29.

31.

x=1—-ty=1—-t,z=1t

x=—1431y=~-2-2t

(-2,-1,0) 17. No

3 21. 2

22 25. =246

[|2i + j + 2k{| = 3, which is less than V3 +2.
One solution isu =i, v= —i, w=1i.

Each side has length 2 .

33.

Chapter 13 Answers A.71

(1/V3)i+(1/¥3)j+ (1/3)k, (1/¥D)i+ (1/2)k
3

35. 3

37.
39,

41,
43,

45.

V2

(i) 1422 — 121 + 4

(i) t=3/7

(iil) y10/7

13 knots

Solve one equation for ¢ and substitute. The line is
vertical when x, = x,.

When the angle between the vectors is 0.

13.4 The Dot Product

13.
17.

21.

25.

27.
29.
31.

33.
35.

37.

39.
41.

43.

45.

1. 4
3.0
5.
7
9

~ 0.34 radian

. /2 radians

(/5 +(2/5);
11.

0.955 radians

L (i+j+k)
v
7]
RY i
Use Figure 13.4.2. 15. V42

50/11
=0

-

9. x+y+2z=0
23. —x+y+z-1=0

=

@/ V@) + 3/ 1) + (1//14)k

(1/¥2)i +(1/\2)

x+y+z—-1=0

x=1l+t,y=1+t,z=1+1

(1, -1/2,3/2), Y14 /2

x=22-9)/7, y=(~6-20/T,z=1

3V3.

2 /2.

Letting (a,b) and (c,d) be the given points, the
equation of the line is (a —c¢)x + (b —d)y
= (1/2)(a®— ¢* + b* = d?). Use this to show that
the two points are equidistant from points on the
line.

(a) 3

(b) =2

(© 23

(d) 3

Letting P, = (p, ¢) and P, = (r,s), we have
(r=px+(—qy= (PP + 52— p* - q3/2.
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47

Chapter 13 Answers

. To show that v and w=(v-e))e; + (v-e))e, are
equal, show that v —w is orthogonal to both e,
and e,.

49, F; = —(F/2)i+)) and F, = (F/2)(i — j)

51.

53.

(&) F=(3/2i+3/2))
(b) ~0.322 radians
(c) 182

Use the component formula for the dot product.

55. (a) [12.5)2 + (16.7)*> — (20.9)%]/[(12.5)(16.7)] is

close to 0.
(b) 0.54%

57. (a) Let s = tfa® + b + ¢?

(b) Use the fact that |ju|| = 1.

(c) Use |jul*=1.

(d) For L, and L,,
cosa=1/y3 soa=-cos™(1/y3),
cos B=1/43 so B=cos (1/y3),
cosy=1/3 soy=cos~'(1/{3).
For Ly and L,,
cosa =1/483 so a =cos™'(1//83),
cos B=1/y83 so B=cos™(1//83)

and cosy =9/y83 so y=cos™'(9//83).
(e) Only the line #(1, 1, 1).

13.5 The Cross Product

1 j+k 3. 21— 2j+ 4k

5. 9i + 18j 7. 6i — 2k

9. —i+k 11. 32

13. 2 15. —(1/42)j+(1/42)k

17. — (/i (1/42)]
19. (2 /6)i = (/2 /6)j + (242 /3)k

21

c2x+3y+4z=0

23. x =3y +2z=0

25. 32 /2
27. The points are collinear, so the area is zero.
29. Substitute component expressions for v, and v,.

31

33
35

37

39

. The angle between the vectors is § — ¢. Now use
property 1 in the box on p. 679.

. Use the result of Exercise 32.

. Show that M satisfies the defining properties of
R XF.

. Show that »n(N X a) and n,(N X b) have the same
magnitude and direction.

. (a) Draw a figure showing the two lines and the

plane in the hint.

(b) V2

41. If F is the gravitational force, the gyroscope ro-

tates to the left (viewed from above).

13.6 Matrices and Determinants

1. 2 3.0
5. -2 7. 25
9., ac

11
13.
15.
17.

23.

25.

27.

29.

31.
33.
35.
37.
39.

41.

43.
45.

47.
49.

Compute the two determinants.
Compute the two determinants.

0 19, —6
4 21. 9
abc

i j k

3 —1 o/=-1—-3j+3k
0 i 1

i j ok

1 1 oj=i—j+k

01 1

ij k

1 0 —11=72

1 0 1

6

12

Compute and simplify.
Compute both determinants and compare.
Use Example § after renumbering the vectors.

U3

Uy

vy h

vy

U

Substitute the expressions for x and y in the equa-
tions.

Substitute the given expressions for x, y, and z in
the equations.

x=37/13, y = —3/13

Compute both determinants and compare.
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51.

53.

Review Exercises for Chapter 13

~3 U e

h

11.
13.
15.

17.
19.
21,

23.

25.
27.

29.
31.

33.
35.
37.

39,
41.
43,

45,
47.

Subtract four times row 1 from row 2, subtract
seven times row 1 from row 3, expand by column

1 and then evaluate the 2 X 2 determinant.
3, —6

. (2,8)

(=L 2,17
Clli+j—k

. —4i+ 77— 11k

6

-2k

i—2j

2i+j—3k

(=2/V2D)i+ (3/VI)j + 3/ V2D )k
0 (the three vectors lie in a plane).

(a) (6,6)

((YRCA))

Put the triangle in the xy-plane; use cross products
with k.

(1825 — 60042 )!/? ~ 31.25 km /hr.
(a) 70cos @ + 20sind

(b) (21y3 + 6) ft.-Ibs.
x=1+ty=1+¢tz=2+1¢
x=1+t,y=1—-tz=1-1¢
-x+y=0

x—y—z—1=0
x=—ty=tz=3
x=2+t,y=3-t,z=1—-1¢

(1//38)i — (6/¥38)j + (1/38 )k
@/ 5)i— (/5]
(3 /Di+ (124D + (1/2/2 )k

It is parallel to the z-axis.

Chapter 13 Answers A.73

49, This is a (double) cone with vertex at the origin.

i

51. (a) Draw a vector diagram. (b) Use ¢ X ¢ = 0.

(¢) Use part (b).

53. Use the dot product to show that the vectorsa — b

and —a — b are perpendicular.

55. 3 57. 1
59. —2 61. 0
63. 381 65. 29,2
ay dy as
67. (a) % b, b, b
¢ € C3
) 1/3

69. Use the fact that ||a]> =a-a, expand both sides

71.
73.

and use the definition of ¢.
x=3/7y=-29/21,z=23/21
—162

75. Each side equals

77.

79

81

83

2xy —Tyz + 522 — 48x + 54y — 5z — 96.
(Or switch the first two columns and then subtract
the first row from the second.)
v is orthogonal to i
. (a) 4k
(b) 20421+ 2042 j
. (a) Substitute i, j, and k for w.
(b)) a—v)-w=0.
(c) Repeat the reasoning in (a)
(d) Apply (c)tou—.
. ()

,vj -

/ / -
64~ // ///
e

T 1
/ -~ ~VTTX
3L 2
/ [~
24- /// /#;///
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(b) (b)
74
104~ s
o @, 8) (5,10)
T (t+m(1,2)
643,604 7(1,2)
Ry LN
ALY
| I O W | | S N B | -
T T T T T T T T T T 1 T
(-1, -2) ;'_] 23456 x
(=2, -4) 1
2 (1,2) F——F-(-3, -6
© —1-m(1,2) # (4 _g)
(~5,-10)
©)
v
2+
A bt
(d) The set is the entire plane. 1 x
85. (a)
(d)
v 4
Y (1+2m)(1,2)
14 4+m)(1,2)
12 @B+m(1,2) 2
10 Q2+m 1,2 41
8 (1+m(1,2) _—
6 Il ' x
4
2 1,
4+
78 )
I 12345¢ * 87. 6 =sin~'(/8 /3)

Chapter 14 Answers
14.1 The Conic Sections

1. Foci at (%442 ,0). 3.

o
7
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7.
-2 2 X
-2
5. A circle of radius 1 centered at (1,0)
iy
9. y=x?/16 11. (0,1/4), y=—1/4
13. (1/4,0), x=—1/4  15. x*+ y? =25
17. y=x*/4 x2

19. 22 =1

3 a
\/

1.0)
21. On the axis, 2/15 meters from the mirror. 0

23. 4/15

25. Use the dot product to find an expression for the
cosine of the incident and reflected angles.

14.2 Translation and
Rotation of Axes 7. An ellipse shifted to (0,3 /4).

1. y "
(-1,2)

/\ i ‘ 0.2

Copyright 1985 Springer-Verlag. All rights reserved



A.76 Chapter 14 Answers

9. A hyperbola with asymptotes y = +x, shifted to 21. ¥
(=1, -1,

23 P4yt —dx—6y=12
2
25. y=(x~—1)? 27.(y—1)2—%=1.
29. X2+ Y2+ (1 -3 X +(—-1—-y3)Y=2.
31. For translations, A = 4 and C = C. For rotations
use equations (9) to compute 4 + C.

33. The area of the rotated ellipse is 7

=
=

1. x=X/2-3Y/2,y=y3X/2+Y/2,

X=x/2+3y/2 Y=—Bx/2+y/2. 14.3 Functions, Graphs and
13, x=097Xx —026Y, y=026X + 0977, Level Surfaces

X =097x + 026y, Y = —0.26x + 0.97y.
15. Hyperbola 1. All (x, y) with x5 0; 0, 1.
17. Ellipse 3. All (x, y) with x2 +y2 =1;2,0.

5. All (x, y,z) with x? + y2+ 22 1; 1, —2/3
19. 7. All (x, y) with x %= = + 2n7, n an integer;
v _‘/5/4’ 77(2_\/7)/2

!
to 4
I
Vo +
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11.

i

15. Circles with centers on the line y = x and passing
through the points (=2 /2, T2 /2), excluding
points on the circle x? + y? = 1.

V

Chapter 14 Answers A.77

17. Lines through the origin, excluding points on the
line x = y.

19.

(0,8,0)

e

b (0,0,—4)

21.
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23.

\

25.

(1,0,7)
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35.

37.

o ™

Chapter 14 Answers A.79

(b) No level curve.

(©

(d) In polar coordinates, the equation is f(r,8)
= ¢~ '/”. This is independent of 4.

(e) The graph looks like a plane gradually sloping
down to a pit in the center.

43. (a) z = exp[(— 12)(x + ¥)/25(x — p)]
(b)
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14.4 Quadric Surfaces 9.

11.

1=/
/ 13. X

=
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15. z 19. z

21.
17. (a) z
Z
i // |
i
/ /’r >
23. Substituting z = 1 gives x?2 +y2 = 1, a circle.
—_— » 25. (a) They are ellipses.
) (b) In each case the cross section is two straight

lines.
(¢) If (xg, yg.zo) satisfies the equation, so does

(txo, o, tZO).
27. Substitute x = xo + Su; + oy, y = yo + fuy + Moy,

(b) Rotate the x and y axes by 45°. z=zo+ fus + oy into x>+ y>=z% where u
={(uy, Uy, u3) and v = (v, vy, v3).

14.5 Cylindrical and
Spherical Coordinates

1. (2,~-7/4,0)

z
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3. (13, —0.588,1) 11. (0,0,6)

0, 1,0

9. (=3 /2,-1/2,9) 21,

T
S

|

|
B
=

——m—"

—

15.
17.

19.

Reflection throug] xy-plane.
Stretching by a factor of 2 away from the z-axis,
and a reflection through the xy-plane.

Right circular cylinder with radius r; vertical plane
making an angle § with the xz-plane; horizontal
plane containing (0,0, z).

(2.7/2,7/4)

LS
ALY
1

\,

w/2
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23, (V14 ,2.68,2.50) 31. (0,0, —8)

z 4

X

25. (/29.3.73,2.41) . 008

z 33. p?=2/sin2¢ cosd

35. The vertical half plane with positive y-coordinates
and making a 45° angle with the xz-plane.

37. It moves each point twice as far from the origin
along the same line through the origin.

39. The unit circle in the xy-plane.

Y 41. (3,7/2,4), (5,7/2,0.64)

z

(0,3,4)
27. (0,0, —3) ?

) " x
T ¥

43. (0,8,0), (0,0, ¢) for any 8, ¢.

€ (0,0,-3) ‘

X

29. (0,0,3)

©,0,0) Y
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45. (4,77/6,3)

z

, (5,77/6,0.93)

e

X

47. (2 /2,02 /2,1), (2,7 /4, 7/4)

49. (0,0, 1), (1,7 /4,0)
51. (0,2, 1), (5, 7/2,1.11)

53. (0,0, — 1), (0,8, — 1) for any #

z

X

3

¢ (0,0,-1)

55. (0,0,0), (0,0,0) for any ¢

z

X

57. (1/2,0, =3 /2), (1/2,0, =3 /2)

59. (a) z = r’cos26
(b) 1 =ptan¢sing cos2f

61. (a) The length of xi + yj + zk is

(+y 4+ )22
(b) cos¢ = z/(x* + y* + z%)}/?
(¢) cosf = x/(x*+ yH)!/?

