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PREFACE

Most books exist because the authors felt that there were no other books that said
what they felt needed to be said in the way they wanted to say it. I felt that a
different book was needed, too, and this book is my attempt to fill that need. This
text 1s “different” for what it does not include as well as for what it does include,
and this uniqueness merits some discussion.

First, this text does span a range of topics from sermconductor physics to
device function and modeling to circuit analysis and design. It is a basic premise
of this text that it is important in a first course on semiconductor electronics to
address this broad range of topics. Only in this way can we adequately emphasize
from the beginning the interactions between physics, devices, and circuits in
modern integrated system design.

Second, this text does not include, except as an appendix, semiconductor
band theory or any of the associated theoretical baggage that implies (e.g., Fermi
statistics, effective mass theory, etc.). It is another basic premise of this text that
such material is best left for later, specialized courses and is in fact not necessary
for a first, thorough treatment; you do not need to understand energy bands to
understand p-n junctions, bipolar transistors, and FETs. As a consequence this
text can be used by college sophomores who have had only a basic introduction
to physics and circuits. More importantly, by teaching no more semiconductor
physics than is necessary to understand the devices, this text can place more
emphasis on actually developing this understandlng

Third, this text does take as its mission to teach the broader top1c of modeling
using semiconductor electronics as a vehicle. Therefore it is a text that should be
of value to all engineering students. If you learn something about semiconductor
electronics, so much the better, but you will certainly gain an appreciation of the
issues inherent in developing and applying physical models.

At the same time, this text does not emphasize the use of sophisticated com- -
puter models. The focus here is instead on understanding and choosing between
various approximate models to select one that might be suitable, for example,
for a back-of-the-envelope calculation, estimation, and/or evaluation of a design
concept. Computer models have their place and are extremely important for engi-
neers, but in a text at this level they are more dangerous than anything else since
they tend to work against developing the insight we seek.

ix
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Fifth, this text does include design, as well as analysis. Design is admittedly
not a main focus, nor is much time devoted specifically to it, but some design
excercises are included, and a design experience is recommended as a complement
to any course based on this text. Only through the exercise of design—of, for
example, choosing a circuit topology and, given a topology, selecting component
values to achieve certain performance goals—can the lessons of this text be truly
learned.

Sixth, this text does not attempt to be the final word on any of the topics
it addresses. It presents a correct first treatment and imparts a functional level of
knowledge, but it is also only preparation for a second tier of specialization, be
it in physics, devices, circuits, and/or systems, that surely must follow.

Seventh, this text does contain much more material than can be covered in
any one course; yet, eighth, an instructor using this text does not have to use all
of this material, nor, in fact, does he or she have to use it in the order it appears
in the table of contents. I have attempted to write this text in such a way that it is
possible to use many different subsets and orderings of the material, and in such
a way that discussions of more advanced modeling and of more specialized and
less pervasive devices can be skipped over without loss of continuity. (Please see
“Comments on Using This Text” below for more on these points.)

Also, this text does have its roots in a long legacy of semiconductor elec-
tronics education at MIT, and none of the preceding litany of do’s and don'’ts are
claimed to be original to this text. In 1960 the Semiconductor Electronics Educa-
tion Committee (SEEC) was formed under the leadership of MIT faculty members
to address the question of undergraduate electrical engineering education in light
of the dramatic changes that were then taking place in the field of electronics
with the advent of the silicon transistor and integrated-circuit technology. An im-
portant product of that effort was an appreciation for the close coupling between
semiconductor physics, device modeling, and circuit analysis and for the value
of teaching these topics in a coherent unit. The SEEC produced an excellent,
very carefully written series of seven paperback volumes and led indirectly to the
publication of a textbook: Electronic Principles—Physics, Models, and Circuits
by Paul E. Gray and Campbell L. Searle (Wiley, New York, 1969). The present
text unashamedly builds upon these SEEC foundations. It addresses a similarly
broad range of topics at a similarly accessible level, differing primarily only in
that it does so in a way that reflects the field of semiconductor electronics as it
exists now over 30 years after SEEC (i.e., in the 1990s).

COMMENTS ON USING THIS TEXT

As stated earlier, I have attempted to write this text in such a way that it is possible
to use many different subsets and orderings of the material, and I have used it
to teach the subject 6.012—Electronic Devices and Circuits at MIT following
several topic sequences. The order in which the material appears in this text is a
relatively traditional one and it works well. It does, however, mean that circuits
are discussed only after a considerable amount of time has been spent on physics
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and devices. A convenient, timely way to get circuits in sooner is to present the
MOSFET before the BJT, and to discuss MOS logic circuits right after finishing
the MOSFET. When doing this, I have found that it is useful to follow the text
through the reverse biased p-n diode (Section 7.2) so the depletion approximation
has been introduced, and to then go to Chapters 9, 10, and 15 before returning
to Chapter 7 and continuing with Section 7.3.

Chapters 14 and 16 contain material that can also be presented earlier with
good effect. One can easily argue that all of the material in these chapters could
have been integrated into the earlier device and circuits chapters, but I resisted
doing this because I feel it is useful to have the discussions of frequency response
collected in one place; the same is true of the switching transients discussions.
Having said this, however, I do usually include the discussion of switching times
of MOSFET inverters with the discussion of their other characteristics. Another
example is the switching transient of a p-n diode, which is a good issue to discuss
soon after teaching diode current flow. The fact that there are plenty of carriers
to sustain a reverse current immediately after a diode has been switched from
forward to reverse bias is easy to see, and it reinforces the students’ understanding
of current flow in a diode.

Finally, it is important to realize that we are unable to cover all of the
material in this text in our one-semester course at MIT. Typically, we wait until a
senior-level device elective to cover the more advanced device models; to discuss
JFETs and MESFETSs, optoelectronic devices, memory, and bipolar logic; and to
cover much of the discussion of large signal switching transients. I recommend
considering the following topics and sections (section numbers in parentheses)
when you are looking for material to delete or de-emphasize: physics issues such
as high-level injection solutions (3.2.3) and certain boundary conditions (5.2.3
c—e); advanced models for diodes (7.4.1b), BJTs (8.2.1b), and MOSFETs
(10.1.1b); and certain more specialized or less pervasive devices such as photo-
conductors (3.3), photodlodes (7.5), LEDs (7.6), phototransistors (8.3), JFETs
(10.2), MESFETs (10.3), memory cells (15.4), and charge-coupled devices
(16.2.2b). If, on the other hand, you are looking to expand upon, or add to, any
of the material in the main text, there is ample material in the appendices pre-
sented at much the same level on energy bands, Fermi statistics, and the effective
mass picture (Appendix C), on metal-semiconductor junctions (Appendix E), and
on processing (Appendix G).
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CHAPTER

MODELING

The title of this text is Microelectronic Devices and Circuits, but it is really a book
about modeling. Inevitably, this focus will tend to be neglected as we concentrate
on learning how semiconductor diodes and transistors work and how they are
used in analog and digital circuits. Thus, it is important that we start with a few
comments on models and on our hidden agenda.

1.1 GENERAL COMMENTS

You are familiar with models for circuit components—resistors, capacitors, induc-
tors, wires—and you have learned that, for example, the terminal current-voltage
relationship of a real resistor that you might get from a stockroom or buy at an
electronics store may be represented, or modeled, by an “ideal” resistor for which
Vrr: = IrR, where vpp is the voltage difference between the two terminals of the
resistor, iy is the current into the positive reference terminal (and out the negative
terminal), and R is the resistance of the resistor, in units of ohms (2). We tend
to think of this model when we encounter an actual resistor, and the distinction
between a real resistor and the model becomes blurred. This is all right as long
as we do not lose sight of the fact that v = iR is just a model, and that as such
it has limitations. For example, if we change the temperature of a resistor, its R
value will change, and at very high current levels, the variation of voltage with
current is no longer linear, in part because of internal heating. An important part
of learning a model is learning its limitations, and an important part of using a
model is remembering that it has limitations and knowing what they are.

In this text, one of our objectives is to develop accurate models with as few
limitations as possible. We also want models that are useful. By “useful” we mean
models that are analytical and, often, that are easy to use in hand calculations. We

1



2 MICROELECTRONIC DEVICES AND CIRCUITS

also mean models that are conceptual and through which we can gain insight
into problems. Not surprisingly, the two objectives of utility and accuracy are not
always consistent, and compromises usually must be made. This often leads to a
hierarchy of models for a device, ranging from the very simple and approximate
to the very precise and complex. An important part of modeling and analysis is
knowing which model to use when.

The real value of a good model is that it lets us predict performance. It lets us
improve, modify, and apply; it lets us design new things, not just analyze old ones;
and it provides a high dégree of confidence that what we design will work. The
most successful models are founded on an understanding of the physical processes
at work in what is being modeled. Such models are conducive to the development-
of physical insight, and they are essential for predicting the unknown.

To illustrate the importance of understanding the physics of a process in
order to develop useful models for it, we can look at two examples where the
physics is not yet understood, and thus for which models capable of predicting
performance do not exist: high-temperature superconductivity and cold fusion. In
the first instance, people ask, “Can we make a room-temperature superconductor?
If not room temperature, how high?” We cannot even pretend to answer these
questions without understanding the basic mechanism behind the lack of resistance
in the new “high-temperature” superconductors. The same is true for cold fusion.
We cannot predict whether test-tube fusion will be a useful source of energy, nor
can we begin to improve upon the minuscule amounts of energy produced thus far
without understanding the physics of the phenomenon, that is, without a model
for it.

As a final example, let us look at models for our planet and at how those
models evolved. Hundreds of years ago, many fairly isolated civilizations existed,
all of which had developed models for the universe. In the Western European civi-
lization there were two competing models: the flat-earth model and the round-earth
model. There was also a great deal of interest among businessmen in developing
trade with the Chinese, Indian, and other Far Eastern civilizations; and depending
on which model of the earth you believed in, you saw different possibilities for
getting to the Far East. According to both models, you could go directly east over
land, but that was known to be both dangerous and difficult. Both models also
indicated that you might be able to sail along the coast of Africa, but this journey
was also very dangerous. The round-earth model suggested a third route, namely,
west. According to the model subscribed to by Columbus, sailing due west would
be a long, but practical, way of getting to the Far East.

On the one hand, the model Columbus used, which was based on a bet-
ter physical understanding of the solar system, was the more correct; it gave
him the confidence to sail west from Spain without fear of sailing off the
edge of the earth into an abyss. On the other hand, the model had some seri-
ous flaws and needed to be modified. For one thing, the model didn’t include
North and South America, but that was not a fatal flaw. More important for
Columbus, his model didn't use the right diameter for the earth, so he thought
the Far East would be a lot closer than it was. At that time many scientists
thought the earth was bigger than Columbus did; and, ironically, if Columbus
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had believed the big-earth advocates (who were right, after all), he might not
have even tried to sail west, since he could not have carried all of the provisions
needed on the ships then available. The colonization of America might have been
delayed a few years, but bigger boats and a belief in the round-earth model would
eventually have led someone to sail west.

Today we know that the earth is round and we know how big it is, but how
often do we use the round-earth model in daily life? For most of what we do, a flat-
earth model is perfectly adequate and much easier to work with. Mathematically,
we recognize that the flat-earth model is a linear approximation to the round-earth
model, valid for motion in our immediate vicinity. In circuit jargon, we would
call it a small-signal, or incremental, linear equivalent model for the earth.

There are many different models for the earth, ranging from a flat slab to an
infinitesimal point, and each has utility in the right situation. One of the important
things to learn about modeling is how to trade off complexity and accuracy, and
how to choose the appropriate model for the task at hand.

1.2 EMPIRICAL DEVICE MODELS

Consider the bipolar transistor. You are familiar with its terminal characteristics,
shown in Fig 1.1, and with the large-signal and incremental models for the bipolar
transistor, shown in Fig 1.2. You might legitimately ask, “Don’t I know enough?
Why do I need to bother with a lot of physics and spend an entire semester
learning more about transistor models?”

The problem is that so far these models are only empirical. We got the
large-signal model by measuring a device’s characteristics and then mathemati-
cally fitting those measured characteristics to an ad hoc collection of ideal circuit
components—model building blocks, if you will —that give the same behavior of
terminal currents and voltages. In general, more than one combination of com-
ponents will give the same terminal characteristics, but experience with several
devices and a little common sense helps us select a model topology that doesn’t
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FIGURE 1.1
Input (a) and output (b) families of terminal characteristics for an npn
bipolar junction transistor (BJT). ’
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FIGURE 1.2

Large-signal (a) and incremental (b) circuit models
for the terminal characteristics of an upn bipolar
junction transistor.

change dramatically from device to device, a topology that somehow “fits” the
bipolar transistor. We may develop confidence that our model is “right” for the
bipolar transistor, but it is purely empirical, with only a fortuitous connection at
best to the internal workings of the device. Based on this model, we have no way
of knowing if, for example, there is any way of changing the diode breakpoint .
values of 0.6 V and 0.4 V. We don’t know what determines 8 and how ‘it can
be changed, what happens if the temperature is raised or lowered, or whether the
device will work at 1 GHz or with 100 A of collector current. We don’t even
know whether we have to ask such questions or if there are other, more important
questions we should be asking. With empirical modeling, what you’ve seen is
what you’ve got, and if you want to try something new, you have to take some
new measurements.

We want to go beyond empirical modeling to develop models based on the
physics of devices so that we can answer such questions with some generality
and confidence, before doing extensive measurements. More important, we want
models that will let us predict the unknown.

1.3 WHY SEMICONDUCTORS?
WHY TRANSISTORS?

The need to learn modeling should now be clear to you, but the choice of semi-
conductor transistors as the context in which to study modeling may not be. Today
electronic system design has very much become integrated circuit design. Thus,
whereas at one time an engineer could specialize either in devices or in circuits
or in systems, it is now impossible to separate systems from the semiconductors
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used to realize them. Now more than ever it is essential that engineers dealing
with electronic devices, circuits, or systems at any level have the basic familiarity
with semiconductors and transistors that this text provides.

In addition, there is an elegance in the modeling of semiconductor transistors
and in the hierarchy of models that exists for them that makes this a very satisfying
subject to learn. Many students actually end up enjoying this material.






CHAPTER

2

UNIFORM
SEMICONDUCTORS
IN EQUILIBRIUM

We begin our exploration of semiconductors with a discussion of thermal equi-
librium, a concept that is very important to understand and very powerful to use.
We will then look at semiconductors in thermal equilibrium and discuss how to
modify their charge carrier populations in useful ways.

2.1 THERMAL EQUILIBRIUM

Thermal equilibrium is not easy to define in precise language, and a course in
thermodynamics is really needed to quantify the concept, but our purposes require
no more than basic understanding. The following description should help you
develop an intuitive feel for the concept of thermal equilibrium.

When we speak of an object being “in thermal equilibrium with its surround-
ings,” we mean that it has the same temperature as its surroundings (which must,
in turn, all be at one temperature) and, furthermore, that it is completely free of
external stimulation. It is not being heated or cooled, it is not being illuminated, it
is not being influenced by an electric or magnetic field, and it is not being pushed
by the wind. It gives as much energy to every object with which it interacts as it
receives from that object, and there is no net change in its condition over time.
It just is.

Example

Question. Consider a bucket of water sitting with you on the floor in a closed
room. Assume the room is at a comfortable 291 K (18°C or 65°F), and the water
and bucket are also at 291 K. Is the water in thermal equilibrium?
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Discussion. If the lights are on or if there is light coming in through an open
window, the bucket is not in thermal equilibrium because the light source is at a
much higher temperature than 18°C, and the water is being warmed by that light,
The water may well be losing heat to the room, which is in turn losing heat to the
outside, and the temperature of the whole ensemble may remain essentially constant,
but the water is not in thermal equilibrium.

What if you cover the windows and turn out the lights? That is a big improve-
ment but you are still in the room. You are hotter than 18°C, and you are a source
of energy that is heating the water.

What if you leave the room? Can we now assume that the bucket is in thermal
equilibrium? Probably, but be careful. It sounds like nothing is happening, but in
fact the water, bucket, and surroundings are all seething with activity. The atoms
and molecules that make up these materials are all vibrating rapidly. Still, that is
no reason to say that the bucket of water is not in thermal equilibrium. This motion
is, after all, what is involved in being at a finite temperature. An object in thermal
equilibrium with its surroundings is not changing with time in a global or average
sense, but that is not inconsistent with motion of individual, indistinguishable atoms,
electrons, or bonds. There must simply be no ner motion of any of these particles.

If you were to check on the bucket of water a month later, you would find
that most of the water had evaporated from the bucket. Some would be in the air
(i.e., it would be more humid in the room), some would be adsorbed on surfaces
of the room or absorbed in them (depending on what they were made of), and some
might be on the floor. Clearly, the water and bucket were not in thermal equilibrium
in an absolute sense when you left the room a month earlier. Are they now? The
answer really depends on the room and, more important, on how strictly thermal
equilibrium is defined. It will never be in absolute thermal equilibrium—not in your
lifetime, anyway—but it may be close enough.

The important lesson to be learned here about modeling is that every model
has limitations, and none'is perfect, but all you really need is one that is close
enough for the task at hand. For the example of the bucket of water, we should have
been asking not “Is it in thermal equilibrium?” but rather “Can it be modeled as
being in thermal equilibrium?” And to answer that question, we have to know why
we are modeling the bucket of water in the first place. For some applications, the
fact that the bucket was illuminated and someone was in the room with it would be
insignificant, and treating it as if it were in thermal equilibrium would be entirely
satisfactory, In others—say, an experiment that took two years—it may never be
possible to assume that it is in thermal equilibrium.

To summarize, we say that an object is in thermal equilibrium if it is “free” of
all external stimulation. Recognizing that an object will always have surroundings
and that its having a finite temperature means that its constituent atoms are in
constant random motion, we understand that no practical object can ever be in
strict thermal equilibrium, yet we also understand that in many instances an object
will be close enough. -

To progress further, we need to understand more about the reason for having
a concept of thermal equilibrium. The answer is that thermal equilibrium is useful
as a reference point, a baseline. It represents a condition we can define and use as a
starting point for modeling what happens to semiconductors when we apply exter-
nal stimulations. That is what we really care about, of course: semiconductors that
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have been shaped into devices and that have voltages applied, currents flowing,
heat and light exciting them—and that are doing something useful. They certainly
are not in thermal equilibrium, but to understand them we first have to understand
semiconductors in thermal equilibrium.

2.2 INTRINSIC SILICON

One of the simplest semiconductors, and by far the most important, is single-
crystal silicon, Si. Silicon is element 14 in the periodic table and has four outer
bonding electrons. It forms a covalent crystal in which each atom shares its four
outer electrons with its four nearest neighbors. Physically, each silicon atom in
a silicon crystal is at the center of a tetrahedron of four other silicon atoms; this
arrangement is illustrated in Fig. 2.1. The extended crystal structure arising from
this local arrangement is illustrated in Fig. 2.2. It consists of two interwoven
face-centered cubic lattices, or crystal structures, one of which is shifted a quarter
of the way along the cube diagonal with respect to the other lattice. To help you
see this, a single face-centered cubic lattice is illustrated in Fig. 2.3a, and in
Fig. 2.3b the two sublattices forming the silicon lattice are shown. The arrows in
Fig. 2.3b are provided to help you visualize the quarter shift; notice that although
the arrows show a shift along one particular body diagonal, the structure can just
as well be viewed as having been formed by a shift along either of the two other
body diagonals. The crystal in Fig. 2.2 is called the diamond lattice, because
this structure was originally identified as the form of crystalline carbon called
diamond.

FIGURE 2.1

Representative silicon atom with its four nearest neighbors.
The circles represent the atoms, the solid lines indicate
covalent bonds, and the dashed lines outline the tetrahedral
shape.
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FIGURE 2.2

The unit cell of the diamond lattice. This cell repeated in all
directions forms the extended silicon crystal. The unit cell is
approximately 5.43 A on a side in silicon (see App. A for
data on other semiconductors), and there are roughly

5 x 10?2 8i atoms per cubic centimeter.

Drawing three-dimensional pictures of a silicon lattice can be difficult, te-
dious, and confusing, so we often use a flat representation, as illustrated in
Fig. 2.4, realizing full well that this model does not display the spatial arrange-
ment of the atoms. It is, however, perfectly adequate for counting and locating
the electrons. In the flat model of the silicon lattice in Fig. 2.4, the circles rep-
resent the Si nucleus and the inner two shells of 10 electrons (the “ion core”). It
thus has a net charge of +4q, where ¢ is 1.6 X 107 C. The lines in Fig. 2.4
* each represent one bonding electron in a covalent bond between two Si atoms.
These electrons each have a charge of —¢, and the entire structure is electrically
neutral. In a perfect silicon crystal in thermal equilibrium at O K (i.e., at absolute
zero temperature), all of the electrons either are in one of the inner atomic energy
levels or are participating in the bonding. No electroris are free to move about the
crystal, and the material is insulating.

An important property of semiconductors is that electrons can be removed
from the covalent bonds by supplying sufficient energy and can thus be “freed” to
move about within the crystal. Once an electron can move about the crystal, it can

FIGURE 2.3

(a) The unit cell of the face-centered cubic crystal structure. (b) The unit cell of the
diamond structure, showing the two interwoven face-centered cubic sublattices. In
the diamond structure both sublattices are composed of the same atomic species; if
the sublattices are composed of different elements, this is called the zinc-blend
structure. Note that only the atoms of the second sublattice (black atoms) falling
within the unit cell of the first sublattice (white atoms) are shown.
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FIGURE 2.4
A two-dimensional representation of the diamond lattice. Each

line represents a shared electron in a covalent bond. Each circle
represents a nucleus with its inner two shells of electrons.

carry electric charge from one place to another—that is, it can produce current—
and this is very much of interest to electrical engineers, as well as others.

In a useful semiconductor, it takes a substantial amount of energy to free
an electron from a bond. By “substantial” we mean much more energy than is
available from the normal thermal motion of the ion cores in the crystal. This
latter energy is on the order of k7, where k is Boltzmann’s constant, 8.62 X 107
eV/K, and T is temperature. At room temperature, k7 is approximately 0.025
eV or, 1/40 eV. (This is an important number to remember, as you will use it
repeatedly when working with semiconductor devices.)

In silicon it takes a minimum of 1.124 eV of energy to “free” an electron
from a bond so that it can move about the crystal and conduct (i.e., carry current).
To visualize this, refer to Fig. 2.5, where the number of allowed energy locations
or levels for electrons is plotted as a function of the energy of the electrons
occupying them. The electrons in the covalent bonds are in a set of energies
called the valence band. The inner-core-level electrons are at still lower energies
(not shown in the figure). Electrons free to conduct are in a set of energy levels
called the conduction band. They are at a higher energy and separated from the
valence band by 1.124 eV in Si. This separation is called the energy gap, or
bandgap, and designated AE,. (For a more thorough, quantitative discussion of
the band model, refer to App. C, Sec. C.1.) "

At a temperature greater than absolute zero, the electrons in bonds contin-
ually exchange energy with the ion cores (nuclei and their inner electron shells)
of the crystal lattice, which are vibrating with their thermal energy. That is, after
all, what it means for the crystal to be at a temperature greater than absolute zero;
it means that we have put energy, thermal energy, into the crystal. The energy
of an average ion or electron in the crystal is on the order of kT, but some have
much less energy and some much more. In fact, a small fraction of the electrons
acquire enough energy through collisions with other electrons and ions to move
from the valence band to the conduction band.
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FIGURE 2.5

Schematic plot of the density of states available to electrons
about the energy gap of a semiconductor as a function of
electron energy.

At the same time that some electrons are getting enough energy to be freed
from their bonds, other electrons already in the conduction band suffer collisions,
giving up their extra energy and falling back into an empty bond. The process
is a very dynamic one, with bonds continually being broken and reformed, even
though the crystal is in thermal equilibrium. Over a period of time the average
number of electrons in the conduction band depends on the temperature and on
the size of the energy gap. In intrinsic silicon at room temperature an average of
1.08 x 1010 electrons per cubic centimeter are in the conduction band. This sounds
like a large number, until one realizes that there are over 10?2 electrons per cubic
centimeter in bonds. Thus, only one in a trillion (10%2) of the outer electrons have
gotten enough energy to move from the valence to conduction band. Electrically,
as we shall see in Chap. 3, the crystal is still effectively an insulator.

Thus far we have focused on the electrons, but in semiconductors it is
equally important to look at the empty bonds left when an electron is excited
up to the conduction band. The electron has a negative charge of —g, where
g is 1.6 X 107 C, so that removing an electron from a previously neutral
bond leaves an empty bond that has associated with it a positive charge of
+q. The interesting thing is that the empty bond can also move about the crys-
tal and transport electricity. An electron in a neighboring bond can move over
into the empty bond with little or no additional energy, as illustrated in Fig.
2.6. The empty bond is thus effectively “moved” over to.the position of the
neighboring bond. It is an electron that has moved, but it is much easier to keep
track of the empty bond, since there are so few of them, than to keep track of the
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FIGURE 2.6

(a) The formation of a hole-electron pair through excitation of an electron from a
valence bond to a conducting state. (b) The motion of a hole through the change
in location of an unfilled valence bond.

bonding electrons. As the empty bond moves, the net positive charge associated
with it also moves. Amazingly, this empty bond, which we call a hole, can be
modeled very nicely as a particle itself, a particle similar to an electron but with
a positive mass and a positive charge, +¢g (see App. C, Sec. C.2).

Thus, when an electron is excited from the valence band to the conduction
band, two particles that can carry electrical current are “created.” One is a con-
duction electron, which we will generally call just an electron, and the other is
a hole. We will denote the concentration of electrons per cubic centimeter as n
and the concentration of holes as p. We will add the subscript o to these symbols
to denote their values in thermal equilibrium. Thus, n, and p, are the thermal
equilibrium concentrations of electrons and holes, respectively. The unit we will
use for concentrations is cm™3.

In a perfect crystal of pure silicon, electrons and holes can only be created in
pairs, since for every electron freed there is.an empty bond left behind, and their
concentrations are equal (i.e., n, = p,). Such a perfect, pure crystal is called
intrinsic, and the carrier concentrations in an intrinsic semiconductor are equal
to what is called the intrinsic carrier concentration, denoted by n;. As already
indicated, n; in silicon at room temperature is 1.08 X 100 cm™3. The intrinsic
carrier concentration is a very sensitive, exponential function of temperature, and
thus it is very important to state the temperature. Unless otherwise specified, we
will be concerned with operation at room temperature, or roughly 300 K.

To summarize, in an intrinsic semiconductor,

no = po = ni(T) 2.1
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2.3 EXTRINSIC SILICON

Intrinsic silicon is highly resistive, and silicon would be relatively uninteresting
if we could not do more with it. Fortunately, we can do a great deal more with it
through the controlled addition of impurities, which allow us to vary significantly
and predictably the thermal equilibrium concentrations of holes and electrons.
These very special impurities are given the special name dopants and can be
either donors or acceptors. We will first look at how dopants work in silicon, and
then will learn how to calculate n, and p, in silicon samples for which we know
the dopant concentrations.

2.3.1 Donors and Acceptors

Silicon is in column IV of the periodic table and, as we have said, has four
outer-shell electrons per atom. In the diamond lattice, each Si atom shares its
four outer electrons with the four nearest neighbors in four covalent bonds. If we
could replace one silicon atom with an atom from column V of the periodic table,
that atom would have one more outer electron than is needed for bonding. This
situation is illustrated schematically in Fig. 2.7a. This atom also has one more
positive charge on its nucleus than does Si, so the dopant atom is electrically
neutral overall, but it is the presence of the “extra” outer electron that is important
to us. It is not a priori obvious that an arbitrary atom from column V can be
put into the silicon lattice in this manrer, but it tutns out that phosphorous (P),
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FIGURE 2.7

(a) An antimony donor atom substitutionally located in a silicon lattice electron. (b) The
location on an electron energy scale of the fifth electron on a donor atom,
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arsenic (As), and antimony (Sb) atoms can be substituted for silicon atoms in a
Si crystal; nitrogen (N) atoms, on the other hand, cannot.

The next question is where on the energy scale the extra electron associated
with a substitutional column V dopant lies. It turns out for P, As, and Sb dopant
atoms that the electron’s energy is approximately 50 meV below the bottom edge
of the conduction band. This is illustrated in Fig. 2.7b. If this electron gets just
50 meV of additional energy, perhaps from vibrations of the crystal lattice, it
can be excited to the conduction band and freed to move about the crystal; it is
then indistinguishable from any other conduction electron. Notice an important
difference, however, from the situation where a conduction electron is created by
breaking a covalent bond. In that situation a mobile electron and a mobile hole
are created. Now a mobile electron is created, but the positive charge associated
with the column V ion is fixed in place; it cannot move.

Elements that can be put substitutionally into a semiconductor lattice and that
then have electrons at energies where they can be easily excited into the conduction
band are called donors. The energy needed is called the donor ionization energy
E,;, and a donor whose electron has been excited into the conduction band is said
to be ionized. It has a net charge of +¢. Donors of practical interest in silicon,
such as P, As, and Sb, are termed shallow donors. They have ionization energies
sufficiently low that, at concentrations of interest in devices, they will be ionized
at room temperature. That is to say, if a silicon crystal contains N4 shallow donor
atoms per cubic centimeter, then almost all will be ionized at room temperature,
and the density of ionized donor ions, N, will be essentially Ny:

Ni=~N, 2.2)

Logically, the next question is what are n, and p,, the thermal equilibrium
hole and electron concentrations, in a silicon crystal doped with a known con-
centration of donors, N;. We cannot answer this question yet, but because each
conduction electron came either from a donor or from a valence bond, we can
say that the concentration of mobile electrons, n,, must equal the concentration
of holes, p,, plus the concentration of ionized donors:

Ne = po+NJ 2.3)
Using Eq. (2.2), we also know that
no = po+ Ny (2.4)

Before proceeding with the determination of n, and p,, let us consider
what would happen if instead of putting impurities from column V into the Si
crystal, we put in impurities from column III. A column III atom—boron, for
instance—has only three outer electrons; thus, although it will be electrically
neutral if put substitutionally into a silicon lattice, it will not be able to fill one
of the four covalent bonds it is expected to make with its four nearest neighbors
(see Fig. 2.8a). What happens is perhaps more difficult to visualize than the case
for a donor, but the situation is analogous, and in this case it is a mobile hole
that can be readily created. The column III dopant introduces a new energy level
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for electrons just above the valence band, as pictured in Fig. 2.85. An electron
in a covalent bond that gets enough energy, about 50 meV in the case of boron
in silicon, can form the missing bond of the dopant. That electron is now located
spatially in the vicinity of the dopant atom, and a hole is created that can move
about the crystal. In this case the dopant is called an acceptor, and it is said to be
.ionized. The energy the electron had to acquire is the acceptor ionization energy,
E,, and the ionized acceptor has a net charge of —g associated with it.

Useful acceptors are shallow and have ionization energies small enough that
at room temperature all of them will be ionized. Thus, if the shallow acceptor
concentration is N,, we have

N; =N, (2.5)

In silicon, the most useful acceptor dopant is boron (B). Of the other possibil-
ities, indium (In).is not good because its ionization energy is too large, aluminum
(Al) is not good because it oxidizes too readily and is difficult to work with as a
dopant, and gallium (Ga) is too hard to introduce into silicon in a controlled way.

As was the case with donors, we cannot yet say what n, and p, are given
N,, but we can get one equation relating these two unknowns:

noe+ N, = p, (2.6)

Using Eq. (2.5), we have
o+ Nz = p, 2.7)
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(a) A boron acceptor atom substitutionally located in a silicon lattice with its unfilled
bond, or hole. (b) The location on the electron energy scale of the unfilled bonding
electron sites.
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In a crystal with both donor and acceptor atoms present, we can do the same
bookkeeping or charge concentration accounting. The total number of electrons in
the conduction band, n,, and on ionized acceptors, N, , must equal the number
of empty bonds (i.e., holes), p, plus the number of ionized donors, N :

ne+NJ = po+Nj} 2.8)

Unless otherwise specified, we can assume that the donors and acceptors are
shallow and completely ionized. Thus, using Egs. (2.2) and (2.5),

n0+Nazp0+Nd (2.9)
This can also be written as
No— Po=Ng —Ng (2.10)

We define N; — N, as the net donor concentration Np. At times it is con-
venient to also define a net acceptor concentration N4, as N, — Ny. Thus,

Np =Nyz - N, (2.11)
and

Ny =N, - Ny (2.12)

2.3.2 Detailed Balance

We are trying to find n, and p, in a crystal of silicon for which we know N, and
N,, and thus far we have one equation, Eq. (2.10). We need another equation.
To get it, we need to understand the principle of detailed balance and what this
principle means for holes and electrons in semiconductors.

To proceed we will look in even more detail at what is happening inside a
doped, or “extrinsic,” silicon crystal in thermal equilibrium. We have mentioned
several times that a crystal in thermal equilibrium is seething with activity. The
constituent atoms are vibrating about their nominal locations within the crystal;
pairs of holes and electrons are continually being created as bonds are being broken
and simultaneously electrons and holes are combining to reform covalent bonds;
and the conduction electrons. and holes are moving randomly about the crystal.
There is no net motion of charge‘, and there is no net change in n, or p,, but
microscopically there is continual motion and continual change. A very dynamic
equilibrium exists.

Look for a moment at the carrier generation processes. We can think of three
processes that might be occurring, and we can represent them using a notation
familiar from chemistry:

Completed bond < Hole + Electron
Neutral donor < Ionized donor + Electron

Neutral acceptor < Ionized acceptor + Hole
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Focus now on the first process, ‘hole-electron pair generation and recombination,
and consider what more we might be able to say about it. Begin with the generation

process,
Covalent bond — Hole + Electron

and define a generation rate G(7'), which is the rate, in number per cubic centime-
ter per second (cm™3 - s71), at which electrons are being excited from covalent
bonds to the conduction band, that is, the rate at which hole-electron pairs are
being created. We expect G to be a function of temperature.

Although we have mentioned only energy from lattice vibrations as the
source of the approximately 1.1 eV needed in Si to create a hole-electron pair, there
are many other ways this energy can be acquired. Some are intrinsic, involving
just the silicon lattice; some are extrinsic and involve impurities or defects in
the crystal; and some are external, involving external stimulation. (Clearly, these
external processes must not be present in thermal equilibrium.)

Consider some possible intrinsic processes. One is generation due solely to
thermal energy in the lattice (i.e., vibrations), and we can denote this as Gy (T).
Another involves absorption of optical energy, Gop(T). You may not be used to
thinking of objects at room temperature as emitting light, but just as a red-hot
object glows visibly, objects at room temperature are glowing—that is, radiating—
albeit very weakly and primarily too far into the infrared region for us to see their
radiation. Still, there are some quanta of light (photons) that are energetic enough
to excite electrons from the valence band to the conduction band.

Still other generation paths might involve a combination of lattice vibrations
(we call them phonons) and light quanta (photons). Generation might be’ caused
by one phonon and one photon, G.1(7); by two phonons and one photon, G2(T);
or by i phonons and one photon, G.;(T).

The total generation rate G(7) is the sum of all of these and any other
intrinsic generation rates, the extrinsic generation rates, and the external generation
rates:

G(T) =Gn(T) + Gop(T) + > Gei(T) + > Gogper insinsic

14
+ § Gextrinsic + _E Gexternal

For each of these generation mechanisms there is a corresponding recombi-
nation mechanism. Defining R(T') as the recombination rate (cm™3 - s71), we can
immediately write '

R(T) =Rw(T) + Rop(T) + > Rei(T) + > Roer inrinsic

i
+ § Rextrinsic + :_>— Rexternal

For example, Ry (T) is the rate of recombination with all of the energy involved
being given to the lattice as thermal energy, (i.e., phonons), Ry (T) is recom-
bination where the energy is released as a quantum of light (i.e., a photon),
and so on. :

(2.13)

(2.14)
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Next we want to consider how we can relate G and R to the carrier popula-
tions, n and p.