63. 0 < r < a,0< 0 <27 means that (r,8, z) is inside
the cylinder with radius a centered on the z-axis,
and |z| < b means that it is no more than 2
distance & from the xy plane.

65. —(d/6)cosdp <p<d/2,0<8 <2, and
7—cos '(1/3) < ¢ < 7.

~ 67. This is a surface whose cross-section with each

surface z = c is a four-petaled rose. The petals
shrink to zero as |c| changes from 0 to 1.

14.6 Curves Iin Space

i
VA
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5. : 17. [Fcos 1(—2 + csc’) — 31%sin 1(2 + csc¥)]i +
[FPe '3 — 1)+ 2:% (1 + 3)]j +
[e‘csct(l — cotr) — e “(cost + sin 1)k
19. e‘{2e'i + (sint + cos7)j + £%(3 + 1)K]
21. di[ 16/ (D)]12 = 20°(1) - 6”(1) = 0.
23. (a) costi — 4sin tj
(b) —sinzi — 4 cos¢j
(€) Vcoskt + 16sin%
25. (a) 2i+j+k (D)0 (c) V6
27. (a) —i+j+ 2tk (b) 2k (¢) V2 + 442
29. (a) —4sinti+2costj+k (b) —4cossi— 2sintj
. () V5 + 12sin%
3L (@) i~ (1/)j+k (b) 2/ (¢) 2r* + 1 /12
(-3.3.0 33. (6,61,31%); (0,6,61); (x, y.z) = 1(6,0,0)
T 35. (=2sinzcost,3 — 312, 1); (—2cos2t, —61,0);
(x, y.2)=(1,0,0)+ (0,3, 1)
37. (2.e', —e™"): (0,e',e™");
(x, 3,2 =0, 1, 1)+ 1(Z. 1. — 1)
_ 39. (2e,0,cos 1—sin1)
¥ 41. (a)1(1,0,1)

7. 4 (a) (b)

(4,0,2m)

“

1. (a) An ellipse in the plane spanned by v and w
' and passing through the tip of u. The ellipse
has semi-major axis 4 and semi-minor axis 2.
(b) 1, —1+4cost+ 8sins, and 4cost — 8sin 7.

13. 6'(r) = —3sinti — 8costj + e'k;
@"(t)= —3costi+ 8sintj + e'k.
15. (e’ ~ e )i+ (cost — csc 1 cot 1)j — 31%k. : x
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(© «(—=LL1

X

43. (a) The curve is a right circular helix with axis
parallel to the z-axis.

(b)

(1,0,0) !

(2,0,0

X

(c) The curve becomes a circle in the xy plane
with center (2,0,0) and radius 1.
45. (a) Substitute
(b) (4,cost + Bsint, A,cost + B,sint, A3cost +
B,sint) where 4,, 4,, As, B|, B, and Bj are
constants.

47. (a) ()

(i) z
t=1
(-1,2,3)
=3
t1—4
1 =1
l‘=7 4 )
t=0 y
X
(iii) z
(-1,2,3) g/ 1 =1
=3
=%
L
=3
=1
=3
t=0 y

X

(b) Each curve is the line segment joining (0, 0, 0)
to (—1,2,3). It is covered once by (i) and (iii)
and twice by (ii). The velocity is constant in
(i), variable in (ii) and (iii).
49. In each case, verify that x? +y2 + z2=1, so the
curve lies on the sphere.

(2)

(b) z
/
[
!
|
\
\ —
\ y
. \)(//
° 1
AN 45
\,
N\
X AN
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51. The set of points above or below P, have coordi-
nates (xq, ¥o,2) where z = cos™ 'xo + 2n7 if xo > 0
or z= —cos 'xo+2n7 if x5 <0, n an integer.
The vertical distance is 2.

53, Let o= fii+ g(j+ hk, o,=fi+ gj+ hk.
Form o, + o, and differentiate using the sum rule
for scalar functions. .

55. Using notation in the answer to Exercise 53, form
o, X 0, and differentiate using the product rule
for scalar functions.

57. (a) o(z) describes a curve in the plane through the

origin perpendicular to u.

(b) Same as (a), except that the plane need not go
through the origin.

(¢) o(1) describes a curve lying in the cone with u
as its axis and vertex angle 2 cos™'b.

14.7 The Geometry and Physics
of Space Curves

1. 275

3.42 -2

5. ~3.326

7. —0.32x%r, where r is the vector from the center to
the particle.

9. (6.05 x 10%) seconds.

11. (a) From ma = GmM/R? g= GM/R*=
(6.67 X 107'1)(5.98 x 10%%)/(6.37 x 10%)? =
9.83 m/sec’.

(b) The acceleration is — 9.8k 1f k points upward.

13. (a) x" =(gb/em)y’; y" = (~gb/cm)x’; 2" = Q.
(b) x = —(amc/gb)cos(gbt / mc) + (ame / gb) + 1,

y = (amc / gb)sin(gbt /mc), z = ct.
(c) r= amc/qgb, the axis is the line parallel to the
z-axis through (amc/¢b + 1,0,0).

15. The circle parametrized by arc length is o(s) =
(rcos(s/r),rsin{s/r)). Calculate T = do/ds and
dT/ds.

17. k= 1/y22y* + x%/2)*/%

19. Assume that the curve is parametrized by arc
length and show that v is constant.

21. Force magnitude = (mass) x (speed)? x
(curvature).

23. (a) nis the normal to the plane. Since ¢', ¢”, ¢” are
perpendicular to n, their triple product is zero. By
Exercise 22(e), T = 0.

(b) By Exercise 22(e), dB/dt = 0. By Exercise 22(a),
B lies in the direction of v x a.

25. Use the hint for the second equation and Exercise

22 (a) for the third.

14.S Rotations and the
Sunshine Formula
L (a) my=(1//6)i+j+ 2k),

ng=(1/23)i+j-k
(b) r={cos(mt/12)/2y2 + sin(mt/12)/4}i +

Chapter 14 Answers A.87

C[=1/242 + cos(mt /12)/242 + sin(wt /12)/4]j +
[~ 1/2V2 + cos(wt/12)/{2 — sin(wt /12)/4]k
(©) (x, y,2)=(=1/2y2)i+ 2j + 3k) +
(—7/48)(i+ j+ k)t —'12)
3. T, would be longer.
5. The “exact” formula is —tan/sina =
cos(2at / Tltan(2wt / T tan(2wt / T,) — cos a].
7. A =94°
9. The equator would receive approximately six
times as much solar energy as Paris.

Review Exercises for Chapter 14

1.
¥ {
-3 \‘/ 3 k¢
3.
¥
8_-
X
8+
5.

o

i
(=]

)
N
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7 y 15. gy
20+
24
15+ ’ P
( DT
X~ 8
: :
-2 \j 2 X
X
2

17. The level surfaces are parallel planes.

9. y 2

(1,5)

(0,0,-1)
0,2 (2,2) >

11. vy

19. The level surfaces are spheres of radius yc — 1.

z

13. /

|
3
\wm
-
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21. Ellipsoid with intercepts (£ 1,0,0), (0, =1/2,0) and
(0,0, *1).

27. Elliptic paraboloid with intercepts (1,0, 0),
(0, £1/2,0) and (0,0, 1).

23. Elliptic hyperboloid with intercepts (+1,0,0) and
0, =1/2,0).

29. (a) (x/a)*+ (y/b)* =1+ (z/c)*, which are el-
lipses.
|

(b) x constant; |x| < a gives a hyperbola opening
along the y-direction, |x| =a gives two lines,

(©

and |[x| > a gives a hyperbola opening along
z-direction.

z
25. Elliptic paraboloid with intercepts (+1,0,0),
(0, £1/2,0) and (0,0, — 1).

x=0 x=1
z 24 \/g
2
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31. (a) 31. (¢)
level sets for z
v 4 3 ¢c=-10,-1,0
—_ are empty
Vo
1
/- -
e=1 '{,1 3 x
c=10 /
i -
y
(b) For x = *1 and x =2, the equations are z
=2p?+2 and z =2y? + 5 which give parabo-
las opening upward in planes parallel to the *
yz—plane. For y = *1 and y = 2, the equations
are z=x>+3 and z=x?+9 which give
parabolas opening upward in planes parallel to
the xz-plane.
Rectangular Cylindrical Spherical
Coordinates Coordinates Coordinates
3B.(L =11 (2,-m/41) (3, —m/4,cos"(1/{3))
35. (5cos(w/12),5sin(w /12),4) | (5,7 /12,4) (4T , 7 /12, cos ™ '(4/41))
37.(36 /4, -3T /43I /D) |3V /2. —7/6,32/2) | 3. —7/6,7/4)
33. 35. ‘ 37.
z z
(4.83,1.29,4)
(1,-1,1) ¢ (1.84,-1.06,
.’;p~ 21 e, ¢
\ o y |
ZaF L/ y
| /.~
wlr 8
X X
39. 3x2+ 3y2 =741, 41. Rotate 180° around the z-axis and 90° away from

the positive z-axis.

43. The rod is described by 0 < r < 5,0 < § < 2w, and
0 < z < 15. The winding is described by
5<r<620<0<27,and0<z<15.

45. z

e
e

e
v
s
I/ /,/ linex+y=0,z=0
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61.
63.
65.

67.

Chapter 15 Answers A91

1+1In2

(9/4, —sin(1/2) — (1/2)cos(1/2), —2e'/?)

(@) x"(t) = —(k/m)x(t), y"(£) = —(k/m)y(1), and
") = —(k/m)z(1).

(b) x(1) =0, y(¢) = 2m/k)sin(kt / m), and
z(1) = (m/ k)sin(kt / m).

(8/81)cos 21 /(20 sin’t + 16)>/2, where x =2cost,

y =4/3sint

69.

k=170l /[1+ (fCPT?

TL (1 + 302 + 8)1/2 /(12 + 2)3/?
49, z . T
v ~ :
// S /
\ /
\ O\
N\
X A /
t \‘y
51. z
73. (a) The curve is x°+ z>=2 which can be ex-
pressed as x =\/fcost,y =1,z=y2sint.
(b) (x, y,2)=(1,1,1)+ (- 1,0,1)
- L2 2
(c) fz \/(—\/fsmt) +(0)° + (Y2 cost)  dt
0
7 =22 7.
75. (a) 6(0)=wu,, o(7/2)=u,
(b) a(¢) lies on the unit sphere and in the plane
determined by u, and u,
(c) cos™'(u; ~my)
7 /2 — . .
53. (x, p.2)= (2.1/e.00+ (1 = )3, ~1/e, ~7/2) (d fo VI = 2u; - uysin ¢ cost dr
gg flt*' COS/’j - 31121 §k§ e'i —sintj — costk (e) Let w be the unit vector in the direction of
et +2¢ /(1 + £%))i + (cost + 1)j — sintk; 2 -1
[e" + (2 — 662 /(1 + )i — sin #j — cos ik (u; X uy) X uy. Let w= ;cos (u; - wy). Then
. x=t+1Ly=0—-1)/2,z=01-2)/3 o,(1) = u; cos(wr) + wsin{w?).
Chapter 15 Answers
15.1 Introduction to 9. }” =Yz’j}(1’ LD=Lf=xzf(1L0h=1
. . " L=xy, f.(1,L,L)=1.
Partial Derivatives 1L [, =~ plsinGo?) + 3pze™, f(m 1, 1) = 3™

L fi=p D=1 f=x [ 1)=1
3. fo=1/11+ (x = 3p?, £(1,0) = 1/2;
fy=—6p/[1 + (x = 3y* £,(1,0) = 0.

5. f. =ye¥sin(x + y) + e¥Ycos(x + ), f.(0,0)=1;

fp = xe@sin(x + y) + e¥cos(x + p), £,(0,0)= 1.
T fo==3x2/03 + P32 f(—1,2) = —3/49;
o= =323+ f(—=1,2)= —12/49.

fy = —2xy sin(xyz) + 3xze®97, ]3,(77, 1,1) = 37e’;
fo = 3xpe®=, f(m,1,1) = 3me™

13. 9z/9x = 6x; 0z /3y = 4y.

15.

9z/3x=2/3y +7/3; 9z /3y = —2x /3y~

17. du/0x = e ¥ [—ypz(xy + xz + yz) + (y + 2)];

du/dy = e [—xz(xy + xz + yz) + (x + 2)];
u/oz=e [~ xy(xy + xz + yz) + (x + y)].
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19.

21,
23.
25.
27.
29.

31
33.
35.
37.

39.

41.

43,
45.

47.

49.

51.
53.

55.

57.
59.
61.

63.
65.
67.
69.
71.

73.

75.

Chapter 15 Answers

du/dx = e*cos(yz?); du/dy = — z%*sin(yz?);
du/dz = —2yze*sin( yz?)

(xye*e’ — xe*e” + xe’ + e*)/(ye™ + H?