For generation we argue that G will be independent of n and p as long as
there are plenty of covalent bonds left to break and lots of room in the conduction
band for electrons to go. That is, we restrict ourselves to situations where the
density of broken bonds, p, is much smaller than the total density of bonds,
roughly 1022 cm™?, and where the density of conduction electrons, n, is much
smaller than the total number of conduction sites, again roughly 102 cm™3, In
this case G(T) is not a function of n and p.

R, on the other hand, must depend on n and p because, clearly, we must
have at least one hole and one electron for recombination to occur, Thus, we must
have at least R(T, n, p). But we can say more. For n and p small, we must have

R(T,n, p)=r(T)np ' (2.15)

One way to understand this is to think of forming a Taylor’s series expansion of
R(T, n, p) in terms of n and p. We would have

R(T,n, p)=A+Bn+Cp+Dn?>+Ep*+Fnp+Gn®

s 2 (2.16)
+ H p° + In“p + Jn p® + still higher-order terms

All of the coefficients of terms not involving both n and p (i.e., 4, B, C, D, E,
G, H, etc.) must be zero because R must be zero if either n or p is zero. The first
nonzero term is the second-order term, an Ifn and p are sufficiently small, we
can stop the expansion there and ignore In%p, Jn p?, and all higher-order terms.
This gives us Eq. (2.15).
Next we restrict ourselves to thermal equlhbnum and to finding »n, and po

In thermal equilibrium there will be no net change in p, and n, with time, so
generation must equal recombination, that is,

Go(T) = Ry(T) = nyopor(T) 2.17)

Note that we have added a subscript o to denote thermal equilibrium.

Equation (2.17) says that the total generation equals the total recombination,
but by the principle of detailed balance we can say even more. This principle
states that each individual recombination and generation process must balance.
That is,

G = R = NoPol'm
Gop = Rop = Mo Porop (2.18)
Gei = Rei = NoPolei

and so on. If this were not true, some pretty nonsensical things might happen.

Suppose, for example, that we had a sample in which every process was balanced
except for the intrinsic optical process and the intrinsic thermal process:

Gy + Gop + G = Rp + Rop + R (2.19)
P P

other other
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With 2 her G = 2 oiher Ry but Gy # Ry and Gop # Rop. We are left with
Gu + Gop = Rn + Rop (2.20)

Suppose for the sake of discussion that Gop > Rop, and that, as must then also be
true, Gy, < Ry,. This implies that more optical energy is being absorbed by the
sample- than is being emitted, while more thermal energy is being given to the
crystal lattice than is being absorbed from it. Thus, the sample absorbs optical
energy from its surroundings and heats up. This is nonsense if the sample is
supposed to be in thermal equilibrium with its surroundings. We conclude that the
only way we can avoid inconsistencies such as this is to insist on detailed balance
of all of the processes. Clearly, we must have Gy = Ry, Gop = Rop, Gei = Ry,
and so forth in thermal equilibrium.

This is the result we need to find n, and p,. There are many generation-
recombination processes that do not involve donors and acceptors and thus do not
change with the addition of dopants. For such processes, G;(T) and r;(T) are
unchanged by the addition of dopants, and we will have

Gj(T) = nopor;(T) (2.21)

We argued earlier, however, that adding dopants changed n, and p,. What we see
now is that they may change, but their product must not. At a given temperature,
the product #n, p, must be independent of N, and N,.

Another way to see that the product n, p, must be independent of doping
is to think of the process of hole-electron pair generation and recombination as a
chemical reaction:

Complete bond 2 Hole + Electron

and use the law of mass action, which says that in equilibrium

[Hole][Electron]
[Completed bond]

= K(T)

where the brackets indicate concentration and K(7) is the mass action constant.
The hole concentration is p,, and the electron concentration is n,. Thus, we have

Potto = K(T)[Completed bond]

and we see again that the product n,p, is independent of doping (i.e., of the
individual values of n, and p,), as long as the concentration of completed covalent
bonds is not reduced noticeably.

To evaluate n, p,, recall that we know what n, and p, are in one special
case, namely, in intrinsic silicon. In intrinsic silicon, n, = p, = n;. Clearly,
then, in this case and in general, :

nopo = ni(T) (2.22)

This is our second equation relating n, and p,. It is valid as long as », and p,
are much smaller than 10?2 cm™3. A safe limit is 10'® cm™ in silicon.
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2.3.3 Equilibrium Carrier Concentration

By combining Egs. (2.10) and (2.22) we obtain a quadratic equation. Assuming
for the moment that N; is greater than N,, so that we have (N; — N,) = Np > 0,
we find that solving the quadratic equation yields

_ ND ND 4n%
no = > + 5 1+ N,% (2.23)
and
ND ND 4?12
Po=——+ = [1+—L (2.24)
| 2 2 N3

As a practical matter, it will almost always be the case that Np > n;, in which
case these expressions can be simplified to

2
ny=~Np + —L =~ Np, (2.25)
Np
and
2 2
n? n’
= o 2.26
Do 7, Np ( )

Looking at this result we see that n, is indeed greatly increased over its value in
intrinsic material, whereas p, is suppressed correspondingly. The mobile carriers
are thus predominantly electrons, and we say that the sample is an extrinsic n-type
semiconductor. The electrons are called the majority carriers, and the holes are
called the minority carriers in an n-type semiconductor.

If, on the other hand, N, is greater than N; and N4 > n;, then

Po =Ny (2.27)
Ny = —b =~ L (2.28)

In this case the hole population is greatly increased over n;, and the electron
population is suppressed. The predominant mobile charge carriers are holes, and
the semiconductor is said to be an extrinsic p-type. In a p-type semiconductor,
holes are the majority carrier and electrons are the minority carrier.

Example

Question. Consider a sample of silicon that contains 5 X 1017 ¢cm™2 boron atoms
and 8 x 1016 cm™3 arsenic atoms. What are the equilibrium hole and electron con-
centrations in this sample at room temperature?

Discussion. Boron is in column III of the periodic table and is thus an accep-
tor, and arsenic is in column V and is a donor. Thus N, is 5 X 1017 em™3 and
N, is 81016 cm™3; since N, is greater than N7, we see that we have a net acceptor
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concentration N4, of 4.2 X 1017 ¢cm™3. Thus the sample is p-type, holes are the
majority carrier, and the equilibrium hole concentration p, is approximately N4.
That is,

Do = 4.2 %1017 cm™3

The equilibrium minority carrier (i.e., electron) concentration n,, is given by
Eq. (2.28). In silicon at room temperature, the intrinsic carrier concentration n; is
1019 ¢cm~3, and n% is roughly 102° cm™3. We thus find that

no =24 X 10?2 cm™3

Notice that p, is much greater than 7; in this extrinsic, p-type sample, whereas
N is much, much less than n;.

2.4 ADDITIONAL SEMICONDUCTORS

Although silicon is by far the most widely used semiconductor, there are many
other materials, both elements and compounds, that are semiconductors. Many
are widely used in applications where silicon is not suitable, and we will have the
opportunity to mention some of these applications as we study various devices.

2.4.1 Elemental Semiconductors

The column IV elements, carbon, silicon, germanium and tin, can all form dia-
mond structure crystals, and all except tin are semiconductors. After Si, germa-
nium is the most important. The energy gap of Ge is 0.7 eV. Much of the early
research and development of semiconductor devices was done using Ge because it
was initially easier to grow single crystals of Ge than of Si. Eventually, however,
the lower sensitivity to temperature of Si and, more importantly, its advantageous
processing features made it the material of choice.

Today germanium is used primarily in infrared optical detectors and in power
diodes and transistors. Ge is used for infrared detectors because it has a much
smaller bandgap than silicon, which makes it sensitive to lower-energy, longer-
wavelength light. In power device applications, Ge’s smaller bandgap is also useful
because it leads to a lower p-n diode forward turn-on voltage than the usual 0.6
or 0.7 V seen in Si diodes. The charge carriers in Ge are also more mobile than
in Si, which is also an advantage, especially in high power devices. You will be
in a much better position to appreciate these facts after we discuss diodes and
transistors in later chapters.

2.4.2 Compound Semiconductors

Many compounds are semiconductors, but the most important are those formed of
elements from columns IIT and V of the periodic table and, to a lesser extent, from
columns II and VI. We speak of these as III-V (“three-five”) and II-VI (“two-six™)
semiconductors, respectively. We will concentrate here on the III-V’s, but much
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of what we will say extends in very obvious ways to the II-VI’s; key properties of
many members of both families of materials are listed in Table A.2 of App. A.

The III-V’s are of practical interest in part because the conduction electrons
are in general more mobile in them than in silicon, so the III-V’s offer the possi-
bility of producing faster devices. Furthermore, they tend to be more useful than
silicon for many optical device applications. When holes and electrons recombine
in many III-V compounds, the energy that is released is given up primarily as
light, rather than thermal energy as with silicon. This makes these III-V’s useful
for making light-emitting diodes and laser diodes. It then becomes desirable to
make other devices (i.e., transistors, detectors, modulators, etc.) from these same
materials so that all the devices in an integrated system can be made of a common
material or family of materials.

The III-V’s and most of the II-VI’s crystallize into a zinc-blend structure,
named after the II-VI compound zinc sulfide, ZnS. We have already seen this
structure in Fig. 2.3b. In a zinc-blend lattice, each of the face-centered cubic sub-
lattices in the diamond structure is composed of a different element. For example,
in the III-V compound gallium arsenide, GaAs, one of the sublattices is made of
gallium atoms and the other is made of arsenic atoms.

Any of the elements in the middle part of column III of the periodic table
[i.e., aluminum (Al), gallium (Ga), and indium (In)] can be combined with an
element from column V [i.e., phosphorus (P), arsenic (As), and antimony (Sb)] to
form a useful III-V compound semiconductor. Since they involve two elements,
these III-V’s are also called binary compounds, or simply binaries. Of the nine
possible binaries that can be formed from the elements just listed, the most im-
portant is gallium arsenide. It is widely used in high-frequency transistors for
high-speed logic and communications, and in infrared laser diodes for compact
disc players and fiber optics systems.

The spectrum of possible III-V compounds is greatly enlarged by the fact
that binary compounds can be mixed to form ternary and quaternary compounds
with properties intermediary between those of the constituent binaries. A common
example is the ternary aluminum gallium arsenide, (AlAs),(GaAs)i—, or, as it
is more usually written, Al,Gaj—,As, where x is between 0 and 1. The energy
gap of Al,Gaj_,As falls between that of GaAs and AlAs, and, in a fortuitous
twist of fate, all of these compounds have the same crystal size, that is, the same
lattice constant. This makes it possible to fabricate Al,Ga;-,As layered structures
on GaAs without worrying whether the crystals fit well together. The resulting
structures, termed heterostructures, can be used to great advantage in designing
advanced device structures with significantly higher performance than achievable
with a single semiconductor.

Other ternary compounds, however, do not in general have a lattice constant
that is invariant with composition, and in order to produce lattice-matched het-
erostructures a fourth element must be added, yielding a quaternary. One example
is indium gallium arsenide phosphide, Iny;Ga;- xAsyPi-,, which can be used to
produce heterostructures on indium phosphide, InP. This material system is of
interest because it has band-gaps with lower energies than those of Al,Ga;_As.
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It can thus be used in laser diodes emitting at longer wavelengths, where glass
fibers are the most transparent and have their minimum dispersion. Materials in
this quaternary system also have highly mobile conduction electrons and have been
used to produce devices that operate even faster than do gallium arsenide-based
devices.

~ We will only occasionally mention III-V compounds from now on in this
text, and we will not deal at all with heterostructure devices—not because these
topics are so complicated, but simply because there is only so much that a first
electronic devices and circuits text should attempt to cover. Once you master the
material and concepts presented here, their extension to new materials, and even
to heterostructures, will be easy.

2.5 THE EFFECTS OF CHANGIN
TEMPERATURE ' :

The semiconductors used in most modern electronic devices and integrated circuits
(primarily silicon, but also germanium, gallium arsenide, and others) have been
chosen and engineered for use at room temperature. This means, as we have
discussed with respect to extrinsic silicon, that they have energy gaps that are large
enough for the intrinsic carrier concentration at room temperature to be sufficiently
small that, without dopants, the semiconductor is effectively an insulator. It also
means that the ionization energies of the chosen dopants are small enough that
the dopants are totally ionized at room temperature. Thus, for example, boron is
used in silicon when an acceptor is desired, whereas indium, another column III
element, is not. The ionization energy of indium in Si is too large, and only a
small fraction of the indium atoms in a Si crystal are ionized at room temperature.
The semiconductors we use in room-temperature applications tend to have energy
gaps greater than roughly 0.5 eV. If the energy gap is much smaller, the intrinsic
carrier concentration will be too high and will dominate over any impurities we
might introduce, making it impossible to make the material either strongly n- or
p-type rather than simply intrinsic.

Now that we understand that semiconductors must be chosen and engineered
(i.e., desighed) for use in specific temperature ranges, we need to understand what
happens to these materials as we change the temperature significantly from the
“design” value. We will continue to focus on room temperature in most of our
discussions without quantifying the effects of temperature change, but we do want
to have at least a qualitative understanding of what happens. We will consider
an extrinsic silicon sample and look first at decreasing, and then increasing, its
temperature. »

As the temperature is decreased, our assumption that all of the donors and
acceptors are ionized eventually becomes invalid, and Eqgs. (2.2) and (2.5) can
no longer be used. They must be replaced by more accurate relationships derived
from statistical mechanics (see App. C, Sec. C.1). But this is the only change
that must be made. It remains true that the product n, - p, is ”12 (Note, however,
that n; is much lower at lower 7, as the next paragraph shows.) Furthermore, our
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expressions for the equilibrium carrier concentrations, Egs. (2.25) and (2.26) for
n-type material and Eqgs. (2.27) and (2.28) for p-type, remain valid if the net donor
and acceptor concentrations, respectively, are replaced by the net ionized donor
and net ionized acceptor concentrations, and if the proper value of the intrinsic
carrier concentration is used. Reexamination of these equations will show you
that if the donors and acceptors are not fully ionized, the equilibrium carrier
concentrations will be lower than if the dopants were fully ionized. This loss of
mobile carriers to un-ionized dopant atoms as temperature is lowered is termed
freeze-out.

As the temperature is increased above the extrinsic temperature region (room
temperature in the present example), we must be concerned about the intrinsic
carrier concentration »;. This concentration is a very sensitive function of tem-
perature, which statistical mechanics teaches us can be written approximately as

ni(T) = AT?/? exp( (2.29a)

2kT >
where A is some constant and E, is the energy gap. It is sometimes convenient
to write this in terms of n; at room temperature (300 K):

TV 1 1

In either form, we see that as temperature increases, the intrinsic carrier con-
centration increases exponentially and will eventually exceed the net doping con-
centration (donor or acceptor) and the sample will no longer appear extrinsic.
Both the equilibrium hole and electron concentrations again approach #;, and the
material becomes intrinsic, and, as we shall see, useless for devices. In silicon
this situation does not occur until very high temperatures, but in germanium, for
example, which has a much smaller energy gap AE,, this may occur at several
hundred degrees centigrade.

The variation of the equilibrium majority carrier concentration as function of
temperature in a generic semiconductor can be summarized by the graph in Fig.
2.9. The asymptotic dependences of the concentration on temperature in each of
the three regions, freeze-out, extrinsic, and intrinsic, are indicated. Our objective
in designing devices is to choose materials that operate in their extrinsic regime
for the intended device applications.

2.6 SUMMARY

We have seen in this chapter that there are two types. of mobile charge carriers
in semiconductors, holes and electrons, and that we can engineer the dominant
carrier type and its concentration by adding specific impurities, called dopants, to
semiconductor crystals. An important conclusion we reached was that the prod-
uct of the hole and electron concentrations, p, and n,, respectively, in thermal
equilibrium is n , where n; iS the intrinsic carrier concentration. That is,

no " po = ni(T)
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FIGURE 2.9

Variation of the equilibrium electron concentration over a wide temperature range for a
representative n-doped semiconductor sample. The vertical axis is a logarithmic scale;
the horizontal axis is inverse temperature, 1/T. With this choice of axes the asymptotic
behavior of the carrier concentration is linear in each of the three regions: freeze-out,
extrinsic, and intrinsic.

This result, combined with the requirement of charge conservation,
no+ N = p,+N;

allows us to determine 7, and p, given the donor and acceptor concentrations.
Assuming full ionization, we have ‘

2

n-type : nozND: Do = -Z—'-, WithND ENd—Na
o
n2

ptype:  po~Ni  mo= b wWithNy=No—Ng
o

Our focus has been on silicon at room temperature, but we have also seen
that there are numerous other semiconductors, many of which are of great prac-
tical interest and importance. Some of these are single elements from column
IV of the periodic table (e.g., Ge) but the largest number are based on binary
compounds formed of elements from columns III and V or from columns II and
VI. Binary compounds can be used alone (e.g., GaAs and CdTe) or alloyed with
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© other binaries to form ternary and quaternary semiconductors (e.g., Al,Ga;-xAs
and In;Ga;-,As,Pi-y).

Finally, we have seen the features of silicon and its dopants that make it
attractive for use around room temperature, and we have discussed qualitatively
what to expect as the temperature is increased above or decreased below room
temperature.

PROBLEMS

2.1 ‘A sample of silicon is uniformly doped with 1010 arsenic atoms per cm3 and 5 x 101
boron atoms per cm3. Using this information and assuming n; is 1010 cm™3 at 300
K determine the following items for this sample at T =~ 300 K:
(a) The type (n or p)
(b) The majority carrier concentration
(c) The minority carrier concentration
Repeat parts (a) and (b) when
(d) The sample instead contains 1017 cm™3 Al and 101 ¢cm=3 Sb
(e) The sample instead contains 101 cm™3 Ga and 5 x 1015 cm™3 B
2.2 (a) A germanium (n; = 2.4X10'3 cm™3 at 300 K) sample is doped with 6x 106 cm™3
arsenic atoms (donors).
(i) What are n, and p, at 300 K in this sample?
(i) An additional 10!® cm™3 gallium atoms (acceptors) are added to this speci-
men. What are the new n, and p,? (Note: Assume full ionization.)

(b) Determine the carrier type of a sample of the covalent semiconductor indium
phosphide, InP, containing the following substitutional impurities:

(i) Te substituting for P

{(ii) Be substituting for In

(iif) Si substituting for P

(iv) Si substituting for In

2.3 (a)An intrinsic semiconductor has the following characteristics: intrinsic carrier con-
centration n;, electron mobility u,, and hole mobility pj; where w, > wj. When
this semiconductor is doped with a certain impurity, it is found that its conductivity
initially decreases as the doping concentration is increased. It eventually increases,
however, as still more dopant is added.

(1) What type of impurity is being added: donor or acceptor?

(ii) Find an expression for the initial rate of change of conductivity with dopant
concentration (i.e., find the initial value of do/dN). You will find that
the answer depends in a simple way on the difference between the two
mobilities.

(b) The intrinsic carrier concentration n; varies with temperature as
T%2exp(—E4/2kT)

where k = 8.62 x 1077 eV/K.
(i) Calculate n; for Ge at the following temperatures given that n; = 2.4 X
1013 ecm™3 at 300 K. Neglect any change of E, with T, and assume E, =
0.67 eV.
(1) —23° C (250 K)
(2) 127° C (400 K)
(3) 327° C (600 K)
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(ii) At which of the temperatures in part (i) would a Ge sample with Np =
1 x 106 cm™3 be considered “extrinsic”?
(iii) Which of the factors in the expression for n; dominates its temperature
dependence? '
How large must [N|/n; be in order for the minority carrier concentration to be less

-than 10 percent of the majority density? Less than 1 percent?

Consider an n-type silicon sample at room temperature. It is known that n, in this
sample is 5 x 101® cm™3. It is also known that this sample contains arsenic in a -
concentration of 6 X 101® cm™3,
(a)This sample is known to also contain one other impurity, either phosphorus or
boron.
(i) Which impurity is it and why? :
(ii) What is the concentration of this impurity?
(b) What is the room-temperature thermal-equilibrium hole concentration in this sam-
ple? Assume n; = 1.0 x 1010 ¢cm™3, '
One important model for a substitutional donor atom (P, As, or Sb) in silicon is the
hydrogenic donor model. In this model it is assumed that the “extra” fifth electron
and the positively charged donor ion can be modeled much like the electron and
positively charged ion (proton) of a hydrogen atom. The only necessary modifications
are that the dielectric constant must be changed from that of free space to that of
the semiconductor, and the mass of the electron must be changed from that of a free
electron to that of an electron in the semiconductor.
The binding energy and orbital radius of the electron in a hydrogen atom are
given by ’

4
g moy
E, = 472 =13,
° = 83122 13.6 eV
2
ro= 2% _053A
Tgme

(a) Use this information to calculate the binding energy and the orbital radius of the
electron associated with a hydrogenic donor (i.e., a donor that can be described
by the hydrogenic model). In silicon, m./m, = 0.26 and g/e, = 11.7.

{b)How does the orbital radius compare with the space between Si atoms in the lattice,
which is approximately 2.5 A? How many silicon atoms would be encompassed
by the sphere defined by the orbital radius? The unit cube (cell) of the Si lattice is
543 Aona side, and there are eight atoms per unit cell.

{c) At what density of donor atoms would the orbital spheres of their electrons begin
to overlap?

Silicon is an interesting dopant for gallium arsenide, an important compound semi-

conductor. If Si replaces Ga in the crystal, it acts like a donor; if it replaces As it is

an acceptor, Which site it occupies depends on how the dopant was introduced and
the thermal history of the sample. Heat-treating the sample can also cause some of
the Si to move from As to Ga sites, or vice versa, depending on the temperature,

(a) A certain sample of gallium arsenide, GaAs, is known to contain 5 X 107 em™3 St
atoms and to be n-type with a net donor concentration of 3 x 1017 cm™3. What is
the concentration of Si atoms on Ga sites (i.e., Ny), and what is the concentration
on As sites (i.e., Ng)?
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(b) Suppose that after a particular heat cycle, the net donor concentration is reduced
by a factor of two. What type of dopant redistribution has occurred, and what are
the values of N; and Ny now?

2.8 Four different compound semiconductors and their bandgap energies are listed below.
For each semiconductor calculate the longest wavelength of light that will pass through
it, without being absorbed, to create hole-electron pairs. Indicate also whether each
will appear opaque, like silicon, or will transmit visible light; and if it does, what
color will it appear? Note that wavelength in microns and energy in electron volts are
related as A (um) = 1.237/E; (eV), and that visible light falls between 0.4 uwm and
0.7 pum. '

(@} AlSb, aluminum antimonide: E, = 1.63 eV
. (b) GaP, gallium phosphide: Eg =224 eV
(c) ZnS, zinc sulfide: E; =3.6¢V

(d) TnAs, indium arsenide: Eg =033 eV






CHAPTER

3

 UNIFORM
EXCITATION OF
SEMICONDUCTORS

Now that we have a model describing a uniformly doped semiconductor in thermal
equilibrium, we are ready to disturb this thermal equilibrium and watch how
the semiconductor responds. We hope that something will happen that we can
exploit to perform some useful function. We will start modeling nonequilibrium
conditions by restricting ourselves to uniformly doped semiconductors and by
applying uniform excitations. We will look at two types of excitation: (1) a uniform
electric field, and (2) uniform optical carrier generation.

3.1 UNIFORM ELECTRIC FIELD: DRIFT

One of the first devices about which an electrical engineer learns is a linear
resistor, and one of the first laws he or she learns is Ohm’s law. So, too, will the
microscopic formulation of resistance and Ohm’s law arise first as we begin our
look at semiconductors in nonequilibrium situations. We first introduce the concept
of drift motion and mobility and then turn to drift currents and conductivity.

3.1.1 Drift Motion and Mobility

A charged particle, which we will identify with the index I, in a uniform electric
field € experiences a force F given by

F=q;% (3.1),

where g; is the electric charge on the particle. For sake of convenience and
simplicity in this text we will assume that the field is directed in the x-direction

31
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and that we are dealing with isotropic materials. Thus we do not need to use
vector notation, and deal only with scalars. We will have

Fy = q%x (3.2)

If the charged particle in question is in free space, the force F, will cause
the particle to accelerate as
Fy _4q €x

Gy = — =
mp my

(3.3)

where m; is the mass of the particle. The particle will accelerate until it hits
something, that is, has an interaction with its surroundings.

If the charged particle is inside a solid, as is the case with a conduction
electron or a mobile hole in a semiconductor, it will typically hit something
very quickly (e.g., a dopant ion in the lattice, the vibrating atoms in the crystal
lattice, defects in the crystal structure, etc.) and it will do so after traveling only
a relatively short distance. At this point it exchanges energy and momentum
with whatever obstacle it encounters, rebounds or is deflected, and starts being
accelerated again due to the force of the field. The net motion is quite different
than the constant acceleration of a free charged particle and instead is very viscous.
The particle attains a net average velocity proportional to the field given by

5, = =8y 3.4)

where the proportionality factor w; is called the mobility of the particle I and the
sign (+ or —) is the same as the sign of the charge of the particle, g;. The mobility
is in general a function of the electric field, but in many situations encountered
in devices it can be assumed to be a constant independent of €, (see below).

- Notice that above we speak of an average net velocity. We do so because even
in the absence of an electric field the particles are in constant motion with large,
yet random, velocities due to their thermal energy. Recall that we earlier stated
that at a finite temperature the atoms in a crystal are constantly vibrating due
to their thermal energy. The conduction electrons and mobile holes also have
thermal energy; they move about, deflecting off obstacles, exchanging energy
and momentum, and literally bouncing back and forth. The average magnitude
of the thermal velocity of electrons and holes in a semiconductor is in fact quite
large at room temperature—on the order of 10° to 107 cm/s— yet the net average
velocity is zero. Thus in the absence of an electric field there is no net motion
of the holes or electrons. This situation is illustrated for a conduction electron in
Fig. 3.1a. '

When a uniform electric field is applied, the carriers are accelerated slightly
by the field between collisions; averaged over many collisions they acquire a net
average velocity. This is illustrated in Fig. 3.15. The collisions occur at a high
rate, on the order of 10'? a second, or once every picosecond. Unless we are
studying things that happen this fast, we “see” only the net average velocity of
the particles.
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FIGURE 3.1

(@) Pictorial illustration of the continuous random thermal motion of a conduction
electron in a semiconductor lattice, (b) The same electron with an electric field
applied from right to left, exhibiting net motion superimposed on the random
thermal motion. .

The motion of charged particles in an electric field and with a net average
velocity proportional to the field is called drift. In semiconductors, where the
particles of interest are electrons and holes, we write for electrons

Sex = — o6y (3.5)
and for holes
Shxe = #h%x (3.6)

Notice that the net motion of the holes is in the direction of the field, whereas
the electrons move in the opposite direction. These directions are, of course, the
same as those in which positively and negatively charged particles accelerate in
free space,

For low to moderate electric fields the mobility is constant and not a function
of the electric field. Thus in low and moderate electric fields the drift velocity is
linearly proportional to the electric field.

At very high electric fields, as the drift velocity begins to approach the
thermal velocity (i.e., 10° to 107 cm/s) we find that the velocity saturates in the
vicinity of 10® cm/s. The carriers suffer collisions so rapidly and transfer energy
to the lattice so quickly that increasing the electric field no longer increases the
kinetic energy of the carriers.

To illustrate this the overall variation of the drift velocity with electric field
strength in silicon is presented in Fig. 3.2. Most carrier drift motion in devices
occurs in the linear part of this curve, but increasingly there are key regions in
modern devices in which carriers are moving at their saturation velocity. Examples
of this are especially prevalent in field effect devices.
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FIGURE 3.2

Log-log plot of the net drift velocity of electrons and holes as a function of the electric field

in high-purity silicon at 300 K. (Reproduced from Yang, E., Microelectronic Devices, 1988,

with permission from, McGraw-Hill, Inc.)

It is possible to model the motion and collisions of charge carriers in a solid
in more detail than we have shown here. It is from such models that the numbers
stated earlier for the rate of collisions and the distances traveled between collisions
were obtained, but we will not go further in this text. This means, however, that
we should not expect our model of viscous flow and drift to be able to successfully
model events happening on a time scale comparable to or less than the mean time
between collisions, or on a distance scale comparable to or less than the mean
collision length. This is not a severe restriction for most present-day devices, but
we should know that it exists and that it places bounds on our modeling. It begins
to become important in extremely small devices wherein carriers can transit all
or most of the device before suffering a collision. In this case their motion is
described by Eq. (3.3) and their motion is said to be ballistic.

3.1.2 Drift Current and Conductivity

Moving charged particles make up an electric current. This is the macroscopic con-
'sequence of applying an electric field to a solid. To explore this further, consider a
semiconductor sample with thermal-equilibrium hole and electron concentrations
Do and n,, respectively, and imagine applying a uniform electric field €, in the
x-direction. If the field is not too large, the electron and hole populations remain
at p, and n,, respectively. The net flux density of electrons crossing any plane
normal to the x-direction, F,,, will in general be

Fop = npSey (3.7a)
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and, at low to moderate electric fields where Eq. (3.5) holds,
For = —nomcEx (3.7b)

Since each electron carries a charge —gq, the net electron current density J,,, due
to the electric field will be

Jex = qnopeés » (3.8)

Similarly for holes, the hole flux density F,, will be

Fps = popn$sx 3.9
and the hole current density due to the electric field will be

Jnx = qPokr®s (3.10)
The total current density J, is the sum of the hole and eleciron current densities;

Je = Jox + Jix (3.11)

or, substituting from Eqs (3.8) and (3.10),
Jr = q(Rope + popn)éx (3.12)

This current is called the drift current density. The quantity q(nope + poiy) is
called the conductivity and is given the symbol o. The units of conductivity are
siemens per centimeter, S/cm. Thus we can write

Jr = o€, (3.13)

The inverse of the conductivity is called the resistivity p:

p= 1 (3.14)
g
The units of resistivity are ohm-centimeters, {) - cm.

Equation (3.13) is the microscopic statement of Ohm’s law, v = iR. The
resistance R of a sample depends on its dimensions and its conductivity, Suppose
a sample of length /, width w, and thickness ¢ has electrical contacts A and B on
either end with a voltage difference vap between them. We will discuss contacts
at length later, but for now assume they are “ideal ohmic” contacts and that all of
the voltage difference is across the sample, so that it has in it a uniform electric
field

g, = 8B (3.15)

The current density at any point in the bar will then be

J, = ‘”lAB (3.16)
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and the total current will be the current density multiplied by the cross-sectional
area of the sample, wt. That is,

i =Tt = v | (3.17)
We can now easily identify the resistance of the sample as
{ [

owr  Pwi (3.18)

In semiconductors the equilibrium carrier concentrations can be varied over
many orders of magnitude, as we saw in Chap. 2. Moreover, it is possible to
dope a sample so that either holes or electrons are in the majority by a vast
amount. Looking back at our expression that introduced conductivity, Eq. (3.12),
we see that the conductivity can similarly vary over wide ranges, and that the drift
current can be carried predominantly by either holes or electrons. In an n-type
semiconductor, the drift current due to electrons is far greater than that due to
holes (assuming that the electron and hole mobilities are of the same order of
magnitude, which they typically are). Similarly, in a p-type semiconductor the
drift current is predominantly carried by holes. ‘

The electron and hole mobilities in a semiconductor in general depend on the
concentrations of dopants present as well as on the temperature and the number of
structural defects in the crystal. Generally, the higher the doping level, the higher
the temperature; and the larger the number of defects, the lower the mobility. In
this text, we will assume that mobilities of the carriers in a given sample have been
measured experimentally; a method for doing this for the majority carriers, the
Hall effect measurement technique, is described in App. B. Representative values
of the electron and hole mobilities in high-quality silicon at room temperature are
1500 ecm?/V - s for w., and 600 cm?/V - s for w;.

Example

Question. What is the conductivity at room temperature of (a) intrinsic silicon,
(b) Si doped n-type with Np = 101 cm™3, and (c) Si doped p-type with Ny =
1016 cm™3? Use n; = 1010 cm™3; use the carrier mobilities stated just above.

Discussion.

(a) In intrinsic Si, n, and p, are equal to n; and we find that the conductivity is
3.5% 107° S/cm. To put this in perspective, the conductivity of a typical metal
is on the order of 106 S/cm and that of a good insulator is 10712 S/cm. Intrinsic
Si is thus closer to being an insulator than a metal.

(b) For Si doped n-type with Np = 101 cm™3, our calculations give n, =
1016 cm™3 and p, = 10% cm™3. Thus the conductivity ¢ is 2.4 S/cm and,
equivalently, the resistivity p is approximately 0.4 {1-cm. This conductivity is
essentially all due to electrons (i.e., the majority carriers).

(c) A p-type sample doped with the same magnitude of net acceptors (i.e., Ny =
1016 ¢m~3) has a lower conductivity than the n-type sample because the hole
mobility is less than that of electrons. With Ny = 1016 cm™3, we find that
Do = 10 ¢cm™3; n, = 10 cm™3; and o ~ 1 S/cm, or p=18 - cm.
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In both of the doped semiconductors considered in the example above,
the conductivity is much less than that of a good metal, but it is high enough
to be useful. In most semiconductor devices the doping levels range from
101 cm™2 to 10'® cm™3. Correspondingly, the conductivity ranges from 0.1 S/cm
to over 200 S/cm.

3.1.3 Temperature Variation of Mobility
and Conductivity '

Before leaving uniform electrical excitation and the concept of drift, we would
do well to ask how temperature affects mobility and conductivity. By developing
detailed models for carrier motion in a solid and for the various collision, or
“scattering,” processes that the carriers experience, it is possible to show that in
general the mobility decreases as the temperature increases. This result, which
we will not attempt to quantify in this text, should seem feasible to you; at
higher temperatures there is more random motion of the crystal lattice, so it
is reasonable that the carriers suffer more collisions and that their motion is
impeded. In silicon the mobility decreases as 7~1/2 above room temperature,
whereas for most compound semiconductors the mobility falls as e ~%/T, where 6
is a characteristic phonon temperature. As the temperature is lowered below room
temperature, the mobility increases, at least initially. As the temperature becomes
very low, however, collisions with impurities and defects in the crystal lattice
become more important than the thermal motion of the lattice (i.e., the phonons).
Thus the mobility eventually saturates and does not increase more. At even lower
temperatures it may even decrease as the temperature is lowered further because
the defects and impurities are actually more effective scattering centers at low
temperature.

The conductivity involves both the mobility and the carrier concentration
and thus can have a more complicated dependence on temperature. We discussed
the temperature dependence of the carrier concentration in Sec. 2.5. In extrin-
sic semiconductors around room temperature, the carrier concentration is largely
temperature-independent, so the conductivity will decrease along with the mobil-
ity as the temperature is increased. At high enough temperature, when the sample
becomes intrinsic, the carrier concentration increases very rapidly with temper-
ature and the conductivity also increases. At low temperature, where freeze-out
occurs, the conductivity may either increase or decrease depending on whether
freeze-out or the increase in mobility dominates. Typically the conductivity will
at first increase as the temperature is lowered below room temperature because the
mobility increases, but ultimately the conductivity will decrease with temperature
at very low temperatures, say below 70 to 80 K, because of the freeze-out and
the eventual decrease of mobility.