16b(mx + b2

12 + (2/9)cos(2/9) — 27

—4cos(l) + 3 — 3e

(a) —x(sinx)e ¥ :

(b) 0,0, =7 /2, —(m/2)e""/*

1

1/6 — 3sec’(6)

1/7 + 3sec’(~ 15)

(tuZ)esluz

(—usinAp)(1+ A2 + u?) — 2AcosAp

(1+A2+ p2)
fi= AlziTO{[f(x’ v,z +Az)— f(x, y,2)]/Az)}.

The rate of change is approximately zero.

() 1/(1+ R,/Ry+ R,/ Rs)

(b) 36/121 times as fast.

3% /9x* =6, 0% /3yt =4,

3% /3xdy = 9% /3ydx =0

3% /3x? =0, 3% /3y = 4x/3)°,

8% /0xdy = 0% /9ydx = —2/3p?

fxy =2x+ z_y’j;'z = 2Z’f:2x = O’fxyz =0

3 /3x? = 24xy(x? =y /(x* + yH*, %u/dydx
= 0% /dxdy = —6(x* — 6xH2 + yH/(x? + yH)*,
u/oy? = —24xp(x? = yH/(x? + yH*.

Fu/dx? =yl + 12x3°, %u/dydx

= 3% /dxdy = e_x—vz(—2y + 2xp%) + 12x%H2

0% /3y? = 2xe ' Q2xy® — 1) + 6x%.

Take 6 = e.

0

52/N13 = 413

—e

0

g'(ty) = —2cos tsin 1y + 2e*0

Evaluate the derivatives and add.
(a) Evaluate the derivatives and compare.

(b)

t

(a) 170 units

(b) 276 units. This is the marginal productivity of
capital per million dollars invested, with a
labor force of 5 people and investment level of
three million dollars.

(a) Look at the function restricted to the x-, y-,
and z-axes.

75.

77.

(a) Look at the function restricted to the x-, b
and z-axes.
(a) Substitute x = 0 into f,.
(b) Substitute y = 0 into f, to get f,(x,0) = x
(©) £,x(0,0)= 1imo[(fx(0, ») = £(0,0))/y], etc.
))4)

(d) Notice that f. and J, are not continuous
at (0, 0).

15.2 Linear Approximations and

13.
17.
21.
23.
25,
27.

29.

Tangent Planes

.z=—-9x +6y—6. .z=1
.z=2x+6y—4 7. z=1
Lz=x—y+2 1. z=x+ypy—1
—(1/B)i-j-k 15 —(1/BYi+j-k
—0.415 19. -2.85
1.00
Increasing, decreasing, increasing.
1—Aa/6+ Av
(a) 2

(b) A parabola in the yz-plane, opening upward
with vertex at (1,0, 1).

(© 0, 1,2)

See Example 1; in this case we are dealing with

the lower hemisphere.

15.3 The Chain Rule

1.

L 3 W

13.
15.

17.

19.
21.

(48 + 128¢)cos(3 — 2¢) — 8(3 ~ 21)%cos(3 + 81) +
2(3 + 81)%sin(3 — 21) + (12 — 81)sin(3 + 81)

(e — e XY(In(e¥ + ey + 1).

. —sint + 2costsint + 312

e =20+ e Q=3 4+ e 132 - 1),
. Let f(x, y) = x/y.

11.

()c/\/x2 + yz + 2y2)(dx/du) +
(y/\/x2 + y2 + 4xy)(dy/du).

ai + bj+ ck where —2a —4b+ ¢ =0.

(a) x*(1+ Inx)

(b) x*(1 + Inx) »

(c) One author prefers (a), the other (b).
S(Dgh(1) + f(Ng' (Dh(1) — f(Dg(DH'(1)

h()]*

6.843

The half-line lies in its own tangent line. The cone
in Example 6 is such a surface, as is any other
surface obtained by drawing rays from the origin
to the points of a space curve.

15.4 Matrix Multiplication and

1.
5.

7.

the Chain Rule

[32] 3. [44]

sino  wucosv ] [sini 0] g, {10 13}
ve ywe || 1 0 4 5
yz xz x»1.79 9 9 11_[cd}
1 1 1)1 11 a b
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13.

15.

21.
23.

25.

27.

29.

3L

33.

35.
37.

39.

41.

43.

4s.

Undefined, the first matrix has two columns and
the second matrix has three rows.
19. (2 6
7 12

0 a b
17.
H [6 o]
3z/9x =26x+ 6y +70; 3z /3y = 6x + 2y + 14.
0z/8x = cos(3x? — 2y)(6x)cos(x — 3y) +
sin(3x? — 2)[ ~sin(x — 3

0z/dy = —2cos(3x% — 2p)eos(x — 3y) +
3sin(3x? — 2y)sin(x — 3p).

(a)“ —llJ’Bi —2%;}

(b) u=(t+s)2+(t—s)2,v=(t+s)2—(t—s)2,

P , P t,5) = 4t 45
(we)/des)=[ 41 40
(¢) Multiply the matrices in (a) and express

in terms of s and ¢.
K 1 0
@[ ]
(b) u=1s,v=—rs, 8(u,v)/3(l,s)=[ S ! J
-5 —1
(¢) Multiply the matrices in (a).

8u/8r=cos@sin¢(8u/6x)+sin05in¢>(8u/8y)+
cosp(0u/0z), du/36 = — rsin @ sin o(0u/0x) +
recos8sin¢(du/dy),

(0u/3¢) = rcosf cos p(du/dx) +
rsinf cos ¢(du/dy) — rsing(du/dz)

r= x2+y2,0=tan‘l(y/x).

X Y
7, 2 FRNY)
8 0) /o, py=| VI R
- X
PR Xty
m 1 m
AB= > a;-(1/m)= — > a;, the average of the
=1

i=1 i
entries of 4.
Multiply B (found in Exercise 34) by 4.
5 -2
|5 7
Use the relations between areas, volumes,
and determinants in Section 13.6.

(a) —16
(b) 8
(¢c) —128=-16-8
%, /31 Ou/dx
Pl d%,/0r% | =(a+b)| du/dy
V0, /372 du/dz

%, /0x2 + 3%, /3y? + 8%, /92>
+b| 3%,/3x2 + 3%0,/3y? + 0%, /92>
F03/0x% + 8%, /0y% + 0%,/022

(2) Substitute and use cos? + sin? = 1.

47.

49.

Chapter 15 Answers A.93

(b) Eliminate § to find a relation between x,, 2z,
and g.

(c) Look at the ratio y/x.

(d) Find d(x, y, z)/9(u, @, #) and evaluate its de-
terminant.

Express |4||B| as a sum of 36 terms. -

AN s -

fabf(x)dxz ”3"1" [fCxo) fx) - - . f(x,)]

[ N Y N

Review Exercises for Chapter 15

U W

11.
13.
15.
21.

23.
25.
27.
35,
37.
39.

41.

43.
45.
47.
49.
51.

53.

57.

. g =mcos(mx)/(1 +y2);

g = —2ysin(zx)/(1 + y?)?

. k= 2% + 23sin(xz%); k, = 2xz 4 3xz%sin(xz?).
s he=z;h,=2y4+z;h, =x+y
» Ji = —lcos(xy) + ysin(xy)]/[e* + cos(xy)};

fo= —xsin(xy)/[e* + cos(xp)]; f, = 0.

. g =2z + x%*te; &=0g=x+ ezfoxtze’dt

& = &« = —2mycos(mx) /(1 + p?)?

ke = ko =22 + 32%sin(xz°) + 3xz°cos(xz°)

h,=h,=1 17. 1 19. —sin(2)

(a) 35.25 minutes

(b) 9T /0x| (2765 = —0.598 minutes/foot; this
means that in diving from 27 to 28 feet, your
time decreases about 36 seconds. 37/3V| 5,
= 0.542 minutes/cubic foot; this means that
bringing an extra cubic foot of air will give
you about 33 seconds more diving time.

4 29. z=1

0 31. 9.00733
z=2x+2y-2 33. 0.999
5.002 ’

1 =14 (-3 +2,/709)/70

d{f(a()]/dr =21 /[(1 + 2 + 2cos’t)2 — 21% + 1Y)]

—41(2 — DIn(l + 2 + 2cos%) /(2 — 262 + 1*?

—4costsing/[(1 + 12+ 2cos¥)2 — 212 + 4]

(a) Use the chain rule with x — ¢t as intermediate
variable.

(b) Tt shifts with velocity ¢ along the x axis, without
changing its shape.

The radius is increasing by 15 cm /hr.

[F/(Dg(1) + f(D)g (Ylexpl f(1)g(1)]

(1 +2y — 2x)exp(x + 2xy)

y=-x/6+17/12
¥ 6 3
55, [12 _6J

o)

0 -1 4
-3 -2 -1
31 s
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3 1 =3
59.15 -1 1

Chapter 16 Answers

I 1 -1

61. 0z/3x =4(e P VTN 4 y) /(e P TY — &2V,
az/ay = 4(8—2y—2x+2xy)(1 + x)/(ef2x—2y _e2xy)2
63. 0z/0u=23z/dx + 3z /3y,
dz/dv=10z/9x — dz/dy.
65. (a) n=PV/RT; P=nRT/V; T= PV/nR;
V =nRT/P
(b) 3P/0T represents the ratio between the
change AP in pressure and the change AT in
temperature when the volume and number of
moles of gas are held fixed.
(c) 9V/dT =nR/P; dT/OP=V/nR; 3P/AV
= —nRT/V?2 Multiply, remembering that
PV = nRT.

67.

69.

71.
73.
75.
77.

(a) One may solve for any of the variables in
terms of the other two.
(b) 8T/3P =(V — B)/R;
dP/3V = —RT/(V— B)Y +2a/V?3
8V /T = R/[(V — BXRT/(V ~ B) — 2a/ V)]
(¢) Multiply and cancel factors.
Notice that y = x?, so if y is constant, x cannot be
a variable.
3% /9x0ydz = 8% /dydxdz = 8% /3ydzdx
Differentiate and substitute.
Use the chain rule.
Yes. The second partial derivatives are not contin-
uous at the origin; the graph has a ‘crinkle’ at the
origin.

Chapter 16 Answers

16.1 Gradients and
Directional Derivatives

xR 2+ (/X + 22
+(z/yx*+ ¥y P+ 20k

i+2yj+ 32k

/G2 AN+ [y /P + D)

(1 + 2xDexp(x? + y3)i + 2xy exp(x? + p2)j.

=

W

11.

13.

15.
17.
19.

21.
23,
25.
27.
29.
31.
33.

(a) o)

(b) A(—y)/dy = 0(x)/dx

_ —2x

~—a— ( I etc.
dx \ x2+ 2 + 22 r
2e’cost + cost — sin’t

1/ + ¢

The angle between the gradient and the velocity
vector is between 0 and 7 /2.

—11 - 16y3

17/42

—14/3

7/8—1/2

(i+2))/¥5

e[(sin 1)i + (cos 1)j]

(a) (1,2,3)

(b) —2,14 2 degrees per second

(c) She should fly outside the cone with vertex at
(1,1, 1), axis along (1,2,3) and sides at an
angle of #/3 from the axis.
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354 =17 003+ 2by)/2ali+ pij, dy=[-003+ 16,2 Gradients, Level Surfaces,

37.

39.
41.

43,

45,
47.

2by,)/2ali + y,j where y, and y, are the solutions
2
of (> + bY)y? + 0.03by +(0'% -az) — 0.

2i

(/3)i+j+k

Write out each expression in terms of partial deriv-
atives and use the properties of differentiation.
() (1/V2,1/42)

(b) The directional derivative is 0 in the direction

and Implicit Differentiation
1. V£(0,0,1) = 2k '

z

3

3. Vf0,0,1) = —i+j+k

1

9]

. (1/V129)8i + 8j + k)
k

=

9. V= Qgq/r; the level surfaces are spheres, which
are orthogonal to radial vectors.

11 x + 23y + 3z = 10.

(Xol + yoi)/\/x3 + ¥ . 13. 3x + 8y + 32 =20
{¢) The level curve through (x4, yo) must be tan- 15. x+y+2z=3
gent to the line through (0,0) and (xq, y,). The 17. x+2y-3=0
level curves are lines or half lines emanating 9. x+y—-7/2=0
from the origin. 2L (L D+ (1, 1,1
Vi(.3) =2 -2); ~2//13 B (LLD)+(1, —1, - 1)
A X+x, X—Xg). [ 25. —x/2y
® 2re, {( 2 2 >l+2y<}?*g>1} 27. y/zx =1/10 ,
(b) Compute the indicated partial derivatives. 29. 3x7/(cos y — 4y7)
49. The function f must satisfy Laplace’s equation: 31. 1/2
fut f, =0, 3. —1-2/3/3

35. At (0,0), the slope of y =yx is infinite.
37. At (0,0), the slope of y = x!/3 is infinite.
39. dx/dt = (—1/y)dy/dr)
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41, x*(dx/dty + y*(dy/dn =0
43. (a) dx/dy = —(3z/0y)/(9z/0x)
(b) (cos y — 4y*)/3x%
— y(2e™ 7 +3y) /et
45. (1/x — 1)(dx/dt) + (—tan y)(dy/dt) =0
47. (@) z=2x—-4y -5
(b) The slope is the tangent of the angle between
the upward pointing unit normal vector and

the z-axis. The slope in this case is 25 .

49. Crosses at (2,2,0), y5 /10 seconds later.
51. (a) They are perpendicular.

(b) If it were not equipotential, there would be
places where the force of gravity is not perpen-
dicular to the surface and the water would
flow to correct this. The rotation of the earth
and tides (among other things) spoil the ap-
proximation.

16.3 Maxima and Minima

1. Local minimum at (1,0), local maximum at
(=10
3. (0,0) is a local minimum.
5. (0,0) is a local maximum.
7. y3/2
9. The height is 45%/%/5%/3,
11, Minimum
13. Saddle point
15. Minimum (although the test per se is inconclusive)
17. (—3,2), minimum
19. (0,0), neither
21. (3,7), minimum
23. (1, 1), minimum
25. (4/5, —9/10), minimum
27. (0,0), neither
29. (0, 0), neither
31. (0,0) is a saddle point.
33. The second derivative test fails, but from the ac-
companying graph, we can see that (0, 0) is neither
a local maximum nor minimum.

“

35. (a) Calculate 0z/9x and 0z/0y and set them
equal to zero.
(b) The maximum is at (0,0) and local maxima
[resp. minima] occur on circles of radius r, -
Fay ... [resp. ri,r3,...] where 0 <r < nr
< ry < + -+ are the solutions of ar = tan(wr).
(c) Symmetric in every vertical plane through the
origin and under any rotation about the z-axis.
37. (a) Set dw/dp;,=0. This occurs when T;_/T;
= P2/ (pirpie ) 0.

r T3 n/(n—1) i/4
(b) p1= (—0—) 1181)4}
T,T1,T;
B r T,T, n/(n=1) 1/2
P2 = m PoP4
r TOT1T2 n/(n—1) , 1/4
P3= T3 PoPa
L 3

39. 4=2, B=1C=2s50A4>0and AC— B*=3
> 0. Thus the point is a local minimum.
41. (a) (0,0) is a saddle point.

(b) The behavior changes qualitatively at
C==2 For —2<C<2, (0,0) is a strict
minimum; for C < —2 or C >2, (0,0) is a
saddle point. For C = =2, (0,0) is a mini-
mum.

43. (a) b=1,m=4/1

(0,0)
as _
S o5 = =23 (y; — mx; — b) and
aa_;; = _22 x:(y; — mx; — b); set these equal to

zero and use properties of summation (Section
4.1).
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47.

49.

51.

53.

55.

Compute 3%/3m?, 8%/0mdb, and 9%/3b* di-
rectly.

(a) e={B*—CA /4

(b) y=Ax/(Ae — B), y= —Ax/(B + Ae)

(c) g(x,y) is positive when (i) y> Ax/(4e — B)
and y > — Ax/(B + Ae) or
(i) y < Ax/(Ae — B)yand y < — Ax/(B + Ae)

(d) If A =0 and B =0, then AC — B>=0. Thus
B cannot be zero if A =0 and AC — B? < 0.
Rewrite g as g(x, y)=y(2Bx + Cy). Note
that y =0 and 2Bx + Cy =0 are two lines
intersecting at the origin. Thus g(x) > 0 in the
region above 2Bx + Cy =0 and the negative
x-axis, and the region below 2Bx + Cy =0
and the positive x-axis.

(@) £:(0,0)=0, £,(0,0) = 0.

(b) Use one variable calculus on 4

(€) f>0if y>3x?ory < x? and
f<0if x? < y < 3x2%

(d) f(x, y)=0if y = x* or y =3x%

(e) 7

(f) The segment on which 4 is positive shrinks to 0
as §—-0.
(0,0,0) is closest for a < 1/8;

(xy(8a—1)/32, 0, (8a — 1)/8) are closest

fora > 1/8.
Let d> = (x — a)* + (y — b)* + (k(x, y) — ¢)* and
set 3(d?)/dx and 9(d?)/dy equal to zero.

16.4 Constrained Extrema and

Lagrange Multipliers

. The minimum value is 0 (occurs at (0,0)), maxi-

mum value is 3 (occurs at (0,1) and (0, —1)).

. The minimum value is 8 (occurs at (0, 1) and (0, — 1))

maximum value is 15 (occurs at (1,0) and (—1,0)).

. /35/2 is the maximum value, —./35/2 is the mini-

mum value. There are no interior critical points.

. \/5 is the maximum value, —\/5 is the minimum

value. (+./1/2, +./1/2) are the critical points.

11.

13.
15.

17.
19.

21.

23.

Chapter 16 Answers A.97

. 1/4 is the maximum value. (1/2,1/2) is the criti-
cal point.
Y10 is the maximum value, —10 is the minimum
value. (=10 /10, ¥3/10 /10) are the critical
points.
x =y =25,000; z = 50,000.
Horizontal length is vygAd/p, vertical length is
VpA/q-
(Q:/ 00"

(@) (2 /242 /2,3/2) and (=2 /2, =2 /2,3/2)
are maxima, while (—2 /2,42 /2,1/2), and
(V2 /2, =2 /2,1/2) are minima.

(b) k is increasing at (= 1,0) and decreasing at
©, = 1).

© (2 /242 /2,3/2), (=2 /2, —Z /2,3/2) are
maxima, (0, 0,0) is the minimum.

pmniit (D D,

(5+5)

@ =3

2(/Bu7Bs + 1)

(a) Vfis parallel to Vg.

(b) The maximum value of 3 /9 occurs at
(3 /3.3 /3.3 /3), (3 /3, =3 /3, -3 /3),
(=V3/3, =43 /3,43 /3) and
(=3 /3,43 /3, =3 /3). The minimum value
of —y3 /9 occurs at (—v3 /3,3 /3,43 /3),
(3/3,=3/3,3/3), (3/3.,3/3,-3/3)

and (=3 /3, =3 /3, = {3 /3).
(c) x=y=8 h=4.

Review Exercises for Chapter 16

1.
. [2x exp(x?) + psin(xy?)li + 2xp sin(xy?)j

- (a) (9/42 )cos(3)

27.
29.

[y exp(xy) — ysin(xp)]i + [x exp(xy) — x sin(xy)]j

(b) (G—2i/V5

- (@) V2 /e

(b) (=i—2)/V5

.3x+4y—z=14
11.
13.
15.
17.
19.
21.
23,
25.

x+y+z= V3

2x + y)dx/dry + (x + 2y)dy /dr) =0
(x% + yD(dx/dt) + 2xy(dy/dr) =0

1

1

(0,0) is a saddle point.

(0,0) is a saddle point.

(—1,0) is a saddle point, (0, 0) a local maximum, and
(2,0) a local minimum.

(n,0), n an integer, are saddle points.

(@) I[GI| = (3P/3x)2 + (3P /3y))'/
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(b) According to Newton’s second law of motion,
G creates a force on the air mass which pro-
duces a proportionate acceleration in the di-
rection of G.

©
North
Y low
pressure
high
pressure
//// East
X
wmd

(d) ¥, in the Southern Hemisphere, you stand
with your back to the wind, the high pressure
is on your left and the low pressure is on your

right.
North
v high
pressure
low
pressure
//// East
X
wmd
31. (a) (£1,0,0) are closest, distance is 1.
(b) (—4T /6,/41 /6,1/6),
(41 /6, — 41 /6,1/6) are closest,
the distance is y83 /6.
() (=1, -1, (=1,1,=1),(, -1, —1)and

(1,1,1) are closest, the distance is V3 .
33. 0.382 is the minimum value, 2.618 is the maximum
value.
35. 0.540 is the minimum value, 1 is the maximum
value.
37. The partials of k(x, y,A) = x + 2ysecd +
Axy + y*tan8 — 4) must all vanish
39. (a) Use the second derivative test.
(b) Since the maximum and minimum must occur
on the boundary (by (a)), both are zero. Hence
f is everywhere zero.
41. (a) (1,1,2), x + y + 2z =6;
(2,3,2),2x +3y+2z=9.
(b) 6§ =047
(©) (1,1,2) + 1(—4,2, 1)
43. (a) A normal vector to the tangent plane is
fi+hi-k

(b) The slope of the plane relative to the xy plane

45.

47.
49.
51.
53.

55.

57.

59.

is 5; the plane contains the line through the
point (1,0, 2) parallel to the y-axis.
Equate the four partial derivatives equal to zero.
Eliminate A, by subtracting two equations and A,
by dividing two equations.

600
Approximately 570
4,2)
(a) dy/dx = —(2x)/(3y* + &)
(b)
d _ (0F, /8y )(0F,/0x) — (3F5/8y, (O F,/9x)
Iy, /dx =
(BF,/3y)(@F /3y,) — (3F, /3y )(0F,/0y,)
dyy ) dx = (OF, /3y )(OF,/3x) — (0F,/0x)(dF5/0y)

(QF/3y:)(0F,/3y,) — (3F,/8y,)(3F, /dy))

(¢) dy,/dx = —(2x +sinx)/2y,
dy,/dx = (cosx — 2x)/ y,.

(a) Use equality of mixed partials of f(x, y)

(b) Use equality of mixed partials of f(x, y,z)

(¢) No

(a) xZexp(xy) + C

(b) No function exists.

(c) In(1 + x? +y2) + C.

(d) No function exists.

(a) (%0, = o)

() (¥o,X0)

(¢) glx, y)=xy

(d) Since Vg is normal to the level curves of g, the
tangent to these curves is normal to level
curves of f.

(e)

g = constant

f= constant

61. (a) f, = —2xy3/(x +))2)2

f,=y*3x7 + p)/(x* + y*)’. f(0,0)=0 and
fy(O 0) = | (compute the latter two using lim-
its).

(b) (3/0r)f(rcosf, rsinf) =
cos?(—2sin’f + 3sin? + 1) is defined for all
6.

(¢) Vf(0,0) - (cos#,sinf)=sinf disagrees with
the formula in (b). There is no contradiction
because the partial derivatives are not continu-
ous at (0,0) (see Exercise 20, p. 783).
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Chapter 17 Answers

17.1 The Double Integral and
Iterated Integral

1. 12
3. (a) Divide D into D, =[—1,0] X [2, 3],
D, =[—1,0] X (3,4}, and D5 = (0, 1] X [2,4].
Let g(x, y) be —40on D,, =5 on D,, and 0 on
Da‘
(b) The part of the integral for x < 0 is the nega-
tive of the part for x > 0.

z

- \‘
R
~

N
|4
=

X

5. 18

7. 16/9

9. ¢/2—-1/2e

11. 50

13. 4/3

15. 45/4 + (15/2)In(3/2)

17. 0; this agrees with the answer in Exercise 3(b).

19. 76/3 z

21. 25/6 grams.
23. Use partition points obtained from subrectangles
for both the functions being added.
25. (a) 0.88[1 — sin%x cos® (27T /365)]'/>cos(2mt /24)]
+ 0.67 sin a cos(27 7T /365), where o = 23.5°
(b) This is the total solar energy received in the
state between times ¢, and ¢, on day 7.

17.2 The Double Integral Over
General Regions

1. Both a type ! and a type 2 region.

5. 7/12
9. Type 1; 27 + =2

7. 64/35
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11. Type 2; 104/45

¥y

13. Type 1; 33/140

Vi

19. 7/12

21. 1/3
23. 19/3

B

25. The result of the first integration is the length of a
section of the region.

27. Type 1 states include: Wyoming, Colorado,
Nevada, New Mexico, Kansas, and Ohio. Type 2
states include: Wyoming, Colorado, Kansas,
North Dakota, and Vermont.

17.3 Applications of the
Double Integral
1. 127

3. (4/5)2 + 934)
5. 10 + 8/

7. (16> — 16 + 7% /32 9. 243 /80

11. [#? — sin(7?)]/#* 13. 2
15. 2/3 17. 24%/3
19. (11/18,65/126) 21. (7/5,0)

23, (4/15)9Y3 —8yZ + 1) 25. 27/4

27. Compare the formulas for average value and cen-
ter of mass.

29. (a) Write z = +r> — x> — y? over the region
0<x<r —yrP—x? < y<yrr—x*.

(b) The result is independent of r.

31. $503.64
33.2 f” i f;*’)\/[f(x)]z -y dyds=n| "L P dx.
a v— f(x a

(This is the disk method; see p. 423.)