3.2 UNIFORM OPTICAL EXCITATION

A second important way that semiconductors can be forced out of thermal equi- -
librium is by illuminating them with light of energy greater than the energy gap.
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In Si, where E, = 1.1 eV, this corresponds to light in the visible and ultraviolet
regions of the spectrum as well as very near-infrared radiation. In this section we
will consider optical excitation of semiconductors with such light.

3.2.1 Minority Carrier Lifetime

We discussed hole-electron pair generation and recombination mechanisms in
Chap. 2 when we discussed detailed balance. We defined the generation rate
as G and the recombination rate as R. Clearly the time rate of change of the hole
and electron populations in a uniform sample with uniform excitation will be the
excess of generation over recombination:

dn dp _
@ = ar Tk
If we write R as n pr, this becomes
dn _dp _ .
yril i npr 3.19)

In thermal equilibrium, n = n,, p = po, and dn/dt = dp/dt = 0. Thus we
must have

Go = nopor (3.20)
Now we will consider adding an external generation term in the form of

light, which generates hole electron pairs uniformly throughout the sample at a
rate g7(z). The total generation rate becomes

G=G,+ g.(®) (3.2
and we want to calculate the new carrier concentrations. We have
dn _dp _ B
E = 7‘,—‘; = Go + gL(f)‘ npr (322)
Substituting Eq. (3.20) in this equation yields
dn _dp _ _ _
E = _Zf-t— = gL(t) (np nopo)r (323)

This is a nonlinear differential equation because of the product term, n p. It is,
in general, difficult to solve. To proceed further, we can get solutions in some
important special cases if we first define the excess populations of holes and
electrons, p’ and n’, respectively, as follows:

n'=n-—n, . (3.24a)
| p'=p-po (3.24b)

Using these definitions we can write n and p as
n=ne+n (3.25a)

p=pot+p (3.25b)
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Next, notice that any carriers created in excess of the thermal equilibrium
populations are always created in pairs; that is, for every excess hole there is an
excess electron. Thus we must have

n'=p ' (3.26)

The thermal equilibrium populations do not change with time, so we can
also write -
dn _ dn' dp _dp
?d-? = _27 and E = dr . (327)
Using the definitions of »' and p' and the observations we just made, we
can now write Eq. (3.23) as

dn' ,
= = g1(t) = [(no + n')(po + n') — nopolr
or
dn' , ,
ar gLty —n'(po+n,+n)r (3.28)

This now is one equation in one unknown, n', but it is still nonlinear because
of the (n’)? term, and it is in general difficult to solve. If the squared term is
relatively small, however, we might be able to neglect it, in which case we have
a simple first-order linear differential equation.

The situation where n' is small is called the low-level injection condition.
By small we mean that n'(which equals p’) is much smaller than the majority
carrier population; that is,

n' =p <« p,+n, (3.29)
In this case we have
n'(po+ne+n'y=n'(p, +no,) (3.30)
and our equation is )
dn’
— = 8L(t) = n'(po + no)r (3.31)

Defining (p, + no)r to be (Tin)-!, we write

14 !

‘% + ;’i = g1(t) (3.32)
which is an equation that we can solve given g;(¢) and information on the initial
state of the sample.

We should point out that although 7y, is written as 1/(p, + ng)r, it is
wrong to assume that 7, varies inversely with the total carrier concentration be-
cause r may, and in general does, depend on the carrier concentrations as well. Itis-
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better to think simply in terms of a certain 7y, for a given sample. This 7
is the consequence of the sample’s purity, quality, composition, etc. —anything
that might contribute a term to Eq. (2.14). However, developing a specific model
relating 7Tmin t0 po, n,, and/or r is beyond the scope of this text. In practice
Tmin 18 usually determined experimentally, rather than theoretically, by measuring
population transients such as those discussed below in Sec. 3.2.2.

Before discussing solutions to Eq. (3.32), we make a final note that we
could solve for either n' or p' but that we choose to solve for the excess minority
carrier concentration. When we discuss nonuniform excitations, we will see that
the minority carriers are the most important to us; we focus on minority carriers
here in anticipation of that result. Furthermore, the quantity 7, is called the
minority carrier lifetime, again in anticipation of this result.

3.2.2 Population Transients

For the sake of this discussion, let’s assume that we are dealing with a uniformly
doped, p-type sample of silicon. The equilibrium hole population p, is then Ny,
and the equilibrium electron population is n?/N,. Suppose that g, () hole-electron
pairs are being generated optically throughout the sample and we want to know
what the excess hole and electron populations are. The equations we must solve
are

@y Z— = g.(1) (3.33)

p =n' (3.34)

Equation (3.33) is a first-order linear differential equation. To solve it we
need to find its homogeneous solution and a particular solution, which depends
on g1 (t). We then need to determine the relevant initial (boundary) condition and
combine the homogeneous and particular solutions so as to satisfy it. The result
is the total solution.

The homogeneous solution to Eq. (3.33) is

n' = Ae"tm (3.35)

where A is a constant that will ultimately be determined by fitting the sum of the
homogeneous and particular solutions to the boundary condition. We see that the
minority carrier lifetime 7, is the characteristic response time of the homogeneous
solution. -

The particular solution depends on the particular g (¢) imposed.

Example

Question. What are the excess electron populations with the following types of low-
level optical excitation: a) constant illumination; b) step-on, step-off illumination,
¢) square wave illumination; and d) steady sinusoidal illumination?
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Discussion.
(a) Constant illumination. If g; (1) is a constant,

g =G (3.36)
then the particular solution for n'(z) is also a constant,
' n't) = Gre (3.37)

The total solution is then n'(¢) = G, + Ae~ /™ where we still need to find A.
In this case, if we assume that the illumination has been on for a very long time,
we know that all transients (i.e., all remmnants of the homogeneous solution) must
have died out and thus A must be zero. In terms of an initial condition, we are
saying that the excess populatlon must remain finite, and unless A is zero, n'(2)
would become infinite in the limit of ¢ —» —oo.

We have found that n'(¢) is G7. in a uniform sample under steady illumi-
nation generating G hole-electron pairs uniformly throughout its bulk, but we are
not done yet. We got our solution under the assumption of low-level injection,
and we must check that that assumption was valid. Thus we must confirm that
GTe < po. If it is, we are done. If it is not, we must go back and solve Eq.
(3.28), rather than using Eq. (3.33).

(b) Step-on, step-off illumination. Now imagine that our p-type sample is in thermal
equilibrium for + <O0; at ¢+ = 0 a steady illumination creating g;(2) = G is
turned on, and then at t = T, where T > 0, the illumination is turned off. This
is illustrated in Fig. 3.3a.

For t <0, n'(z) = p'(¢) = 0. This is our initial condition on n'(z) at
t = 0. To reach this conclusion it is important to realize that we have implicitly
used the constraint that according to Eq. (3.33), n'(¢) must be continuous and
cannot change instantaneously—that is, dn’/dt must be finite—unless g (¢) is
infinite. Since g;(¢) is not infinite in this example, we must have n’(0) = 0.
For 0 = ¢ = T, the particular solution is again G, and we have

n'(t) = Gro + Ae™!"e  forO0=t=<T (3.38)

subject to the initial condition n’(0) = 0. Imposing this condition, we see that
Ais =G7. and thus

n'(f) = Gr. (1'— e“'/fe) for0=t=<T (3.39)

For T = t, g;(¢) is again zero, and thus the particular solution is also
zero. Then the total solution is just the homogeneous solution, Eq. (3.35), with
A chosen to satisfy the initial condition. The initial condition is

n'(T) = G (1 = e7T/%) (3.40)
We find
n'(t) = G, (1 - e—T/fe)e—“-T)/ff for T < ¢ (3.41)

This solution is illustrated in Fig. 3.3b for a situation where T and 7, are com-
parable.
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Step-on, step-off illumination: (a) the generation term gy (1);- (b) the excess
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It is worthwhile to consider two other extremes of T: when T >> 7, and
when T << 7. In the first case, the transient will have died out by the time the
illumination is turned off, and for r = T we will find

n'(t) = Groe T for T <t (3.42)

This is illustrated in Fig. 3.3c.

When T << 7., the exponential factor in the solution for 0 < ¢ < T, that
is, Eq. (3.35), will always be small and we can approximate the term using
(1~e %)= x when x << 1. Thus

n'(t) = Gt forO=:=T (3.43)
and
n'(ty=GTe " D/e  forT =1 (3.44)

This solution is illustrated in Fig. 3.34.

In all of these cases, we would of course have to verify that low-level
injection was not violated before we could say that we were truly done solving
the problem. '

(c) Square wave illumination. Next consider that the illumination is turned on and
off regularly for equal amounts of time, 7/2, and that this process has been
continuing for a very long time, so that a steady state has been reached. The
corresponding gy () is illustrated in Fig. 3.4a. The boundary condition in this
case is that n'(r) must be repetitive, that is, that n'(z + T) = n'(z). We can
also simplify the task of finding n'(r) if we use the fact that we have a linear
system. We know then that the average of the response will be the same as
the response to the average input. The average of the excitation is G/2 so the
average of the excess population should be G7./2. Also, since the excitation is
symmetrical about its average value, the response should also be symmetrical
about its average value. With these suggestions you should be able to complete
the solution yourself; the results for T = 7., T > 7,, and T < 7, are illustrated
in Figs. 3.4b, ¢, and d, respectively.

(d) Steady sinusoidal illumination. If gy (t) is varying sinusoidally with frequency ®,
and the illumination has been on for a very long time before t = Q, we have

gr(t) = G(1 + cos wt) (3.45)

Notice we must always have g; = 0, so we must add a steady illumination G,
to the sinusoidal term. Nonetheless, we can mathematically solve for n'(t) using
a gy (¢) that becomes negative; that is, we can use superposition and solve for
n'(r) due to G and for n'(z) due to G coswt and combine these results to obtain
n'(r) due to G + G coswt, which is our actual g; (¢).

We know that the excess population due to G is G7.. We thus need to find
only n'(¢) due to G coswt. There are two ways we might proceed. The first is
to realize that the solution will be of the form B cos(wr + 8), substitute this form
into Eq. (3.33), and solve for B and 6. The second is to recognize G coswt as
the real part of Ge/®!. The particular solution for this later excitation is of the
form Be/ @19 and the solution we seek is Re [Be/(@t+6)],
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Proceeding by either of these routes, the details of which are left as an

exercise, we obtain ‘

Gre ‘
B = — and 8 = -tan'l @ (346)
J1+ w272 (07)

Clearly, when wT, << 1, the response “tracks” the excitation, and when w7, >
1, the response is a small variation about the average value 90° out of phase with,
and behind, the excitation. These results are summarized in Fig. 3.5. You may

wish to compare these results with what we found for a square wave excitation,
Fig. 3.4.

3.2.3 High-Level Injection Populations
and Transients

When low-level injection conditions are no longer met we must deal with the non-
linear differential equation, Eq. (3.28), which we rewrite here using our definition
of Tmin to replace r:

dn’ n' (n")?
— = t — —
&) Trin (po + no)Tmin

3.28'
77 (3.28")
As we noted earlier, this equation is in general difficult to solve, but there are two
important special problems for which we can get solutions: (1) the steady-state
population under constant illumination, g;(¢) = G; and (2) the initial population
transient after extinction of intense illumination.

a) Constant illumination. With steady illumination, g;(¢) = G, the time

derivative of the population is zero in the steady state and the excess popu-
lation, which weé will label N', satisfies

N12 NI

(Po + 16)Tmin Tmin

-G =0 (3.472)

or, rearranging factors,
N2+ (po + 1IN = G(po + No)Tmin = 0 (3.47b)

Solving this quadratic, we find

r_ (po + no) 4G Tmin _
N' = T [ /’_1 + ————-——(po ) 1:! (3.48a)

You can easily confirm that this result reduces to Eq. (3.37) when Gy is much
less than (p, + n,), which corresponds to low-level injection. You should also
note that N’ is always less than Gy, a fact you can see by rearranging Eq.
(3.47a). You may want to think about the significance of this observation—does
it make intuitive sense?
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Finally, you should notice that in the limit of G being much greater than
(Po + no)/ Tmin, N' is given by

~ J/GTmin(po + no) (3.48b)

Note that N' increases only as /G in this extreme, rather than as G, as it does
in low-level injection.

b) Initial decay transient. In the preceding section we found the steady-state
carrier population under constant intense illumination. In this section we address
the question of how rapidly this population decays (i.e., decreases) when this
intense illumination is extinguished. To answer this question we can find the
homogeneous solution to Eq. (3.28') when the (n')? term is dominant, that is,
when n' > (p, + n,). Thus we want the solution to

dn" (n')?

(Po + 10)Tmin
subject to the initial condition that »'(0) is given by Eq. (3.48b). This solution is
n'(0)
1+ [n'(0)t/(po + 1) Tinin]
.For t > (p, + ny)tmin/n'(0), the 1 in the above denominator can be neglected

and we have essentially

=0 (3.49)

(3.50a)

n'(t) =

n'(r) = “"’—“Lf")i’ﬂ (3.50b)
that is, n'(t) varies inversely with ¢.

These expressions are valid as long as n'(¢) is much greater than (p, + n,),
that is, as long as ¢ is much less than 7y,

An interesting question to ask is whether the rate of decay of the excess
population is faster or slower after excitation to high-level injection (HLI) condi-
tions than it is after low-level injection (LLI) excitation. To examine this question
we turn to Egs. (3.33) and (3.49), and use them to evaluate the rate of change
of n' att = 0%, Upon doing this we find that the initial rates of decay in LLI,
n' << (py + n,), are

an’y  _ _n'0 3.51a)
dt =0+ Tmin
and in HLI, »n’ > (p, + n,), they are
' ! 2
an’y o ___ n©@° (3.51b)
dt [=0+ (Po + no)Tmin

Not surprisingly, in both cases increasing the initial population n'(0), increases
the absolute rate of decay, and the HLI case indeed decays more rapidly. A more
meaningful quantity to considet, however, is the rate of decay normalized to the
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initial population, rather than the absolute rate; that is, dn'/dt divided by »’,
rather than just dn'/dt. Upon dividing the above expressions by »n'(0) we find
that the normalized rates in LLI are

' :
dn /,dt _ 1 (3.522)
n =0+ Tmin
and in HLI they are
dn /’dt - n'(0) (3.52b)
n r=0+ (Po + 16)Tmin

When the equations are written in this way we see clearly that the normalized
decay rate is independent of the pumping level as long as LLI conditions are
maintained, whereas when a sample is pumped to HLI the normalized decay rate
is much larger and varies in direct proportion to the excess population.

3.3 PHOTOCONDUCTIVITY AND
PHOTOCONDUCTORS

Thus far in this chapter we have considered the individual effects of a uniform
electric field and uniform optical excitation on a uniformly doped semiconductor.
If we now consider applying a uniform electric field to a uniform semiconductor
that is uniformly excited optically, we discover a phenomenon called photoconduc-
tivity; we also have the essential ingredients of a device called the photoconductor,
which can electrically detect, or “sense,” the presence of light. As we shall see,
photoconductors are extremely simple devices, and historically they were some
of the first successful semiconductor devices. Cadmium sulfide (CdS) photocon-
ductors, for example, have for years been used in light meters for photography.
In spite of the long history of photoconductor design, innovations still continue.
Some of the fastest semiconductor switches ever made use gallium arsenide (GaAs)
photoconductors fabricated using state-of-the-art processing technologies.

In this section we will look first at the basic phenomenon of photoconduc-
tivity and then we will turn to specific issues relevant to the design of photocon-
ductors for particular applications.

3.3.1 Basic Concepts

The idea of photoconductivity is that simply illuminating a semiconductor sample

increases the carrier concentration in that sample and this, in turn, increases its

conductivity. This optically induced conductivity is called photoconductivity.
Quantitatively, we know that the conductivity is in general given by

o= gmen + pppl (3.53a)

Writing this specifically in terms of the equilibrium and excess populations, we
have

o = qRelno + ")+ pa(po + p)] (3.53b)
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From this expression we can identify the thermal equilibrium conductivity o, as

Oo = qMeno + ppo) (3.54)

and the excess conductivity, or photoconductivity, o' as
o' = g[pen’ + pip'] (3.55a)
Since holes and electrons are generated in pairs, n’ =p’ and we have
o' = glpe + pa)n’ | (3.55b)

We already know how to calculate n' for a semiconductor sample given the gen-
eration function, so we can easily calculate the change in conductivity, o', corre-
sponding to particular illumination conditions.

We next consider the design of devices that are optimized to use the phe-
nomenon of photoconductivity to detect light.

3.3.2 Specific Device Issues

As a practical matter the fractional change in conductivity represented by Eq.
(3.55b) is in general small if the hole and electron mobilities are comparable
and if the excitation is low-level injection. If one wants simply to detect the
presence or absence of light, one solution to this problem is to use a very lightly
doped piece of semiconductor and excite it to high-level injection conditions. The
unilluminated device will then have a very high resistance, and the illumination
will make the resistance much smaller. This change will be easily detectable, and
such a device will make a good light-activated switch. :

In many situations, however, it is desirable to have a sensor with a re-
sponse that is linearly proportional to the intensity of the illumination. For such
applications we must restrict ourselves to semiconductors operating under low-
level injection conditions (to see this, refer to Eqs. (3.37) and (3.48) for n' as a
function of G with constant LLI and HLI excitation, respectively). The type of
device described in the previous paragraph is not particularly useful for this type
of application.

An interesting solution to the dilemma of achieving a large fractional change
in conductivity while still retaining LLI conditions, has been to develop materi-
als for use in photoconductors for which the majority carriers have effectively
zero mobility and the minority carriers have a normally high mobility. In such a
photoconductor (i.e., one in which, for example, w, = 0) we have no conduc-
tivity in the absence of light (i.e., o, = 0) whereas under illumination we find
o =~ qu.n', assuming the majority carriers are holes.

The situation we have just described can be achieved by having a con-
centration, N, of shallow acceptors and a larger concentration N, of relatively
deep donors, where “relatively deep” means that the donor energy E; is such that
(E. — E,) is many times kT /q. This situation is illustrated in Fig. 3.6 in terms
of our energy pictures of Chap. 2.
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Relative positions on an electron energy scale of the
possible sites for electrons in a photoconductor
containing deep donors and shallow acceptors.

Because the donors have been selected so that (E. — E,) is much greater
than k7/ g, it is unlikely that electrons will be thermally excited from these deep
donors, which we call traps, into conduction states and so n, will be very small.
However, even though these deep donors do not become thermally ionized with
the creation of conduction electrons, N, of them are nonetheless ionized because
they provide electrons to fill the N, acceptor states. Denoting the equilibrium
density of ionized traps as N.%, we thus have

Nt =N, (3.56)

These N, ionized trap states play the role of the majority hole carriers in our
discussion and clearly have zero mobility because they can’t move.

When electrons are optically excited from the bonding states to the con-
duction states in such a sample (i.e., when a mobile electron and a mobile hole
are created) an electron from a trap level very quickly recombines with the hole,
leaving behind an additional ionized trap. The net effect of the light is then to
create excess mobile, negatively charged conduction electrons and excess fixed,
positively charged ionized traps, rather than excess mobile, positively charged
holes. If we denote the excess density of ionized traps as N,", we have

The equivalent of the low-level injection restriction is now that these excesses
be much less than N;.. Since we have said that N, is equal to N;, we
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thus want to have n' << N,. When this is the case, n' is a linear function of g
and it satisfies Eq. (3.33), which we repeat here:
1 !
Gt = s (3.3
The value of 7, appropriate to the sample in question must, of course, be used.
Physically this lifetime corresponds to the rate at which the conduction electrons
reoccupy the ionized trap levels.

A second issue that arises in photoconductor design concerns the fact that it
is desirable to have the light absorbed completely in the device so as to generate
the largest possible number of carriers and make the largest possible change in
conductivity. However, if all of the light is to be absorbed, the generation function
cannot simultaneously be constant (i.e., uniform) throughout the thickness of the
device. Instead, g; must decrease moving in from the surface as the illuminating
radiation is absorbed and its intensity decreases. We- can model the interaction
of light with an absorbing solid in terms of an absorption coefficient. We say
that the rate at which absorption occurs and thus at which the intensity decreases
is proportional to the intensity; the constant of proportionality is the absorption
coefficient o. Assuming the light is propagating in the x-direction and denoting
the intensity as L, which has the units photons/cm? - s, we have

dL
——=el (3.57)
where a has the units cm™!. Solving this equation yields
L(x) = Lge™®* (3.58)

where we have assumed that the absorbing solid occupies the region x > 0 and
that the light is incident from the left with an intensity Lo at x = 0. This situation
is illustrated in Fig. 3.7.

If each photon that is absorbed creates one hole-electron pair, the generation
function g will be aL, which is clearly a function of x. This violates our basic
assumption in this chapter that we have uniform excitation. Interestingly, however,
in a situation like that illustrated in Fig. 3.7, in which the electric field and
conduction are normal to the direction of incidence of the light and thus normal
to the nonuniformity, we can still get a solution. The key is that the sample
can be thought of as an infinite number of infinitesimally thin slabs, each with
thickness dx and each with a mobile carrier concentration »n'(x). The conductance
of each slab W wide, D long, and dx thick is gu.n'(x)Wdx/D; and the total
conductance of the sample is the sum of all these slab conductances because they
are connected electrically in parallel. Thus ‘

T
G' = qf'“le)—WL n'(x) dx (3.59)

From this result we see that what matters is the total number of excess carri-
ers per unit area normal to the surface, not their detailed distribution. Thus even if
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(a) Representative photoconductor; (b) variation of the light intensity with position into
the structure. It has been assumed in this plot that there is negligible reflection at the
interfaces in the structure, and that the absorption coefficient « is comparable to 1/T.

the excess carriers move in the x-direction away from the point where they are
created (as the next chapter shows they will), the sample’s conductance is not
changed.

If we restrict ourselves to low-level injection conditions, the rate at which
the excess carriers recombine in the sample is similarly independent of their
position in the x-direction. To see this we recall that the recombination per unit
volume in any plane is n'/7min. Thus the total recombination rate in the sample
is WD fOT n'(x) dx/Tmin. Because this result depends only on the integral of n’,
not on the detailed distribution, the total recombination and hence the total excess
population will not be changed if the carriers move around.

Because the final answer is not affected by where the carriers are normal
to the surface, we can proceed by again imagining the sample to be divided into
thin slabs that are isolated so that the carriers cannot move up or down from one
slab to the next. In such a situation, n' in each slab is 7 g. If we then have
a constant low-level illumination Lo incident on the top surface of the sample,
g is aL(x), where L(x) is given by Eq. (3. 58) and thus n'(x) is TmnaLoe L.
Substituting this in Eq. (3.59) we have

T

G = q%wfminaLof e gx (3.60a)
. 0
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which gives us

G = q—————“ewg"‘i“L" (1 - e7Te) (3.60b)
This result teaches us that it is advantageous to have T >> 1/« so that the factor
e~ T2 s essentially zero and G' is as large as possible.

This completes our discussion of photoconductors.

3.4 SUMMARY

In this chapter we have looked at two important ways of exciting a semiconductor:
electrically and optically.
Applying a uniform electric field led us to consider a form of carrier motion
-we call drift, which we model with the concepts of mobility and conductivity.
Charge carriers in a solid under the influence of a moderate uniform static electric
field attain a net average velocity proportional to that field:

S5y = £u%y

where the sign assumed is the same as that of the charge on the carriers. This net
velocity results in a net motion of charge (i.e., a current density) proportional to
the electric field. In a semiconductor with two carrier types, holes and electrons,
the drift current density is

Iy = Q(nolufe + po:u'h)ch

The factor of proportionality between the electric field and drift current density is
called the conductivity, which in a semiconductor is given by

o =q(noMe + pofr)

Applying uniform optical excitation to a semiconductor led us to a nonlinear
differential equation for the carrier concentrations, but we found that restricting
the excitation to low levels of injection allowed us to linearize the problem. We
introduced the concepts of excess carriers, low-level injection, and minority carrier
lifetime to model this problem, and showed that under low-level conditions (i.e.,
n' << p,) the excess minority carrier concentration obeyed the following equation
(we assume p-type here): o

dn' n'

— +
dt Trin

= g1()

The homogeneous solution of this equation has the form e~/ from which we
saw that the minority carrier lifetime is the natural response time of the system.
The particular solution depends on the form of the optical excitation. Several
common forms were considered as examples, and we saw that, as expected, the
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excess minority carrier concentration will follow, or “track,” changes in gp(t)
occurring slowly (on a time scale of 7y;,) but will lag behind more rapid changes.

Finally, we considered the simultaneous application of optical and electric
field excitation to a semiconductor and introduced the concept of photoconductiv-
ity, which is the change of the conductivity of a semiconductor sample under the
influence of light. This modulation forms the basis of an important class of optical
sensors called photoconductors. Photoconductors can be designed and used either
as optically activated switches or as linear sensors of light intensity. In the latter
‘case, we saw how, by the introduction of deep donors, semiconductor materi-
als can be engineered to have a large conductivity change even under low-level
injection conditions. :

PROBLEMS

3.1 What is the conductivity of the following semiconductor samples at room tempera-
ture, assuming p, = 1500 em?/V - s and wp = 600 cm?/V - s?
(a)n, = 4x 10 cm™3, p, = 5% 10% cm™3
(b)n, = 2% 103 cm™3, p, = 1 X107 cm™3
(¢c)n, = po = 1x1010 cm™3 _
3.2 Consider a sample of germanium with 3 X 1013 em™3 gallium atoms. Determine the
following quantities at room temperature for this sample.
(a) Majority carrier type
(b)Majority carrier concentration
(c) Minority carrier concentration
(d) Conductivity
(e)Repeat parts (a) thru (d) assuming that in addition to the 3 x 1015 cm3
gallium atoms, there are also 1 x 1016 ¢cm™3 arsenic atoms in the sample.

3.3 (a)Calculate the root-mean-square velocity of an electron in silicon at room tempera-
ture, assuming it has a thermal kinetic energy m*s2/2 equal to 3kT/2, where kT
is 0.025 eV. The effective mass m" of an electron in silicon is about 26 percent
that of an electron in free space and can be taken to be 2 x 1073! kg. (Be careful
with your units.)

{b) Calculate the average net velocity of an electron in silicon moving under the

(c) Compare your answers in (a) and (b) and comment on what you see.

3.4 (a)Consider a sample of n-type silicon L cin long, W cm wide, and T cm thick
that is nonuniformly doped in such a manner that the equilibrium majority casrier
population varies throughout its thickness as n,(x) (see Fig. P3.44). Show that if
the mobility u. is constant, independent of the doping level, then the end-to-end
resistance of this sample depends only on the integral of n,(x) over the thickness
of the sample (i.e., from x = 0 at the top surface to x = T at the bottom surface)
and not on the actual shape of n,(x). (Hint; Mentally divide the sample into thin
slabs of material dx thick, and add the conductances of these slabs connected
parallel.)

(b)In an integrated circuit, dopants are introduced to the top surface of a silicon
wafer (slab) to produce nonuniformly doped regions like the sample described
in (a) and resistors are formed by putting contacts at the ends of rectangularly
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shaped regions doped in this manner. Suppose that the doping profile of such a
Tesistive region is such that

no(x) = 1018e=%/X =3
where X is 2 pm. Assume T >>2 um. What resistance would a square
region with this profile, L units by L units in size, have? This resistance is
called the sheet resistance, Rg, of the region. (Note: 1 um = 104 cm.)

(c) The dopant profile in part (b) is introduced in a pattern like that illustrated in
Fig. P3.4c. What is the approximate resistance between points A and B of this
resistor?

I~ 20w *i
' |
L

!‘ 20w o I

FIGURE P3.4c
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3.5

3.6

3.7

3.8

(a)Calculate the mobility of electrons in aluminum at room temperature using the
following data and assuming that there is one conduction electron per atom.

Resistivity of aluminum 2.8x107 Q- cm

Density of aluminum 2.7 gm/cm3
Atomic weight of Al 27 gm/mole
Avogadro’s number 6 X 1023 mole™!

(b) Compare your answer from part (a) to the mobility of electrons in silicon. What
does the difference indicate to you?

The conductivity of copper is approximately 6 x 10° mho/cm at room temperature and

is due to the mobility of electrons (one per atom) free to move under the influence

of an electric field. The concentration of these conduction electrons is approximately

1023 cm™3.

(a) Calculate the electron mobility in copper at room temperature. How does this
compare with Si and Ge?

(b) Calculate the net average velocity of the electrons in the direction of the current
flow (assume it is the x-direction) in a 0.1-mm? cross-sectional area wire carrying
a current of 1 A. [Assume that the current is due to the cooperative motion of
the electrons (“drift”) superimposed on their random thermal velocity (which by
itself does not lead to any net current).]

A sample of silicon uniformly doped with 2 x 1016 cm™3 donors is 111ummated by

penetrating light that generates 10?0 hole-electron pairs per second per cm? uniformly

throughout its bulk. The conductivity of the sample is found to increase by 1 percent

(i.e., from o, to 1.01 o,) when it is illuminated. You may use g, = 1500 cm?/V s,

pp = 600 cm?/V - s, and n;(300 K) = 1.0 x 100 cm™3,

(a) Calculate n,, po, and G,. '

(b)What are n' and p'?

(c) Do low-level injection conditions hold? Why?

(d) What is the minority carrier lifetime 7,,?

(e) How does the conductivity vary with time if, after being on for a long time, the
illumination is extinguished at ¢ = 07

Consider a uniformly doped germanium sample with reflecting boundaries in which

the minority carrier lifetime 7, is 1073 s. The sample is illuminated by steady-state

light generating G hole-electron paxrs/cm '8 umformly throughout its bulk, with the

result that everywhere n = no,+n' = 5x10%cm™3and p = p,+p' = 1083 cm™3.

Assume that for germanium at room temperature g, = 3900 cm?/V -s, p;, = 1900

cm?/V +s, and n; = 2.4 x1013 cm™3,

(a) Calculate the thermal equilibrium electron and hole concentrations #, and p, in
this sample.

(b) Calculate the excess electron and hole concentrations n’ and p’ in this sample
when it is illuminated by g; = G.

(c) Calculate the optical generation intensity G.

(d) Calculate the resistivity of this sample.

(e) After the illumination has been on for a very long tune its intensity is abruptly
cut in half. Assuming that this occurs at ¢ = 0, that is,

g1ty = G for 1 <0 and gLty = % for t=0

find an expression for p'(¢) valid for ¢t = 0.
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3.9 A uniformly doped p-type germanium sample, p, = 1017 cm™3, is illuminated such

3.10

that the generation function, g;(¢), varies with time as illustrated in Fig. P3.9.
The minority carrier lifetime in this sample is 7,. You may assume that low-

level injection is maintained.

(a)Whatis n'(¢) for0 =t = T?

(b)If the excess minority carrier population at z = T is n'(T), what is the population
as a function of time for t = T? _

(c) Find a linear expression for n'(¢) in the range 0 < ¢ < T valid when T << 7,

(d)What is n'(T) in the limit T << 7,7

(e) The generation function is changed to that indicated in Fig. P3.9¢. In the limit
T < 7,, what is n'(T) for this excitation. What is n'(¢) for t > T?

A sample of germanium which is uniformly doped with 5 X 1016 ¢cm™3 boron atoms

and in which the minority carrier lifetime is 107 s is illuminated with light, gen-

erating hole-electron pairs uniformly throughout it with a repetitive time variation

illustrated in Fig. P3.10. Assume that the illumination has been on for a long time

and that the quantity a is a constant between 0 and 0.5, that is, 0 < ¢ < 0.5.

(a) Sketch and dimension the excess minority carrier concentration for one period .
in the steady state in the case where the product aT' is much greater than the
minority carrier lifetime, that is, when a7 >> 104 s.

&0

... [ continued ]

-2T

2T+aT -T -T+aT 0 all T T+al 2T 2T+aT

FIGURE P3.10



58
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3.12
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(b) What is the time-average value over many periods of the excess minority carrier
concentration? Your answer should be given in terms of G and ¢. Remember that
this is a linear problem.

(c) Sketch and dimension the excess minority carrier concentration for one period in
the steady state in the case where T << 10™% s and a = 0.25.

Consider a uniformly doped sample of extrinsic p-type silicon with a minority carrier
lifetime 7.. Suppose that this sample is illuminated by light that generates hole-
electron pairs uniformly throughout its bulk as

gL(t) = G + g,(1)
G is not a function of time and is of sufficient magnitude that it violates low-level
injection conditions, and g;(#) is time-dependent and does not alone violate low-
level injection, When G alone is illuminating the sample, call the excess electron
population 7 ; when g;(¢) alone is illuminating the sample, call it n; and when g,
(= G + g;) is'illuminating the sample, call it n3.
(a)Find the quadratic equation that must be solved to find n} in terms of 7., G,
and p,. (This was done in the text, but go through it yourself.)
(b) Show that n°3 can be written as n’3 =n’] + n’s where n’s satisfies the
differential equation

! !

drz4 _ n,
i &:(®) P

(c) Find an expression for 7/, argue that it is reasonable physically (i.e., that it looks
“right”), and explain why.

(d)Is nj = n}? Explain your answer.

Consider an n-type sample of gallium arsenide with Np = 5x 106 cm™3 and 7, =
1078 5, which is illuminated in such a way that g;(¢) hole-electron pairs/cm? - s
are generated uniformly throughout it. The waveform of gy (¢) is periodic and is
illustrated in Fig. P3.12.

(a)Show that g; (¢) can be written as-

gLty = G+ g;(1)

where G is the average value of g;(z) and g;() has zero average value, by
sketching G and g;(t). [Note that g l’(t) becomes negative, which is not possible
physically but is perfectly fine mathematically.]

(b) What is the average value of excess hole concentration p’'in this sample?

g (em>3s71y
4

1020 |

1 ! 1 ‘ 1 - t(ns)

FIGURE P3.12
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(c) Sketch the solution for p’(¢) corresponding to the excitation g;(¢) you found in
a, assuming T, > 1 ns.
(d) Your solution in (c) should look a lot like the integral of g;(¢).
(i) Explain why this is the case.
(ii) Explain why a similar integration approach can’t be used on gL(t) directly.

3.13 You are asked to design a light detector like that illustrated Fig. P3.13, in which the
photoconductivity of a thin semiconductor film is used to sense the light, You are to
choose the semiconductor from the choices listed below, select its carrier type and
dopmg level, and specify the lateral dimensions of the device. Your design objective
is to produce a detector that _

(i) Has a conductance G in the dark (g7 = O) of under 10-4 mho
(ii) Displays a change in conductivity that is linearly proportional (within 10
‘percent) to the incident light intensity for g; up to 1020 cm=3- s
(iii) Has 2 high sensitivity, defined as dG/d gy, in its linear region
(iv) Has a high ratio of photocurrent to dark current
No lateral dimension in your device should be less than 2 microns or greater than
100 microns. The film is one micron thick, and the light generates carriers uniformly
throughout it.
Choose the semiconductor from the following list. It can be either n- or p-type
and can have any doping level you want. The intrinsic carrier concentration at room
temperature in both materials is less than 1010 cm=3,

End chmic End ohmic
contact l‘ L contact

Semiconductor JRe
Insulator Substrate film e

End contact

\

.\

End
contact’\ - L

Semiconductor film Insulator

Substrate

FIGURE P3.13
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(i) Semiconductor #1: w, = 2000 ecm?/V-s; wp = 0.1 cm?/V's; Tin = 1074 s
(i) Semiconductor #2: e = 3500 cm?/V-s; wp, = 500 cm?/V-s; Typin = 1074 s
List the following items together on your solution in a clear manner:
(i) Which semiconductor you chose, its carrier type, and the doping level
(ii) Length L and width W of the device
(iij) Dark conductivity G,

(iv) Sensitivitly in the linear region and the bound on gz for this region
(v) Ratio of the photocurrent to the dark current

N



CHAPTER

4

NONUNIFORM
SITUATIONS:
THE FIVE BASIC
EQUATIONS

We have looked at the carrier concentrations in a uniformly doped semiconductor
in thermal equilibrium and also when uniformly excited by light. We have also
looked at charge carrier motion under the influence of a uniform electric field
(i.e., drift). Now we will consider nonuniform situations. We will consider both
nonuniformly doped semiconductors, and uniformly doped semiconductors that
are excited nonuniformly, for example, by light or at a contact or junction in a
device. We want to learn how to find the carrier distributions, the electric fields,
and the currents that in general will exist in such cases. The solutions to these types
of problems play a central role in our models for diodes and bipolar transistors, as
we shall see in Chaps. 7 and 8. We begin our treatment of nonuniform conditions
by discussing diffusion and diffusion currents. We then discuss the formulation
of five basic equations describing nonuniform situations in semiconductors.