17.4 Triple Integrals

1. 7 3. -8 5. Type I
7. Type 1 9. 25{2/3 = 11. 1/2
13. 0 15. a®/20 17. 0
19. 3/10

21. The double integral of F over the base of the box
times the height of the box.
23. Interchange x and z in Example 4.
25. The region under the graph is of type L.
27. (a) Use iterated integrals and the constant multi-
ple rule for definite integrals.
(b) ex+y+z = exeyez.
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17.5 Integrals in Polar, Rearrangement of the formula for Z gives the
c lindri I d first line of the equation. The next step is

y Indrical, an justified by the additivity property of integrals
spherical Coordinates (see rule 2 on p. 841). By symmetry, we can
replace z by —z and integrate in the region

1. 647/5 above the xy-plane. Finally, we can factor the

3. yz /10 : minus sign outside the second integral and

5. 1284 §ince p(x, y,z) = p(u,v, —w), we are subtract-

7. Sme* — 1))2 ing the second integral from itself. Thus, the

answer is 0.

9. 2a[y2 —In(1 + \/f)] (c) In part (b), we showed that z times the mass of
11. 4mln(a/b) W is 0. Since the mass must be positive, z
13. (7/6)(8 ~ 3/3) must be 0.

15. 476 (d) By part (c), the center of mass must lie in both
17. 1/ymo planes.

17. Follow the pattern on p. 880 for the case of

constant density. Be sure to use different symbols

Ax ~ %Au + a_XAU and Ay ~ 2_)’ Au + g_)’ Ao, for the density and the spherical coordinate
du v

dv
\/)c2 + yz + 22,

Review Exercises for Chapter 17

19. (a) Use the linear approximations

d(x, p)
Ar.0)

21. The conditions 0 < y < 1 —x and 0 < x < 1 are

(b) Use the fact that

equivalent to 0 < x + y < 1 and 0 < Y <. . .
X+ 1. 960 — sin(11) + sin(10) + sin(7) — sin(6) ~961.4
3.15/2
5. 64/3
v b v 7. wlin(sec 1+ tan 1)
1 9. 1/48
! 11. 10/3
13. 4mabc/3
15. 2n(1 = 1/\a+ 1)/3
17. 25+ 10y5 )7 /3
| 19. (47 /3%1 —2 /2)
§ “ 21. 407 /3
zh
17.6 Applications of Triple (-3.7.10)
Integration
1. (a) p, where p is the (constant) mass density.
(b) 41/3
3.(1/2,1/2,1/2)
5. % (as in Example 2)
7. (a) ke? Xy O
(b) Along the sphere x? + y? + 22 = ¢? 1.0.0) K& \; -
9. 1/4 e 1.7.0) !
11. Letting d be density, the moment of inertia is
k r2a
d @5 Ppdsin’ e dp df d
fo j; fo psin“¢dp ad ag
13. 1.00 X 10%(m /sy
15. (a) The only plane of symmetry for the body of ¥
an automobile is the one dividing the left and 23. 10/3

ight sides of th .
nEh eSOt the car 25. Cut with the planes x + y + z =3k /n,

b F . LW, Z d d) 1 - 1ne .
(b) z ffpr(x v.z)dx dy dz is the z-coordinate < k<n— L kan integer.
of the center of mass times the mass of W. 27. Use the formula for surface area.
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29. (0,0, —0.203) (b) Same as in (a).
31. 27(2y2 - 1)/3 47. Using d for density, the potential is given by
33. 7(55 — 1/6 2WdG[(P2)2 - R2/3 - 2(P1)3/3R]-
) 49. Show that the double integral of f,, — f,, over
35. 7°/8 every rectangle is zero v
37. (w/4)In(2) 5L w24 ul=1 ’
39. ¥(0,0,R) = (4.71 X 10%)G/R C T
41. (a) 32/3 ’
(b) 647
43. 7 /5
45. (a) Tt is equal to the average of the values of the
function at the vertices.
Chapter 18 Answers
18.1 Line Integrals 11. The two line integrals are equal since Pdx + Qdy
1s exact.
1.5 3.0 5.3/2 13. xe’ + ye* =2
7. =27 9. 7 11. 27 15. x>+ x% + y*/3=17/3.
13. 277 15. —1 17. 0 17. Not exact
3 2,2
19. 2+ e 21. 1 et ?a);yfl” <
23.2/3 25. —1/2 ) (b) y = x
27. (cos3)/3+5/12  29.0 - S
31 (55 - 1)/12 33. 5214 2 r= N
35. Use the chain rule and make a change of variables 27' )‘?2 J2+x/y=C
in the integral. 29. In g =f[(Nx — M)/ M1dy
18.2 Path Independence 3L If f 1as an antiderivative of Pdx + Qdp, then
L3 38 5.1/2 fo = 3 dex; now integrate. '
7.7 9. 0 11. 256
13. IMm(ry? — r73 /3 17, Yes; xy +siny + C ’
15. No 19. Yes; x* + xzcosy +C 18.4 Green S Theorem
21. Calculate f, = —y/(x* + y?) and 1. Each side gives 1/12.
f= x/(x? +y2). 3. Each side gives — 7.
23, 2n? 5
25. 0 )
27. (a) The integrals along the four sides are 0, 1, —1, ¥4
and 0.
(b) f(x, y,2)=x + x> + C.
29, (1/2)° — (y2 /2)* +sin(3y2 7 /4)
31. The field is not conservative.
33. xexp(yz) + C
35 If Vf=Vg then V(f— g)=0. Show that f— g is .
constant, using the second box on p. 896. x
37. Pick a point P and draw an arc from P to each
region. If the arc crosses the circles an even num- 7.
ber. of times, color the region red, otherwise color
the region blue. 74
18.3 Exact Differentials
1. No 3. No
5. Not exact 7. Exact
9. f is the integral of Pdx + Qdy along the line

segment from (0,0) to (0, y) followed by the seg-
ment from (0, y) to (x, y).

=Y
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9. _4f” (a/b);[foz xydxdy =0 18.6 Flux and the
—bJ(a/b)b*~y .

i 67/6 Divergence Theorem

13. =20 1. 3x? — xZcos(xy)

15. 0 _ 3. ycos(xy) — x?sin(x2y)

17. (a) Recall that a zero dot product implies orthogo- 5. —4

nality. . 7.0
(b) Use Green’s Theorem. 9. (a) 4,C

19. In applying the hint, note that the terms involving (b) B,D
V- Vo cancel 11y exp(xy) — x exp(xp) + y exp(yz)

21. 9 13. 3

23. Simplify 4 = 3 [ xdy— ydx 0 15. 127/5

, < 17. 1
3a” f2"31n220 d@; now use the double angle for- 19. Use Gauss’ theorem and V -n = 0.
8 Jo ) 21. Apply the divergence theorem to f® using
mula to integrate. V- (f®)=Vf-®+ fV-D.

25. 5/12 . N o 23. (i) Use the vector identity V-(V x H) = 0.

27. A horizontal line segment divides the region into (ii) Since charge is conserved, the rate at which
three regions to which Green’s theorem applies; charge is entering equals the rate at which
see Example 2. charge is leaving; the total flux is therefore

2.0 zero. By Gauss® theorem, the integral of V-J

31. 04/9y = Q by the © damental theorem of calcu- over any region is zero, so V+J = 0.
lus; similarly for »  sx = P. 25. (a) Calculate div V¢ on a region excluding a small

33. The device is run around the perimeter of the ball near q.
region and the mechanism evaluates the integral (b) Use (a).

1
EfaD(Xdy — ydx).
Review Exercises for Chapter 18
18.5 Circulation and

Stokes’ Theorem 1. 10/3 — 2cos2 + 2sin2 — 2sin 1
3. 2e
1. -2 5 -8
3. dxy/(x* + p2y? 7. 1—e
5.8 9. —cos5+cos3 + (In4)2/4 + (441n2)/3 + 83/18
7.0 . 11. (a) sin(In(5/4)) — sin(In(3/4)) — (In(5/4))> +
9, i+ ezj + (y sin X)/)k (ln(3/4))2
11, 2/(x* +y2 + 2923 + (x% —yzhj— 2°k) (b) 0
13. Let ® = Pi+ Qf + Rk, write out curl (f®), and ) 0
use the product rule for derivatives. 13. 43/54
15. VX Vf=0is a vector identity; the integral of an 15. —1
exact differential about a closed loop is zero. 17. (e — 1)/3
17. Compute that V X® = 0 and use Stokes’ theorem. 19. Not conservative
9. —1/2 21. Not conservative
21. Use Stokes’ theorem and P(o(s)) - a'(s) = 0. 23. Yes; 3z3y + xﬁ) + C
23. —177/2 25. Exact; xe’sinx + C
25. fH(r)-dr=ff(V><H)-ndA =ffJ-ndA 27. Not exact
¢ s s 29. ysinx + x%’ + 2y = 72/4
27. The component of the curl of the velocity ‘of the 3L —x+ xzy +y=1
fluid along a vector n is the circulation around n 33. Not exact
per unit area (p. 921); this is maximized when the 35. Not exact
curl and a are aligned.
29. Partition the surface into the upper and lower 3. @) ffD(l)dx 4. the area of D
hemispherical pieces; apply Stokes’ theorem to ) f f (— 1)dy dx, the negative of the area of D
D

each piece and add.

(©) f J;(O) dydx =0

39. curl @ =[p/(x+ z)fi — [y /(x + 2)°]k;
divp=1/(x + z2)
41. curl @ = —4xi — 2pj + 2zk; divd = 0.
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A.104 Chapter 18 Answers

43.

45.

47.
49.
51.
53.

55.
57.

(@) VXF =2x%zi— 3x%%j + 2k, V-F = x3?
(b) 27

(¢) 1/12

ffS(V XF)+ndA, where C is the boundary of S.

0

—27/3

Use Gauss’ theorem.

Use Gauss’ theorem over a small region; divide by
the volume of the region and use the mean value
theorem for integrals.

—87

(a) Let o = f *a(1,0,0)dt + f “o(x,0, ) dt +
o o
fyb(x, t,2)dt, so du'/dy = Q. Permute x, y,z
)

to give u” with du”/0z = R, and u"” with
du"’ /dx = P. Use Stokes’ theorem to show

that w' = u” = u'".
(b) xzyz —cosx + C

59, ffawf(Vf)-ndA=fffW(fv2f+ V. Vf)dxdydz
gives0=fffW(Vf-Vf)dxdydz
=fffW||Vf{|2dxdydz, so V=0 and thus

[ is constant.
61. ff(v X®)-ndA =0 if S is the union of the two
S

surfaces.
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Abbot, Edwin A. 883
Abel, Nils Hendrik 172
absolute value 22
function 42, 72
properties of 23
absolutely convergent 574
accelerating 160
acceleration 102, 131, 741
gravitational 446
vector 741
Achilles and tortoise 568
addition formulas 259
addition of ordered pairs 646
air resistance 136
Airy’s equation 640
algebraic
operations on power series 591
rules 16
alternating series test 573
amplitude 372
analytic 600
angular
frequency 373
momentum 506, 748
annual percentage rate 382
antiderivative 104, 128, 897
of b 323, 342
of constant mutiple 130, 338
of exponential 342
of hyperbolic functions 389

of inverse trigonometric function 341

of 1/x 323, 342
of polynomial 130

Index

Includes Volumes |, Il and Il

Note: Pages 1-336 are in Volume I; pages 337644 are in Volume II; pages 645-934 are in Volume III.

of power 130, 338

rules 337, 338

of sum 130, 338

of trigonometric function 340

of trigonometric functions 269
Apollonius 696
Apostol, Tom M. 582
approaches 58
approximation

first-order (see linear approximation)

linear (see linear approximation)
arc length 477

of curve in space 745

parametrized by 749

in polar coordinates 500
Archimedes 3,5,6
area 4, 251

between curves 853

between graphs 211, 241

between intersecting graphs 242

of graph 857

of n-sided polygon 934

of parallelogram 683

in polar coordinates 502

of region bounded by a curve

914

of sector 252

of surface 482

of revolution 483

signed 215

of triangle 934

under graph 208, 212, 229

of step function 210
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1.2 Index

argument 40

arithmetic mean 188
arithmetic—geometric mean inequality 436
associative 679

astigmatism 821

Buys-Ballot’s law 834

Calculator discussion 49, 112, 166, 255,
257, 265, 277, 309, 327, 330, 541

astroid 198
astronomy 9
asymptote 165
horizontal 165, 513, 535
of hyperbola 698
vertical 164, 518, 531
asymptotic 164
average 3
power 464, 465
rate of change 100
value 434, 854, 878
velocity 50
weighted 437
axes 29
rotation of 705, 707
translation of 703
axial symmetry 423
axis
major 696
minor 696
of symmetry 440