4.1 DIFFUSION

We have already discussed the drift motion of charged particles under the influence
of gradient in electrostatic potential (i.e., an electric field). Another “force” that
can lead to a net movement of particles is a gradient in their concentration. This
type of movement is called diffusion. Diffusion is a very widespread phenomenon
that is encountered in many situations and has been applied in many useful ways.
One important thing to realize about diffusion is that diffusing particles need not
be electrically charged, as they must be in order to drift. Diffusion has nothing to
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do with the electrical charge of the particles. If the particles do carry charge,
however, then a diffusing flux of those particles will carry an electrical charge
flux, or current. We will see this in detail later. For now we simply consider
uncharged particles and look at the general process of diffusion.

4.1.1 A Model for Diffusion

Diffusion is the net motion of carriers in a concentration gradient. This motion
results from the continual random thermal motion of the carriers. To see how
this occurs and how we can express it mathematically, imagine that we have
a concentration of particles of species m, C,, that varies with position in the
x-direction; that is, C,,(x). These particles are at a finite temperature T and
have random thermal motion. We assume that the motion of any one particle is
independent of the other particles and thus that the motion of the particles is
random and independent of their concentration.

Now consider mentally dividing the sample into slabs, normal to the x-
direction, that are Ax thick. The slab centered about x = x; will contain approx-
imately AxC,,(x1) particles per unit area in the slab; per unit time a fraction a of
those particles will move (due to their random thermal motion) over to the slab at
x = x1 + Ax, yielding a flow of particles to the right equal to a(Ax)Cp(x) per
unit area. This concept is illustrated in Fig. 4.1. Similarly, the slab centered at
x = x1+Ax contains AxC,,(x1 + Ax) particles per unit area, the same fraction a
of which will move per unit time over to the slab at x = x. (The fractions a are
the same because we are assuming random, independent motion.) The net flow
to the right across the plane between x = x; and x = x; + Ax is the difference
of these two terms. This net flux density is

Fro = aAx[Cm(x1) — Ci(xy + Ax)] .1

We next use a Taylor’s series expansion to relate C,,(x1) and Cp(x1 + Ax)
to the gradient of C,,(x) at x = x4

oC
Cm(x1+Ax)sz(x1)+Ax—d;"i|x=xl 4.2)
t { '
I H i
: C,(x)) : Con(x; +AX) :
| , | I
ll anCm(xl) ; o~ Il
| i ]
I F—aAC,(x+Ax)
; | :
1 ) ! : ¥
X n+Ax

FIGURE 4.1
Illustration of the setup of the diffusion model of Sec. 4.1.1.



NONUNIFORM SITUATIONS: THE FIVE BASIC EQUATIONS 63

Using this expression in Eq. (4.1) yields

23C

Fm = "‘CZ(A.X) W

(4.3a)
Thus we find that a net flux exists because of the gradient in the concentration
and is proportional to it; we call this flux the diffusion flux. We define the product
a(Ax)? to be the diffusion coefficient D,, of the species m and write Eq. (4.3a)
as

0C
" ax

Fn, =-D (4.3b)
The diffusion coefficient D, has the units cm?/s. The units of flux are particles/
cm?-s, or simply cm™2 - 571, Equation (4.3) is the general diffusion relation; it is
often called Fick’s First Law.

In this model D,, appears to depend on Ax, but one must remember that a
will also depend on Ax. The net result is that D,, does not depend on Ax; that
is, it is independent of the details of the model, as we know it must be. D,, does,
however, depend on temperature (exponentially, in fact), on the type of particles
diffusing, and on the environment in which the particles are diffusing.

4.1.2 Diffusion Current Density

If the diffusing particles are charged we have a net charge flux, or current density,
given by
Im = qmFm 4.4)

where g,, represents the charge on each particle. Focusing our discussion on holes
and electrons in a semiconductor, we have the following:

Hole diffusion current: J3 = —th% (4.52)
Electron diffusion current: J éﬁff = qDeZ—Z (4.5b)
Notice that for electrons we had to use g, = —¢, so the original minus sign has

disappeared.

4.1.3 Other Diffusion Important in Devices

Diffusion is a very common phenomenon that has important applications in the
fabrication of semiconductor devices as well as in their operation. One important
means of introducing n- and p-type dopants into a semiconductor is through
diffusion. A high concentration of the dopant is established on the outside surface
of the semiconductor, and it is allowed to diffuse into the surface. Negligible



64 MICROELECTRONIC DEVICES AND CIRCUITS

dopant diffusion occurs at room temperature, but when silicon is heated to 1000°C,
for example, a dopant like boron will diffuse several microns into the surface in
an hour or two. (See App. G for more discussion of this.)

4.2 MODELING NONUNIFORM
SITUATIONS

With nonuniform excitation or doping, we anticipate that the excess carrier popu-
lations will be nonuniform, and since there will be gradients in the charge carrier
concentrations, there will be diffusion currents. Furthermore, since the carriers
will in general diffuse at different rates, we can anticipate that there will be
charge imbalances from which an electric field will arise. An electric field im-
plies that there will be drift currents as well as diffusion currents. All told, we will
have a total of five unknown quantities to determine: the excess electron and hole
concentrations, n'(x, t) and p’(x, t); the electron and hole currents, Jex(x, ¢) and
Jnx(x, t); and the electric field, €,(x, t). As this notation indicates, these quanti-
ties will in general all be functions of position and time. Also, recall that we are
restricting ourselves to variations in the x-direction only.

4.2.1 Total Current Densities

. We have discussed drift currents and diffusion currents. In any general situation,
the rotal electron and hole current densities are the sum of the respective drift and
diffusion current densities:

Jh = Jgrift + ];liiff

and
Je = Jg'riﬂ + Jediff

Using Eqgs. (3.8), (3.10), and (4.5), we can write

d
Jn = apusts = aD4 50 (4.6)
| X
and
an
Jo = qnﬂe%x + qDe(Tx' : 4.7)

The total current density is, of course, the sum of the electron and hole current
densities: s
Jiot = Jp + Je 4.8)

These expressions for the electron and hole currents give us two of the
equations we need relating to our five unknowns.
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4.2.2 The Continuity Equations

When we discussed generation and recombination in uniformly excited uniformly
doped material, we had the following equations relating the hole or electron con-
centration at a point to the net generation or recombination occurring at that point:

dn _dp _ _ :
B Pl il 43 r(np —nopo) (3.23")

In nonuniformly excited or doped material we must modify these equations to
account for the fact that there is now another mechanism by which the carrier
concentrations can change; namely, through nonuniform flow of particles. Before
proceeding to do this, however, it is also worth noting that the product n, p, is
still n%, even if n, and p, are functions of position, and n? is, of course, not a
function of position.

Consider a given region in a sample. If the particle flux into that region is
the same as the flux out, there will be no net increase or decrease in the particle
concentration in that region. If, however, the flux out is larger than the flux in,
the concentration must be decreasing with time. If the flux out is smaller, then
the opposite is true. We can state this mathematically (in one dimension) as

at ox (4-9)

where C,, is the particle concentration and F,, is the flux (cm™2-s7!). This ex-
pression is another basic diffusion equation known as Fick’s Second Law. To see
where this result comes from, consider a region located between x = x; and
x = x; + Ax that is Ax long in the x-direction and has a cross-sectional area
(normal to x) of A. For simplicity we will consider only a one-dimensional prob-
lem, so we restrict the flux to the x-direction and allow it to vary only with x;
that is, we have F,,(x). The number of particles entering the region from the left
per unit time is AF,,(x), and the number leaving to the right at x = x; + Ax is
AF,;(x1 + Ax). The rate of increase in the number of particles M in the region
is given by
oM

—; = AlFn(x1) = Fu(x1 + Ax)] (4.10)

Expanding about x; we obtain

aF/n(xl)Ax

F(x1+ Ax) = Fp(x) + e

which, when substituted into Eq. (4.10), gives us

M
%7 - -Aax% 4.11)



66 MICROELECTRONIC DEVICES AND CIRCUITS

" Dividing by the volume of the region to get the particle density, we have

dCm dF,
—_— = 4.12
Jdt dx ( )
Returning now to our original problem, we want to generalize Eq. (3.23) to
nonuniform situations by adding the change in the carrier concentration due to the
gradient in the particle fluxes or, in this case, currents. We divide the currents by

the charge on the carriers and add these components to the previous equations:
on 1 aJ,

L= —_ — 2y — —

57 = 8L r(np —ni®) —; 7% (4.13a)
and

= s rp - mh- oo (4.130)

Note that we write the derivatives as partials because now 7, p, and J can all be
functions of both x and #. We have also replaced 7, p, with n?

Note that the gz and r(n p - n;2) terms are common to both equatlons SO
we often write these equations as

dn — 13](2 6’}7 laJh _ _ 2
2t gex a1 gax &L rpmnd) (4.13c)

These continuity equations, as they are termed, give us two additional rela-
tionships between the carrier concentrations and fluxes, bringing our total number
of equations to four.

4.2,.3 Gauss’s Law

The fifth equation we need to begin solving for our five unknowns is Gauss’s law,
which relates the net charge at any point to the gradient in the electric field. In
one dimension this 1s

dle(x)é(x, t)]

dx
where (x) is the dielectric constant. Writing out p(x, ¢) we have
dle(x)é(x, )] _

ax

p(x,t) (4.14)

qlp(x, ) — n(x, 1) + Na(x) = Na(x)] (4.14)

This is the final relationship we need relating our five unknowns.

4.2.4 The Five Basic Equations

We collect the five equations together below:

&n(x 1)

Je(x. t) = gn(x, pwe(x)é(x, 1) + gD.(x) (4.15)
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Tn(x, 1) = gp(x, Dup(x)8(x, 1) — th(x)ap(); 2 (4.16)

10J.(x, dn(x,
-1 Jelx, 1), D e, ) = r(Dp(e, DAlx, D= AT (@17
éﬁlh;;c, 2+ c?p(;t, D grx,n)- r(DpGx, Hin(x, 1) = nX(T)] (4.18)
d[S(x?i(x t)] [p(x t) - n(x t) + Nd(x) - Na(x)] (419)

This set of equations forms the starting point for our analysis of semiconductor
devices. These differential equations are, however, coupled and nonlinear and are
in general very difficult to solve, even with the aid of a large computer. Fortunately
there is a broad class of problems, flow problems, that form an important subset
in which significant simplifications can be made and the five equations can be
linearized and largely decoupled. We address this subset in the next chapter.
There is yet another broad class of problems, p-n junctions, for which a second
set of approximations and simplifications can be made, leading again to analytical
models. We will discuss these problems in Chap. 6.

4.3 SUMMARY

In this chapter, we began our consideration of nonuniform situations and intro-
duced the very important concept of diffusion, the second mechanism—along
with drift—by which charge carriers move, and thus current flows, in semicon-
ductors. We saw, however, that diffusion does not depend on charge or electric
fields; it occurs simply because a concentration gradient exists. Nonetheless, if the
diffusing particles are charged, their diffusion leads to a diffusion current density.

Having defined diffusion, we then looked at defining the scope of the prob-
lem we face under nonuniform situations and at the equations at our disposal to
model them. We identified five “unknowns”: the two carrier concentrations, the
two corresponding carrier fluxes (currents), and the electric field; and we devel-
oped five equations, collected above as Egs. (4.15) through (4.19), which can be
solved for the five unknowns. Their solutions in two special sets of circumstances
will be the topics of Chaps. 5 and 6.

PROBLEMS

4.1 (a) The diffusion coefficient for boron in silicon is 2 X 10714 c¢m?/s at 1000°C. Use
this fact.and the definition of D in terms of 4 and Ax that precedes Eq. (4.3b)
to estimate the rate at which boron atoms move from lattice site to lattice site
(Ax =~ 2.5 A) in Si at 1000°C.

(b) As a function of temperature, the dxffusxon coefficient of silicon can be written
as Do.e’EdkT where D, is 2 cm?/s, E, is 3.5 eV and % is 8.62 X 1075 eV/K.
Using this information, verify the value for D given in Part (a).



68

4.2
4.3

4.4

MICROELECTRONIC DEVICES AND CIRCUITS

(¢) Calculate the diffusion coefficient of boron in Si at room temperature, and again
estimate the rate at which boron atoms move to a new lattice site,

(d) Repeat Part (¢} at 1150°C. '

Simplify the five equations in the special case of uniform material under uniform

time-varying low-level optical excitation, and show that they reduce to Eqgs. (3.33)

and (3.34).

Simplify the five equations in the special case of uniform material with no optical

excitation and with a uniform, constant electric field within the sample, and show that

they reduce to Eq. (3.12). '

Basic models for solid-state diffusion, that is, the diffusion of dopant atoms in a

semiconductor, assume that the diffusing atoms are uncharged and that there is thus

no drift component to their flux. The only flux is that due to diffusion and is given by

Fick’s First Law, Eq. (4.3). Furthermore, there is no generation or recombination of

atoms, so the only way the concentration of atoms at a point can change with time is

if there is a divergence in the flux, as shown by Fick’s Second Law, Eq. (4.9). These

two equations give us the two relationships we need between the two unknowns in

this problem, the concentration Cp,(x, ¢) and flux Fp,(x, ¢).

(a) Combine Eqgs. (4.3b) and (4.9) to get a differential equation for Cp,(x, ).

(b) Show that the expression

‘ A —(x - x(,)2
C (x,t) = — ex { J
satisfies the equation you found in (a). A curve with this shape is called a Gaus-
sian.

- (c¢) When a fixed number of dopant atoms is introduced in a shallow layer on a

semiconductor surface and they diffuse into the surface over time, their profile is

Gaussian (see App. G, Fig. G.3b).

(i) Show that a Gaussian fits the boundary constraints of this type of a problem
by showing that

f Cm(x,t)dx = Constant independent of ¢

and

fmcntes - [ 05250 ]

wif x = x,

(ii) Explain the significance of each of these relationships.
(d) If a Gaussian satisfies the differential equation you found in (a), so too will an infinite
sum of Gaussians. An important sum is the error function erf(y), defined as

y
erf(y) = LJ e da
0

N
and another is the complementary error function erfc (y), defined as
erfc(y) = 1 —erf(y)

Look up the properties of the complementary error function 1n a mathematics ref-
erence, and show that it fits the boundary conditions of diffusion into a semi-



NONUNIFORM SITUATIONS: THE FIVE BASIC EQUATIONS 69

conductor surface in which the concentration at the surface is held fixed, that is,
Cwm(0, t) = constant. (See App. G, Fig. G.3a.)

4.5 Our equations for current density, Egs. (4.15) and (4.16), can be viewed as composed
of a diffusion current density due to a gradient in the concentration and a drift current
density due to a gradient in the electrostatic potential (because € = —d¢/dx). If we .
remove our requirement of constant temperature, we must add another term to the
current density, namely, one due to a gradient in the temperature,

(a) Add electron and hole flux current density terms to Egs. (4.15) and (4.16) that
are proportional to the gradient in the temperature, 8/47 .

(b) What are the signs on the terms you added in (a)? Explain your reasoning.

(c) How do the terms you added depend on the carrier concentrations? Rewrite them,
if necessary, to show this dependence explicitly.
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NONUNIFORM
CARRIER
INJECTION:

FLOW PROBLEMS

An important set of problems for which we can get analytical solutions to the
five basic equations developed in Chap. 4 [Egs. (4.15) through (4.19)] are those
involving nonuniform, low-level, essentially static injection of carriers into a
uniform extrinsic semiconductor. Although you have no reason a priori to suspect
that such problems are of interest to anybody, these problems, which we will
call flow problems, are at the heart of p-n diode and bipolar transistor operation.
Understanding flow problems is essential to our modeling of these devices, and
developing that understanding is our goal in this chapter.

5.1 DEVELOPING THE DIFFUSION
EQUATION ‘

To proceed with a solution of the five basic equations relating the carrier popula-
tions, currents, and electric field, we restrict ourselves to situations in which the
following five assumptions are valid:

The material is extrinsic and uniformly doped.

There is only low-level injection.

There is very little net charge density; that is, the material is quasineutral.
The minority carrier drift current is negligible.

There is very little variation with time; that is, the excitation is quasistatic.

Nk LR

71
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We will look in turn at each of these assumptions before arriving at our
ultimate goal, the diffusion equation.

5.1.1 Uniformly Doped Extrinsic Material

If the material we are considering is extrinsic and is uniformly doped, then we
know the equilibrium electron and hole concentrations, n, and p,, already and
just have to find the excess electron and hole populations, n'(x, ) and p'(x, t),
respectively. Furthermore, any spatial or temporal derivatives of the populations,
n(x, t) and p(x, t), reduce to derivatives of the excess populations, n'(x, ¢) and
p'(x, t), because the equilibrium concentrations are functions of neither time nor
position. Thus we have

gn _dn’  dp _ 9p
ox  dx’ dx dx
and 5.1)
| on o' op_dp
gt dr’ gt 9t
Finally, we know that N;(x) — N,(x) can be related to p, — n, as
Po= 1o+ Ny(x) = Ny(x) =0 (5.2)
so that the last of our five basic equations, Eq. (4.19), reduces to
dé(x, t ,
8—————;x ) - glp'Gx,ty —n'(x, 0] (5.3)

Notice that in writing Eq. (5.3) we have used the fact that our material is
uniform to conclude that the dielectric constant ¢ is not a function of x, so it can
be pulled out of the derivative.