B-d definition of limit 516
ball 421
Bascom, Willard 306(fn)
base of logarithm 313
basis vectors, standard 656
bearing 659
beats 628
Beckman, P. 251, (fn)
Berkeley, Bishop George 6(fn)
Bernoulli, J. 252(fn), 521
equation 414
numbers 643
Bessel, F.W. 639
equation 639
functions 643
Binder, S. M. 836
binomial series 600
binormal vector 753
bird 692
bisection, method of 142, 145
blows up 399
Boltzmann’s constant 823
bouncing ball 549
boundary 848, 908
bounded above 575
Boyce, W. 401
Boyer, C. 7(fn), 252(fn)
Braun, Martin 380, 401, 414, 626
Burton, Robert 8
bus, motion of 49, 202, 207, 225

calculator symbol 29
Calculus Unlimited iii, 7(fn)
calculus
differential 1
fundamental theorem of 4, 225, 237
integral 1,3
Calder, Nigel 756
capacitor equation 406
Captain Astro 802, 804, 816
carbon-14 383
Cardano, Girolamo 172
cardiac vector 658
cardioid 298
cartesian coordinates 255
catastrophe
cusp 176
theory 176
catenary 402
Cauchy, Augustin-Louis 6, 521, 908
mean value theorem 526
Cauchy—-Riemann equations 835
Cauchy-Schwarz-Buniakowski
inequality 669
Cavalieri, Bonaventura 8, 425
principle 843 ‘
center of mass 437, 693, 857, 876
in the plane 439
of region under graph 441
of triangular region 445
centripetal force 747
chain rule 112, 779
for partial derivatives 800
physical model 116
change
average rate of 100
instantaneous rate of 10
linear or proportional 100
proportional 95
rate of 2, 100, 101, 247
of sign 146
total 244
of variables 877
chaos and Newton’s method 547
characteristic equation 617
charge 930
chemical equation 648, 651, 660
chemical reaction rates 407
circle 34, 44, 120, 251, 421
as section of cone 695
equations of 37
parametric equations of 490
circuit, electric 413
circular functions 385
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circulation 914
circumference 251

city
Fat 116
Thin 115

Clairaut 767
climate 180
closed curve 889
closed interval 21
closed interval test 181
closed rectangle 839
Cobb-Douglas production function 831
College, George 383
common sense 61, 193
commutative 788
comparison test 570
for improper integrals 530
for limits 518
for sequences 543
completing the square 16, 17, 463
complex number 607, 609
argument of 609
conjugate of 609
imaginary part of 609
length or absolute value of 609
polar representation of 612
properties of 610
real part of 609
component 648
functions 738
composition of functions 112, 113, 779
compressing fluid 926
computer-generated graph 716, 717, 720,
721, 813, 819, 821, 822, 833, 834,
837
concave
downward 158
upward 158
concavity, second derivative test for 159
conditionally convergent 574
cone, elliptic 728, 793
conic sections 695
connected 897
conoid 486
conservation of energy 372
conservative vector field 895
consolidation principle 438
constant function 41, 192
derivative of 54
rule for antiderivatives 130
rule for derivatives 77
rule for limits 62, 511
rule for series 566
constrained extrema 825
first derivative test for 826
consumer’s surplus 248
continuity 63, 72, 770
equation 953
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of rational functions 140
continuous function 63, 139, 770
integrability of 219
continuously compounded interest 331,
382, 416
convergence
absolute 574
conditional 574
radius of 587
of series 562
of Taylor series 597
convergent integral 529
convex function 199
cooling, Newton’s law of 378
Cooper, Henry S. Jr. 682
coordinates 29, 648, 653
cartesian 255
polar 253, 255, 791, 869
spherical 731
Coriolis force 499
cosecant 256
inverse 285
cosine 254
derivative of 266
direction 676
hyperbolic 385
inverse 283
law of 258, 676
series for 600
cost, marginal 106
cotangent 256
inverse 285
Coulomb’s law 805
Cramer, Gabriel 690
rule 690
Creese, T.M. 401
critical points 151, 814
critically damped 621
cross product 674, 679, 754
cross-derivative test 898, 904
Crowe, M. J. 657
cubic function 168
general, roots and graphing 172
curl
of a vector field 917
scalar 915
curvature 749, 750, 821
curve 31
closed 889
geometric 889
level 712
parametric 124, 298, 489
in space 735

regular 749
in space, arc length of 745
cusp 170

catastrophe 176
cycloid 497
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1.4

Index

cylinder 715, 722
parabolic 714, 723

cylindrical coordinates 728
triple integrals in 872

dam 454
damping 377
in forced oscillations 626
in simple harmonic motion 415
Davis, Phillip 550
day
length of 30, 302
shortening of 303
sidereal 757
solar 757
decay 378
decelerating 160
decimal approximations 538
decrease, rate of 101
decreasing function 146
definite integral 232
constant multiple rule for 339
endpoint additivity rule for 339
inequality rule for 339
power rule 339
properties of 234, 339
by substitution 355
sum rule for 339
degree
as angular measure 252
of polynomial and rational functions 97
delicatessen, Cavalieri’s 425
delta 50(fn)
demand curve 248
Demoivre, Abraham 614
formula 614
density 440
uniform 440
dependent, linearly 89
depreciation 109
derivative 3, 53, 70
of b* 318
of composition 113
of constant multiple 77
of cosine 266
of hyperbolic functions 388
of implicitly defined function 122
of integer power 87
of integral with respect to endpoint 236
of integral, endpeint a given
function 236
of inverse function 278
of inverse hyperbolic function 396
of inverse trigonometric functions 285
of linear function 54
of logarithmic function 321
of I/x 71

of polynomial 75, 79
of power 75, 119
of a function 110, 119
of product 82
of quadratic function 54
of quotient 85
of rational power 119
of a function 119
of reciprocal 85
of sum 78
of vector function 739
of Vx 71
as a limit 69
directional 801
formal definition of 70
Leibniz notation for 73
logarithmic 117, 322, 329
matrix 784, 786
partial 765
second 99, 104, 157
second partial 768
summary of rules 88
determinant 683, 685
jacobian 792
Dido 182
Dieterici’s equation 795
difference quotient 53, 766
differentiable 70
differential
algebra 356
calculus 1
equation 369
Airy’s 369
Bessel’s 639
Euler’'s 796
first order 369
of growth and decay 379
harmonic oscillator 370
Hermite’s 636
Legendre’s 635
linear first order 369
of motion 369
numerical methods for 405
partial 898
second-order 399
second-order linear 617
separable 398, 399
series solution of 632
solution of 369
spring 370
Tchebycheff’s, 640
form 893, 902
geometry 749
notation 351, 359, 374, 398
differentiation 3, 53, 122, 201
implicit 120, 398, 810
logarithmic 117, 322, 329
partial 767

Copyright 1985 Springer-Verlag. All rights reserved



Index 1.5

of power series 590 hyperboloid of one sheet 760
rules for vector functions 740 integral 417, 506, 507
under integral sign 883 paraboloid 728
diminishing returns, law of 106 endpoints 181
dipole 693 of integration 217
Diprima, Richard 390, 401 energy 201, 445
direction. conservation of 372
angles 676 equation 753
cosines 676 potential 446
field 403 equation
directional derivative 801 chemical 648, 651, 652, 660
directrix 700 differential 369 (see also differential
discriminant 17 equation)
disk 421 indicial 638
method 423 of circle and parabola 37
displacement 230 of ellipse 696
vector 657 of hyperbola 698
distance formula of line 662
in the plane 30 of parabola 701
on the line 23 of plane 671
divergence 925 of plane in space 672
free 926 of straight line 32
theorem 694, 924 of tangent line 90
divergent integral 529 parametric 124, 298
dog saddle 722 simultaneous, 37
domain 41 spring 376
dot product 668 equipotential surfaces 816
double integral 839, 850 error function 558
applications of 853 Eudoxus 4
over general regions 847 Euler, Leonhard 251(fn), 252(fn), 369
in polar coordinates 870 differential equation 796
properties of 841 equation 636
double-angle formulas 259 formula 608
drag 136, 414 method 404
dummy index 203 evaluating 40

even function 164, 175
exact differential 901, 903

e 319, 325 exhaustion, method of 5, 7
as a limit 330 existence theorem 180, 219
€-A definition of limit 513 expansion by minors 687
€-8 definition of limit 511, 769 exponent zero 23
ear popping 116 exponential and logarithmic functions,
earth, rotation of 756 graphing problems 236
earth’s axis, inclination of 301 exponential functions 307
eccentricity 702 derivative of 320
economics 105, 830 limiting behavior of 328
electric circuits 399, 413 exponential growth 332
element 21 exponential series 600
elementary regions 848, 864 exponential spiral 310, 333, 751
ellipse 696 exponentiation 23
equation of 696 exponents
focus of 696 integer 23
reflection of property of 702 laws of 25
as section of cone 695 negative 26
shifted 703 rational 27, 118
ellipsoid 724, 793 real, 308
elliptic extended product rule for limits 62
cone 728, 273 : extended sum rule for limits 62, 69
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Index

extensive quantity 445
extreme value theorem 180
extremum, local 813

factoring 16
falling object 412, 414
Faraday’s law 922
Feigenbaum, M. J. 548
Feinberg, M. 836
Ferguson, Helaman 602
Fermat, Pierre de 8
Fine, H.B. 468
first derivative test 153, 814
for constrained extrema 826
first-order approximation (see linear
approximation)
Fisher, Chris 884
fluid 914, 926
flux 924
law 805
of a vector field 925
flying saucer 430
focus of ellipse 696
focusing property of parabolas 36, 95, 97,
701
football 453
force 448, 659, 675, 885, 886
centripetal 747
on a dam 454
gravitational 834
resultant 659
forced oscillations 415, 624
four-petaled rose 730
Fourier coefficients 506
fractals 499
fractional exponents (see rational
exponents)
fractional powers (see rational powers)
Frenet formulas 753
frequency 259
friction 377
Friedrichs, Kurt 694
Frobenius, George 636
frustrum 485
function 1, 39
absolute value 42, 72, 73
average value of 434
circular 385
component 738
composition of 112, 113, 779
constant 41, 192
continuous 63
convex 199
cubic 168
definition of 41
differentiation of 268
even 164, 175

exponential 307
graph of 41, 44
greatest integer 224
harmonic 774
homogeneous 796
hyperbolic 384, 385
identity 40, 277, 384, 385
integration of 217
inverse 272, 274
inverse hyperbolic 392
inverse trigonometric 281, 285
linear 192
odd 164, 175
piecewise linear 480
power 307
rational 63
squaring 41
step 140, 209, 210, 839, 861
of three variables 712
trigonometric, antiderivative of 269
trigonometric, graphs of 260
of two variables 711
vector 737
zero 41
fundamental integration method 226
fundamental set 630
fundamental theorem of calculus 4, 225,
237
alternative version of 236

Galileo 8
gamma function 643
gas
ideal 795
Van der Waals 795
Gauss, Carl Friedrich 205, 613, 908
divergence theorem in the plane 925
in space 927
gaussian integral 870, 871
Gear, C. W. 405
Gelbaum, Bernard R. 576, 600
general solution 618, 623
geometric curve 889
geometric mean 188, 436
geometric series 564, 600
geometry, differential 749
Gibbs, J. Willard 657
global 141, 177
maximum 813
Goldman, M. J. 658
Goldstein, Larry 172
Gould, S.H. 6(fn)
gradient 797, 798
and Laplacian in polar coordinates 836
and level curves 808
pressure 833
and tangent planes 806
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Index 1.7

vector fields 896 hyperbolic cosine 385
graph 41, 163 hyperbolic functions 384, 385
area between 241 antiderivatives of 389
area under 212, 229 derivatives of 388
computer-generated 716, 717, 720, 721, inverse 392
813, 819, 821, 822, 833, 834, 837  hyperbolic paraboloid 719, 720, 728
of function 41, 44 hyperbolic sine 385
of two variables 711 inverse of 393
surface area of 857 hyperboloid
graphing in polar coordinates 296 of one sheet 725
graphing problems elliptic 760
exponential and logarithmic of revolution 725
functions 236 as ruled surface 763
trigonometric functions 292 of two sheets 724

graphing procedure 163
gravitational acceleration 446

gravitational force 834 I method 361
inside a hollow planet 880 ice ages 756
gravitational potential 878, 882, 883 ideal gas 795
greatest integer function 224 identity function 40, 277
Green, George 908 rule for limits 60
identities 933 identity, trigonometric 257
theorem 908, 911 illumination 183
growth 378 imaginary axis 609
and decay equation, solution of 379 imaginary numbers 18
exponential 332 implicit differentiation 120, 122, 398, 810
gyroscope 682 implicit function theorem 810

improper integrals 528, 529
comparison test 530

half-life 381, 383 inclination, of the earth’s axis 301

hanging cable 401 incompressible 926

Haralick, R.M. 401 increase, rate of 101

Hardin, Garrett 416 increasing function 146

harmonic series 567 test 148

harmonic function 774 theorem 195

heat increasing on an interval 149
conduction 772 increasing sequence property 575
equation 775, 933 indefinite integral (see antiderivative)
flow 933 test 233

helix, right circular 736 independent variable 40

Henderson, James 831 indeterminate form 521

Hermite polynomial 636 index )

Hermite’s equation 636 dummy 203

herring 156 substitution of 205

Hipparchus 256(fn) indices of refraction 682

Hofstadter, Douglas 548 indicial equation 638

Hoélder condition - 559 induction, principle of 69

homogenous equation 623 inequalities 18

homogenous function 796 properties of 19

Hooke’s Law 99, 295 inequality

horizontal asymptote 165, 513, 535 arithmetic—geometric mean 188, 436

horizontal tangent 193 Cauchy-Schwarz—Buniakowski 669

horsepower 446 Minkowski’s 365

horserace theorem 193 Schwartz 669

hyperbola 698 triangle 665
asymptotes of 698 infinite limit 66
equation of 698 infinite series 561
shifted 703 . infinite sum 561
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1.8

Index

infinitesimal 73
parallelograms 856
infinitesimals, method of 6, 8, 419, 428,
441, 477, 482, 495, 856, 872
infinity 21
inflection point 159
test for 160
initial conditions 371, 398
inner product 668
instantaneous quantity 445
instantaneous velocity 50, 51
integer power rule for derivatives 87
integers 15
sum of the first n 204
integrability of continuous function 219
integrable 217, 848, 861
integral 129, 217, 861
calculated “by hand” 212
calculus 1
convergent 529
definite 232
definition of 217
divergent 529
double 8§39, 850
elliptic 417
gaussian 870, 871
of hyperbolic function 389
improper 528, 529
indefinite 129 (see also antiderivative)
of inverse function 362
iterated 842
reversing order of 851
Leibniz notation for 132
line 888, 893
mean value theorem for 239, 435
of rational expression in sin x and
cos x 475
of rational function 469
Riemann 220
sign 129, 132, 217
differentiation under 883
surface 916
tables 356
trigonometric 457, 458
triple 860, 861, 865
of unbounded function, 531
wrong way 235
integrand 129
integrating factor 905
integration 33, 129, 201, 851
applications of 420
by parts 358, 359
by substitution 347, 348, 352
endpoint of 217
limit of 217
method, fundamental 226
methods of 337
multiple 839°

numerical 550
of power series 590
intensity of sunshine 451
interest, compound 244, 331
interior 839
intermediate value theorem 141, 142
intersecting graphs, area between 242
intersection of points 39
intertia, moment of 877
interval 21
closed 21
open 19
inverse
cosecant 285
cosine 283
cotangent 285
function 272, 274
integral of 362
rule 278
test 276
hyperbolic functions 392
derivatives 396
integrals 396
hyperbolic sine 393
secant 285
sine 281
tangent 283
trigonometric functions 281, 285
invertibility, test for 275, 276
irrational numbers 16
isobars 833
isoquants 830
isotherms 710
iterated integrals 842
reduction to 843, 862
ith term test 567

Jacobi identity 682
Jacobian determinant 792
Jacobian matrix 792
joule 445

Kadanoff, Leo 548
Katz, V.J. 908
Kazdan, Jerry 716
Keisler, H. J. 7(fn), 73(fn)
Kelvin, Lord 594, 908
Kendrew, W.G. 180
Kepler, Johannes 8

first law 753

second law 506
kilowatt-hour 446
kinetic energy 446, 859, 886
Kline, Morris 182
Korteweg—de Vries equation 783
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PHopital, Guillaume 521
I’Hopital’s rule 522, 523, 525
labor 106
ladder 190
Lagrange
interpolation polynomial 556
multiplier 826, 827
Laguerre functions 640
Lambert, Johann Heinrich 251(fn)
Laplace equation 796
Laplacian 933
latitude 300, 732
least squares 823
Legendre, Adrien Marie 251(fn)
equation 635
polynomials 635
Leibniz, Gottfried 3, 73, 193, 594
notation 73, 104, 132, 217
for derivative 73
for integral 132
lemniscate 136
length
of curves 477
of days 300, 302
of parametric curve 495
properties of 665
of vector
level curve 712, 808
level surface 713
librations 506
limacon 298
limit 6, 57, 59
comparison test 518
of (cos x — 1)/x 265
derivative as a 69
derived properties of 62
€-8 definition of 509, 769
of functions 509
infinite 66
at infinity 65, 512
of integration 217
method 6
one-sided 65, 517
of powers 542
product rule 511
properties of 60, 511
reciprocal rule -511
of sequences 537, 540
properties of 563
of (sin x)/x 265
line 31(fn)
equation of 32
~ integral 886, 893
of a scalar function 895
parametric equation of 664, 665
perpendicular 33
point-point form of 32
point—slope form of 32

index

real number 18

secant 51, 191

slope of 52
slope—intercept form 32
straight 31(fn), 125
tangent 2, 191, 741

1.9

linear approximation 90, 91, 92, 158, 159,

601, 775, 776

linear combination 675
linear function 192

derivative of 54
linear or proportional change 100
linearized oscillations 375
linearly dependent 652, 639
linearly independent 652
Lipschitz condition 559
Lissajous figure 507
local 141, 151, 177

extremum §13

maximum point 151, 157

minimum point 151, 157, 813
logarithm 313

base of 313

defined as integral 326

and exponential functions, word

problems 326

function, derivative of 321

laws of 314

limiting behavior of 328

natural 319

properties of 314

series for 600

logarithmic differentiation 117, 322, 329

logarithmic spiral 534, 535
logistic equation 506

logistic law 407

logistic model for population 335
longitude 732

Lotka—Voltera model 400

love bugs 535

lower sum 210, 840, 861

Lucan 8(fn)

Maclaurin, Colin 594, 690
polynomials for sin x 602
series 594, 596

MACSYMA 465

magnetic field 752

major axis 696

majorize 199

Mandelbrot, Benoit 499

marginal
cost 106
productivity 106
profit 106
revenue 106

Copyright 1985 Springer-Verlag. All rights reserved



.10

Index

Marsden, Jerrold 582, 615, 710, 810, 826,
849
mass action, law of 476
matrix 685, 784
derivative 784, 786
multiplication 787
Matsuoka, Y. 582
Mauna Loa 804
maxima and minima, tests for 153, 157,
181, 816
maximum
global 177
point 813
value 177
maximum-—minimum
problems 177
test for quadratic functions 816
Maxwell equations 922, 923, 931
mean value theorem 191, 922
Cauchy’s 526
consequences of 192
for integrals 239, 435, 455
Meech, L.W. 9
midnight sun 301(fn)
minimum
points 177
local 813
value 177
Minkowski’s inequality 365
minor axis 696
minors, expansion by 687
mixed partial derivatives 769
mixing problem 413, 414
modulate 628
moment
of a force 682
of inertia 878
momentum 692
monkey saddle 719, 721
motion, simple harmonic 373
with damping 415
multiple integration 839
multiplication
matrix 787
of ordered pairs 646
multiplier, Lagrange 826

natural
growth or decay 380
logarithms 319
numbers 15
Newton, Isaac 3(fn), 8(fn), 193(fn),
253(fn), 594
iteration 559
law of cooling 378
law of gravitation 746
method 537, 546

accuracy of 559
and chaos 547
second law of motion 369, 746, 886
nonhomogenous equation 623
noon 301(fn)
normal 669
vector 671
principal 750
normalization 666
northern hemisphere 301
notation
differential 351, 359, 374, 398
Leibniz 73, 104, 132, 217
summation 203, 204
nowhere differentiable continuous
function 578
number
complex 607, 609
imaginary 18
irrational 16
natural 15
rational 15
real 15, 16
numerical integration 550

odd function 164, 175

Olmsted, J. M. H. 578, 600

one-sided limit 65, 517

open interval 21

open rectangle 839

optical focusing property of parabolas 36,

95, 97,701

orbit 702

order 18

ordered pairs
addition of 646
multiplication of 646

ordered triples, algebra of 654

orientation 683

orientation quizzes 13

origin 29

orthogonal 669
decomposition 675
projection 670
trajectories 402

oscillations 294, 369
damped forced 628
forced 415, 626
harmonic 373
linearized 375
overdamped 621
underdamped 621

oscillator (see oscillations)

oscillatory part 629

Osgood, W. 521

Ostrogradsky, Michel 908

overdamped oscillation 621
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pH 317
Pappus’ theorem for volumes 454
parabola 34, 700, 752
equations of 37, 701
focusing property of 36, 95, 97, 701
as section of cone 695
shifted 703
vertex of 55
parabolic cylinder 714, 723
paraboloid
elliptic 728
hyperbolic 719, 720, 728
of revolution 714
parallel projection rule 653
parallelepiped, volume of 685 .
parallelogram
area of 683
infinitesimal 856
law 650
parameter 489
parametric curve 124, 287, 489
in space 735
length of 495
tangent line 491, 492
parametric equations
of line 490, 662
of circle 490
parametrized by arc length 749
partial derivatives 765
equality of mixed 769
second 768
partial differentiation 765, 767
partial differential equations 898
partial fractions 465, 469, 591
partial integration (see parts, integration by)
particular solution 371, 623
partition 209
parts, integration by 358, 359
path independence 895
pendulum 376, 391, 417
perihelion 702
period 259
of satellite 748
periodic 259
perpendicular lines 33
Perverse, Arthur 367
Perverse, Joe 811
pharaohs 416
phase shift 372, 629
Picard’s method 559
Pierce, J.M.
Planck’s constant 8§23
Planck’s law 823
plane
in space, equation of 671, 672
tangent 776, 782, 835
planimeter 914
plotting 29, 43, 163

Index .11

point
critical 151
inflection 159
intersection 39
local maximum or minimum 151, 157
point—point form 32
Poisson’s equation 931
polar coordinates 253, 255, 791, 869
arc length in 500
area in 502
double integrals in 870
graphing in 296
gradient and Laplacian in 836
tangents in 299
polar representation of complex
numbers 614
Polya, George 182
polynomial
antiderivative of 130
derivative of 75, 79
pond, 74
population 117, 175, 189, 195, 335, 344,
382, 400, 407, 416
position 131
positive velocity 149
Poston, Tim 176
potential 834, 931
energy 446
power 445
function 307
of function rule for derivatives 110
integer 23
negative 26
rational 18, 27, 169
real 308
rule
for antiderivatives 130
for derivatives 76, 119
for limits 62
series 586
algebraic operations on 591
differentiation and integration of 590
root test for 589
precession 756
predator—prey equations 400
pressure gradient 833
price vector 785
principal normal vector 750
producer’s surplus 248
product
cross 677
dot 668
inner 668
rule
for derivatives 82
for limits 60
€-8 proof of 520
triple 688
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112

Index

vector 677
productivity

of labor 106

marginal 106
profit 329

marginal 106
program 40
projectile 295, 752
projection, orthogonal 670
proportional change 95
Ptolemy 256(fn)
pursuit curve 499
Pythagoras 694

theorem of 30

quadratic

formula 16, 17

function, derivative of 54
quadr@ic surfaces 719, 723
Quandt, Richard 831
quantity vector 785

quartic function, general, graphing 176

quizzes, orientation 13
quotient
derivative of 85
difference 53, 766
rule, for limits 62

radian 252
radius 34
of convergence 587
Rado, T. 856
rate
of change 2, 101, 247
of decrease 101
of increase 101
relative 329
rates, related 124, 811
ratio comparison test for series 571
ratio test
for power series 587
for series 582
rational
exponents 118
expressions 475
function, continuity of 63, 140
numbers 15
power rule for derivatives of a
function 119
powers 118, 119
rationalizing 228
substitution 474
real axis 609
real exponents 308
real numbers 15, 16
real number line 18

real powers 308
reciprocal rule

for derivatives 86

for limits 60
reciprocal test for limit 517
rectangle

closed 839

open 839
reduction

formula 365

to iterated integrals 843, 862

of order 619
reflecting property

of ellipse 702

of parabola 36, 95, 97, 701
reflection, law of 290
refraction, indices of 682
region

between graphs 240

bounded by a curve, area of 912

elementary 848
regular curve 749
regular tetrahedron 694
related rates 124, 815

word problems for 125
relative rate of change 329
relativity 80(fn)
repeated roots 620
replacement rule for limits 60
resisting medium 412
resonance 415, 626, 629
resultant force 659
revenue, marginal 106
revolution

hyperboloid of 725

surface of 482
rhombus 692
Riccati equation 414
Richter scale 317
Riemann, Bernhard 220(fn)

integral 220

sums 220, 221, 551
right-hand rule 653, 677
Rivlin’s equation 199
Robinson, Abraham 7, 73(fn)
rocket propulsion 412
Rodrigues’ formula 640
Rolle, Michel 193(fn)

theorem 193
root

splitting 619

test 589

series 589
for series 584

rose 297
rotation 754, 793

of axes 705, 707

of the earth 756
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Ruelle, David 548
Ruffini, Paolo 172
ruled surface 725, 763

Saari, Donald G. 548
saddle
dog 726
monkey 719, 721
point 719, 817
satellite 747
period of 748
scalar 646
curl 915, 916
multiplication 646, 649
product 668
scaling rule for integral 350
Schelin, C.W. 257(fn)
school year 303
Schwarz inequality 669
Scott Russell, J. 783
seagull 658
secant, 256
inverse 285
line 52, 191
second derivative 99, 104, 157
test for maxima and minima 157, 817
test for concavity 159
second-order approximation 601
second-order linear differential
equations 617
second partial derivatives 768
sections, method of 713
sector, area of 252
Seeley, Robert T. 883
separable differential equations 398, 399
sequence 537
comparison test for 543
limit of 537, 540, 563
series 581
alternating 572
comparison test for 570
constant multiple rule for 566
convergence of 562
divergent 562
geometric 564
harmonic 567
infinite 561
integral test for 580
p 581
power (see power series)
ratio comparison test for 571
ratio test for 582
root test for 584
solutions 632
sum of 562
sum rule 566
set 21

Index 1.13

shell method 429
shifted ellipse 703
shifted hyperbola 703
shifted parabola 703
shifting rule
for derivatives 115
for integrals 350
sidereal day 757
sigma 203
sign, change of 146
signed area 215
similar triangles 254
Simmons, G.F. 401
simple harmonic motion 373
damped 415
Simpson’s rule 554
simultaneous equations 37
sine 254
derivative of 266
hyperbolic 385
inverse 281
law of 263
series for 600
Skylab astronauts 682
slice method 420
slope 2, 31
of tangent line 52
slope—intercept form 32
Smith, D.E. 193(fn)
Snell’s law 305, 682
solar day 757
solar energy 8, 107, 179, 180, 221, 449,
846
solid of revolution 423, 429
solution of growth and decay equation 379
solution of harmonic oscillator
equation 373
space
Gauss’ divergence theorem in 927
parametric curve in 735
vector in
Spearman—Brown formula 520
speed 103, 497, 666, 741
speedometer 95
sphere 421
bands on 483
spherical coordinates 731
spiral
exponential 310, 333, 751
logarithmic 534, 535
Spivak, Mike 251(fn)
spring
constant 370
equation 370, 376
square, completing the 16, 17, 463, 704
square root function, continuity of 64
squaring function 41
stable equilibrium 376
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1.14 Index

standard basis vectors 656 ‘ tangent
standard deviation 453 function 256
steady-state current 520 inverse 284
steepest descent 808 horizontal 193
step function 5, 140, 209, 210, 839, 861 hyperbolic 386
area under graph of 210 line 2, 191, 491, 741
Stokes, Sir George Gabriel 908 to parametric curves 492
theorem 914, 918 slope of 52
straight line 31(fn), 125 plane 776, 782, 835
stretching rule for derivatives 117 and gradients 806
strict local minimum 151 to surface 806
Stuart, Ian 176 vector, unit 749
substitution vertical 169
of index 205 Tartaglia, Niccolo 172
integration by 347, 348, 352, 355 Taylor, Brook 594
rationalizing 474 series 594
trigonometric 461 convergence of 597
subtraction, vector 650 test 599
sum 203 Tchebycheff’s equation 640
collapsing 206 telescoping sum 206
of the first n integers 204 terminal speed 412
infinite 561 tetrahedron 694, 882
lower 210, 840 regular 694
Riemann 220, 221, 551 volume of 693
rule Thales’ theorem 692
for antiderivatives 130 thermodynamics 836
for derivatives 78 third derivative test 160
physical model for 80 Thompson, D’Arcy 423
for limits 60 time
£-8 proof of 520 of day 301
telescoping 206 of year 301
upper 210, 840 torque 748
summation torus 431, 744
notation 201, 203, 204 total change 244
properties of 204, 208 tractrix 499
sun 300 train 55, 80, 291
sunshine transcontinental railroad 569
formula 754 transient 411, 628
intensity 451 transitional spiral 643
superposition 371 translation 793
supply curve 248 of axes 703
surface transpose 691
area of graph 857 trapezoidal rule 552
integral 916 triangle inequality 665
level 713 triangles, similar 254
quadratic 722 trigonometric functions 254, 256
of revolution 482 antiderivatives of 269
area of 483 differentiation of 264, 268
ruled 725, 763 graphs of 260
tangent plane to 806 graphing problem 282
suspension bridge 407 inverse 281, 285
symmetry 163, 296 word problems 289
axis of 440 trigonometric identity 257
principle 440 trigonometric integrals 457, 458

trigonometric substitution 461
triple integral 860, 861, 865
tables of integrals 356 applications of 876
Tacoma bridge disaster 626 in cylindrical coordinates 872

1
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in spherical coordinates 873
triple product 688
trisecting angles 172
Tromba, Anthony 710, 810, 826
two-color problem 901

unbounded region 528
underdamped oscillations 621
undetermined coefficients 623
unicellular organisms 423
uniform density 440

uniform growth or decay 381
unit tangent vector 749

unit vector 666

unstable atmosphere 795
unstable equilibrium 376, 390, 406
upper sum 210, 861

uranium 383

Urenko, J.B. 548

value
absolute (see absolute value)
maximum 177
minimum 177
van del Waals gas 795
variable
change of 354, 875
independent 40
variance 453

variation of parameter or constants 378,

624
vector 645, 648
acceleration 741
addition 649
cardiac 658
displacement 657
field 798, 888
curl of 917
flux of 925
gradient 896
function 737
derivative of 739
differentiation rules for 740
length of 664
moment of 682
normal 671
principal 750
price 785
product 677
quantity 785
standard basis 568
subtraction 650
unit 666
unit tangent 749
velocity 741

Index

velocity 102, 131, 230, 741
average 50
field 404
instantaneous 50, 51
of light 823
positive 149
vector 741
vertex 55
vertical asymptote 164, 518, 531
vertical tangent 169
Viete, Frangois 251(fn)
Volterra, Vito 401
volume 876
of bologna 426
by disk method 423
of parallelepiped 685
by shell method 429
by slice method 419
of a solid region 419
of tetrahedron 693
by washer method 424

washer method 424
water 178, 247, 772
flowing 131, 144, 343, 915
in tank 126
watt 446
wave 306
wave motion 772
wavelength 263
Weber-Fechner law 33
Weierstrass, Karl 6, 578
weighted average 437
Wien’s displacement 823
Wilson, E. B. 657
window seat 291
wobble 756
word problems
integration 247
logarithmic and exponential
functions 326
maximum-minimum 177
related rates 125
trigonometric functions 289
work 675, 886, 888
wrong-way integrals 235
Wronskians 630

yogurt 279
Yosemite Valley 762

Zero
exponent 23
function 41
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A Brief Table of Integrals, continued.

coshx +1

29. fcschxdx = ln‘tanh l = — = m

30. fsmh X dx = %smh?.x _ 1

7%
31. fcosh X dx = %smh2x+ ;

32. f sech’x dx = tanh x

33. fsmh la dx = xsinh~ la -2+ a’ (a>0)
xcosh‘lg—m [cosh_ (§)>O a>0]
xcosh_1§+\/x2_—21_2— [cosh’ (§)<O a>0]
35. ftanh*% dx = xtanh™' % + Zinla® - ¥

dx =In(x +ya> + x?) = sinh"% (a>0)

34. fcosh"% dx =

1
36, [ ——
| ==

1 = Llian—1% 0
37.fa2+x2dx ctan 12 (a>0)

2
38.f\/a2—x2 dx=%\/a2—x2 +92—sin"§ (a>0)
39, f (az—x2)3/2dx=§ —2x)aE = X2 +_sm 2 (a>0)
40.[——21—2dx=sin"~2 (a>0)
1 1 a+ x
41.] . 2arx__am\ ‘

42.

43. f\/xz +a’ dx= %\/Xz +a’ + %ln|x +x2 + a?|
44. f—l—— dx =1In|x +\/x2—a2|=cosh"1§ (a >0)
72

X" —a

45'Imd _1‘a+bx‘

2(3bx — 2a)(a + bx)*?
46. fx‘/a + bx dx = ( 15);2 )

47.f7”’+bxdx=2,/a+bx +af_1—dx
X

xya + bx
2(bx — 2a)a + bx
48. f x = d
ya + bx 3b
49.f—17 S NN R G et U IR
xva + bx \/E a+ bx

= 2 tan‘l be. (a<0)
—a v —a

I —) o —)
50.[—-(1—xx—dx=\/a2~x2 —aln £+_ax_x_‘

51. fx\/a2 —x?dx=— %(a2 — x2/2
4
52. fo\/az —x? dx = %(sz —a®Wa® - x* + % sin ! % (a>0)

Continued on overleaf.
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A Brief Table of Integrals, continued.

)
53[ =_llna+\/a X
x a — x? a *
54, [ —X— dx = —a® — x?
| = o
2
55.fx7-dx=——-)£ XX +%sin 'Y (@>0)
N 2 a
2+ a2 2+ a2
56.[L-—a—dx=\/x2+a2 —al at xx a
57[ dx =x>—a? —acos 'L
|x|
[ _ - X
=x a asec (a) (a >0)
58. fx\/xzi a’ dx=%(x2iaz)3/2
59.f-l—dx=lln x
x\/xz-i-a2 a a+\/x2+a2
60.f 1 dx=—-cos ' = (a>0)
xyx? — a2 |
1 x% + a?
61.[ dx =T
xx? + a? a’x
62.[ X dx =\x* *+ a*
X%+ a?
+b—b? -
63.[ _— dx= L gp[29% b” — dac (b* > 4ac)
ax“+bx +c b% —4dac 2ax + b +b* — dac
_ 2 tan~! 2ax + b (b2<4ac)
Vdac — b? Vdac — b?
1 b 1
64. [ — % dx=-—Injax* +bx+¢|— o [ ———— dx
fax2+bx+c 2a | | 2afax2+bx+c
65.f%dx=Lln|2ax+b+2\/5\/ax2+bx+c| (a>0)
vax? + bx + ¢ ya
=1 gp1z2ax-b ;0
V—a Vb* — dac
2ax+b

66.

f\/ax +bx+cdx=

dx =

_ 12
\/ax +bx+c+4ac bf
yax*+ bx + ¢ b

\/ax +b+c

a

67. X
f \/ax2 +bx+c

1
= | ———dx
2‘1[ \/ax2+bx+c

Jax”+ bx + ¢
68.f 1 dx=—_—lln 2yc Jax? + bx + ¢ +bx + 2¢ (c>0)
xyax® + bx + ¢ c X
1 sin—! bx +2c (c <0)
y—¢ |x|yb? — 4ac
69. (x*xZ+ a2 =(l 2_ 2 2) 2, .2
fx x*+ a® dx 5X 5 (a® + x°)
70 f x?+d? FY(x* = 02)3
’ x* 3a%?
. ) sin(a — b)x  sin(a + b)x
71 bx dx = - 2 2
fsmaxsm x dx 3@—0) a ¥ D) (a* = b%)

Continued on inside back cover.
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A Brief Table of Integrals, continued.

cos(a — b)x  cos(a+ b)x

72. | si bxdx = — - 2 p?
fsmaxcos X dx 2a—7) 2a <) (a” # b°)
sin{fa — b)x  sin(a + b)x S
73. bxdx = 2 p?
fcosaxcos X dx 2a—b) Na+ b (a5 b9

74. fsecx tan x dx = sec x

75. fcscx cotxdx = —cscx

m—1 it ]
. cos™ xsin”" 'x m—1 _ .
76. f cos™x sin"x dx = + cos”™ ~ Zx sin’x dx
m+n m-+n

=1 m+1
sin”” 'x cos” ™ 'x n—1 © -
= — + f cos™x sin” ~ 2x dx
m+n m+n

. 1 n _
77. fx”smaxdx = — — x"cosax + —fx" 'cos ax dx
a a

1 . n Sl

78. fx"cosaxdx = — x"sinax — —fx" 'sin ax dx
a a
ax

79. fx"e""dx = X ﬂfx"fle‘”‘dx

a a
n _ on+1| lnax 1
80.fx Inaxdx = x"* Py m

n+

1
81. fx"(lnax)'"dx = ;C (Inax)” — % fx"(lnax)'""dx

+1

e“*(asinbx — bcos bx)
a’ + b?

e®*(bsin bx + acosbx)

a’+ b?

82. f e®*sin bx dx =

83. fe“"cosbx dx =

84. fsech xtanh xdx'= —sechx

85. fcschx coth xdx = —cschx

Greek Alphabet
a  alpha ¢ iota p rho
S beta k  kappa ¢ sigma
Yy gamma A lambda T tau
6  delta g mu v upsilon
e  epsilon vy nu ¢ phi
¢ zeta £ xi x chi
7 eta o  omicron Y psi
8  theta 7 pi w omega
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This book, the third of a three-volume work, is the outgrowth of
the authors’ experience teaching calculus at Berkeley. It is con-
cerned with multivariable calculus, and begins with the neces-
sary material from analytic geometry. It goes on to cover partial
differentation, the gradient and its applications, multiple integra-
tion, and the theorems of Green, Gauss, and Stokes.
Throughout the book, the authors motivate the study of calculus
using its applications. Many solved problems are included, and
extensive exercises are given at the end of each section. In
addition, a separate student guide has been prepared.
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