. 5.1.2 Low-Level Injection

Recall that by low-level injection we mean that the excess carrier concentrations
must be much less than the majority carrier concentration. A general way of
writing the low-level injection condition is

n', p' << p, +n, (5.4

The sum on the right is essentially just the majority carrier concentration because
in extrinsic material the equilibrium population of majority carriers is many orders
of magnitude larger than the minority carrier population.

If low-level injection conditions exist, we can remove the nonlinearity in
the continuity equations, Egs. (4.17) and (4.18), as we have seen in Chap. 3. To
review, we begin with

G-R=G,+grlx,t)-npr (5.52)
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Replacing G, with n, p,r yields
G-R=gux,t)=(np—nopor (5.5b)

‘Next, replacing n and p with (n, + n') and (p, + p'), respectively, neglecting the
term involving the product n'p’, and assuming n' = p' (which we will justify in
the following subsection) we have

G—-R=gr(x,t)—n'(no + po)r (5.5¢)

We may write

!

G=-R=gi(x, 1)~ — (5.5d)
min
if we define the minority carrier lifetime 7y, as
1
Tin = ———————— 5.6
e ey (5.6)
Thus, under low-level injection conditions, Eqs. (4.17) and (4.18) become
on'  14J, n'
—_———_—— = 1)y — 5.7
and
dp'  10Jy n' '
gy 4 270 h - 7o
Jt + g ox gL(x:t) Toin (5 )

When we are dealing with extrinsic material, as we are here, either p, or n,
will dominate the sum p, + n, in the definition of the minority carrier lifetime,
so it is more common to write Eq. (5.6) as

1
Tmin = Te =
Pol
in p-type material, and as
Tmin = T = !
min h nor

in n-type material.

5.1.3 Quasineutrality

By quasineutrality we mean that any charge imbalances are small, that is, that
n'(x, 1) = p'(x,1) (5.8)

and

on'(x, 1) _ ap'(x,t)
ox ax

(5.9)
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We don’t mean that these quantities are equal; rather, their differences are much
smaller than their sums:

|n' = p'| <n'+ p' (5.10)
and
an'  dp’ an'  dp’
ax x| Slex tax (5.11)

Quasineutrality is a very important concept. It is also a very rugged assump-
tion in most semiconductors because the mobile majority charge carriers readily
move so as to reduce and essentially eliminate any deviations from neutrality.
Simplistically, the negative and positive charge distributions attract each other
and, if possible, move together to balance each other out.

We can quantify our argument that quasineutrality is a widely applicable
assumption by examining the spatial and temporal characteristics of (p’ — n').
We find (see App. D) that temporal deviations from quasineutrality dissipate on
a time scale on the order of the dielectric relaxation time 75, given by

™= — - (5.12)
To
where ¢ is the dielectric constant and o, is the thermal equilibrium conductiv-
ity. We also find (again see App. D) that spatial deviations from quasineutrality
dissipate within a few extrinsic Debye lengths, Lpe, given by

Lpe = /DmajTp (5.13)

where Dy, is the majority carrier diffusion coefficient.

Example

Question. A moderately low conductivity semiconductor might have a conductivity
0o, Of 1 S/cm. What are the dielectric relaxation time and extrinsic Debye length in
such a sample? Assume that the majority carrier diffusion constant Daj has a value
typical of n-type silicon, 16 cm?/s. The permittivity e of silicon is approximately
10712 C/V - em.

Discussion. Using Eq. (5.12), we find that the dielectric relaxation time 7p is
one picosecond, (i.e., 10712 ). This result tells us that it is hard to maintain an
appreciable difference between p' and n’ for more than a few picoseconds in such
a sample.

Next, using Eq. (5.13) and this value for the dielectric relaxation time, we
calculate that the extrinsic Debye length Lpy, is 4 X 1076 cm, or 400 A. Again this
result tells us that any deviations from charge neutrality will exist only over very
short distances.

All told, the tendency to quasineutrality is very strong in a typical semi-
conductor. We have already used it to linearize the continuity equations in Sec.
5.1.2, and we will use it again in the next section.
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It is important to note that we are not saying that n' equals p’, for that would
mean that there is no gradient in the electric field [see Eq. (5.3)]. We are saying,
however, that n’ and p' are similar, and in many cases one can be substituted for
the other. On the other hand, when the difference between n’ and p’ is important,
as in Eq. (5.3), we must be more careful.

5.1.4 Minority Carriers Flow by Diffusion

A traditional assumption is given by the statement “Minority carriers flow only by
diffusion.” What this really means is that under low-level injection conditions the
minority carrier drift current is always a very small fraction of the total current.
Thus if we have to worry about the minority carrier current at all in flow problems,
the minority carrier diffusion current will be what matters.

The conclusion that minority carrier drift current is unimportant in extrinsic
material should not be surprising to you because you already know that the major-
ity carrier population is significantly greater than the minority carrier population
as long as low-level injection conditions hold. Thus the minority drift current will
be much, much less than the majority carrier drift current.

The minority and majority carrier diffusion currents, on the other hand,
depend not on the total number of carriers but rather on their gradients; and their
gradients are comparable [Eq. (5.9)]. The diffusion coefficients for holes and
electrons, Dy, and D,, are also of the same order of magnitude, so the diffusion
currents of holes and electrons tend to be of comparable magnitude (but, of course,
of opposite sign). :

We can make no general statement with respect to the relative sizes of the
majority carrier drift current and the two diffusion currents other than to say that
there are no restrictions. Sometimes the current is essentially all majority carrier
drift, other times it is all majority and minority carrier diffusion; still other times
it comprises comparable magnitudes of majority carrier drift and diffusion and
minority carrier diffusion components.

However, we can in general say that it is probably correct to assume that
the minority carrier drift current is negligibly small in flow problems. We can
say this because we realize that the minority carrier diffusion current is the only
component of the minority carrier current that has a chance of being comparable
to, or larger than, the majority carrier drift current. Thus, if there is any appreciable
minority carrier current, it must be the minority carrier diffusion current and we
can therefore approximate the total minority carrier current density as simply

d Cmin
ox

Jmin = — gminDmin (5.14)
This single observation has an enormous simplifying impact on our set of equa-
tions. It removes the nonlinear product term of the minority carrier concentration
and the electric field from the equation for the minority carrier current, and in
fact eliminates the electric field from that equation altogether.
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5.1.5 Time-Dependent Diffusion Equation

Before considering the fifth assumption—that our excitation is quasistatic—we
should rewrite our five equations in light of our assumptions thus far. Since we
know that it matters which are the minority and majority carriers, let us assume
for the sake of discussion that we are considering a p-type sample. We then use
our assumptions to write

on'(x, t)

Je(x,t) = gD, P (5.15)
dp'(x,t
Tale, 0= quuapo (s, 1) — 4D, 225 (5.16)
1dJ.(x,8)  dn'(x,t) n'(x,t)y
- = Jt B
7 ox + + ™ gr(x, 1) (5 17)
1dJp(x, 1y  dp'(x, 1)  nm'(x,t) _ -
q dx + Jt + T, = gL<x: t) (518)
eﬁ%ﬁ =q[p'(x,t)— n’(x‘,‘-t)] (5.19)

Our set of five equations is now completely linear, and some of the coupling has
been eliminated. In fact, we see that Egs. (5.15) and (5.17) now each involve
only the excess minority carrier concentration n'(x, ¢) and the minority carrier
current J.(x, t); they form a set of two equations in two unknowns. Eliminating
Je(x, t) from them by inserting Eq. (5.15) into Eq. (5§.17) results in a single linear
differential equation for n'(x, #):

In'(x,t) Pn'(x,t)  n'(x,t)
—_— = = , 1 2
77 ¢ il + - gr(x, 1) (5.20)

This equation describes the diffusion of minority carriers under low-level injection
conditions in a uniformly doped, extrinsic semiconductor, but it turns out to be
even more general than that. It describes the motion of any particles moving
primarily only by diffusion. It describes, for example, the diffusion of dopant
atoms into silicon.

We have already seen Eq. (5.20) in the special case of uniform excitation.
In this situation there is no dependence on x, and the 9%/ 9x? term is zero. In this
case, Eq. (5.20) reduces to Eq. (3.32).

We will not at this point consider solutions to Eq. (5.20) when we have both
space and time variations. Rather, we next restrict ourselves to situations where
the time variations are negligible. ’

5.1.6 Quasistatic Diffusion: Flow Problems

If the variation of gz (x, t) with time is slow enough that the time derivatives of
the carrier concentrations are small relative to the other terms in the equation, we
say we have a quasistatic excitation and that we can make the quasistatic approx-
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imation. For convenience, we will tend to concentrate on problems where there
is no time variation of g, but this is, strictly speaking, unnecessarily restrictive.
We can have time variation if all of the time derivatives are negligibly small and
things look essentially static (i.e., quasistatic).
With the quasistatic approximation, our equation for n' (Eq. 5.20) becomes,
after dividing by —D,,
2.1 '

dn' n _ _8L(x) (5.212)

dx? D,T. D,
Note that the derivative is now a total, rather than a partial, derivative. The
quantity D, 7T, has units of length squared, so we may write

i’ _n__elx)
dx? L2 D,
where L., a minority carrier diffusion length, is given by

L.= D.7. (5.22)

Equation (5.21b) is a second-order linear differential equation that we will
call the quasistatic diffusion equation. We will discuss solving it for the minority
carrier concentration in the next section. Before doing that, however, we want to
show that once we have solved Eq. (5.21b), we can solve for our other unknowns
in short order. :

Once we know the minority carrier concentration, in this case n'(x), and
have verified our assumption of low-level injection, we can immediately get the
minority carrier current density J.(x) using the quasistatic approximation to Eq.
(5.15): '

(5.21b)

an’
dx

Assuming we know the total current density Jyor, we next calculate the
majority carrier current density as

Ju(x) = Jror — Je(x) (5.24)

Je(x) = gD, (5.23)

This may seem unreasonable because we have said nothing thus far about Jror,
but the problem being solved will often be defined in such a way that the total
current density Jror is known at at least one point. This is sufficient to tell us
Jrot at all x because we can show that Jyor Will not change with position if the
excitation is quasistatic. To see that this is true, we first subtract Eq. (5.17) from
Eq. (5.18) to yield

1) 1dJ(x) _
qg dx g dx

0 , (5.25a)
which we can also write as

i ‘
r [Ja(x)+ J(x)] =0 (5.25b)
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Identifying Jror as J4(x) + J.(x) we have

dJror
This last result tells us that Jror is not a function of position. Thus if we know
Jror anywhere (even at only one position x), we know it everywhere. Fortunately,
as we will discuss at greater length in Section 5.2.4, we will in general be able
to find Jyor in any given problem with little difficulty.
From Ju(x) we calculate the electric field 4(x) using Eq. (5.16) and
quasineutrality (i.e., dn'/dx =~ dp'/dx). We have

_ Ju(x) + gDy(dn'/ dx)

é(x 5.26
( ) qHE Do ( )
Next, we calculate p’(x) using Eq. (5.19), which gives us
s e [d€ '
p(x)=n(x)+ . (dx> (5.27)

Finally, we compare our result for p' to our n' in order to verify our assumption
of quasineutrality. As with any solution involving assumptions, our last step must
be to check that all of our assumptions are valid.

Clearly, our first and most involved problem is to find the excess minority
carrier population. After we have done that, everything else follows rather directly
and readily. Thus we turn next to solving the quasistatic diffusion equation.

5.2 FLOW PROBLEMS

We will refer to problems involving the solution of Eq. (5.21b) under various
boundary conditions and with various excitations gy (x) as flow problems. Devel-
oping an understanding of the solutions of flow problems is a very important step
in understanding semiconductor devices.

5.2.1 Homogeneous Solutions

The homogeneous solution to Eq. (5.21b), that is, the n'(x) that satisfies this
equation with the excitation gz (x) set to zero is

n'(x) = A e*/Le 4 Bg=¥/Le (5.28)

where A and B are constants whose values we will determine later by requiring that
the total solution, which is the sum of the homogeneous and particular solutions,
satisfies the boundary conditions.

Equation (5.28) can also be written in terms of hyperbolic sine and cosine
functions as
x

n(x) = CCOSh(Le

)+ D sinh (%) (5.29)

€
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The two constants C and D are related to the constants A and B in Eq.
(5.28)as C=(A+B)2 andD = (A -B)/2.

Looking at either Eq. (5.28) or (5.29), we see that the minority carrier
diffusion length L, is an index by which dimensions can be judged. That is, in
any particular problem, saying that a length w is “very small” would mean w is
small relative to L, (i.e., w << L,); whereas saying that w is “very large” would
correspond to w > L.. Conversely, saying that the minority carrier diffusion
length is very long in a given sample implies that L, > w, and saying it is short
implies the opposite.

We will see later during our discussion of junction devices that it is often
advantageous to make the dimensions of devices very small relative to the minority
carrier diffusion length. In such situations, the parameter x will also always be
much less than the minority carrier diffusion length and we can then simplify the
homogeneous solution by using the approximation

e/l =~ 12 2 (5.30)

e
when x << L,. With this subs'titution, the homogeneous solution for n'(x), Eq.
(5.28), can be approximated as

n'(x) z(A+B)+(A—B)Li (5.31a)

Thus we see that in the special case of a small device, or equivalently, a large
minority carrier diffusion length w << L., the value of n'(x) varies approximately
linearly with position:

n'(x)=Ex+F (5.31b)

where E and F are related to our earlier A and B as E = (A~ B)/L, and
F =A+B.

The minority carrier lifetime is a material parameter that is affected by the
purity and crystalline quality as well as by the sample’s processing history, whereas
the diffusion coefficient (which plays an equal role in determining the minority
carrier diffusion length) varies much less from sample to sample. Thus differences
in the minority carrier lifetime are the primary reason that the minority carrier
diffusion length might vary from sample to sample of a given material. We often
speak of cases for which w << L, and for which n'(x) can be approximated by a
linear equation [i.e., Eq. (5.31b)] as corresponding to an infinite lifetime. In this
regard, it is a useful exercise to look at Eq. (5.21a) in the limit 7, — 0. In this
limit Eq. (5.21a) becomes

d*n' _ —8Lx)
dx? D,

Clearly Eq. (5.31b) is the homogeneous solution to this second-order linear dif-
ferential equation.

(5.32)
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5.2.2 Particular Solutions

Determining the particular solution requires knowledge of the excitation function
gr(x), and we will present several specific examples in Section 5.2.4. For now,
we will simply make a general comment about obtaining a particular solution,

Often an excitation function gz (x) will have different functional forms in
different sections of the sample. A simple, very common example involves hav-
ing only a portion of the sample illuminated, that is, when g (x) is nonzero only
between x = x; and x = x, and is zero elsewhere. In such cases, it is advisable
to divide the problem of finding particular and total solutions accordingly. Par-
ticular, and then total, solutions can be found in each region and matched at the
boundaries. In the situation just described, for example, one would find solutions
for x = x3, for x; = x = x;, and for x2 = x and would then match them at
x = x; and x = x,. Furthermore, the solutions for x = x; and x; =< x are just
the homogeneous solutions; that is, the particular solutions are zero where the
excitation is zero.

Finally, we should note that in many device situations there is no generation,
and again the total solution is simply the homogeneous solution adjusted to match
the boundary conditions.

5.2.3 Boundary Conditions

Equation 5.21b is a second-order differential equation, and thus our homogeneous
solution has two unknown constants. This in turn requires that we have two,
and only two, independent boundary conditions in order to determine these two
constants. These boundary conditions may be constraints on the excess minority
carrier population or on its derivative.

There are a few standard boundary conditions that we will encounter in the
course of our work with flow problems in semiconductors.

a) Reflecting boundary. Consider first the boundary condition at the surface of
a semiconductor sample in which the minority carrier lifetime is unchanged right
up to the surface. Such a boundary is called a reflecting boundary. Electrons
and holes cannot normally flow out of a surface, so the boundary condition at a
reflecting boundary must be that the carrier fluxes, and currents, there are zero.
In particular, the minority carrier current is zero, and consequently the gradient
of the excess minority carrier concentration must also be zero at this boundary;
that is,

dn’
dx x=2x3

=0 (5.33a)

where for the sake of discussion we have assumed a p-type sample with a reflecting
boundary at x = x3. The boundary condition at a reflecting boundary is thus
a condition on the excess minority carrier concentration gradient. The excess
minority carrier concentration in a sample with a reflecting boundary at x = w is
illustrated in Fig. 5.1.
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Ohmic Reflecting

\'\ p-type /\/

n’(x)

n’(0)=0

\,\

0

FIGURE 5.1 .
A p-type semiconductor sample with an ohmic contact on the end at x = 0
and a reflecting boundary on the end at x = w.
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b) Ohmic contact. At the other extreme from a reflecting boundary (where the
minority carrier lifetime is unchanged up to the surface) is an ohmic contact,
which is defined as a surface at which the minority carrier lifetime is identically
Zero.

Assume for the sake of discussion that we have a p-type sample with an
ohmic contact at x = x4. If the minority carrier lifetime at x = x4 is zero, then
the only way that the term n'(x 4)/7. can be finite is if n’ (x 4) is also zero, that
is, n'(x4) = 0. Thus at an ideal ohmic contact, the boundary condition on the
excess minority carrier concentration is that it is zero:

n'(xs) =0 (5.33b)

The excess minority carrier concentration in a sample with an ohmic contact at
x = 0 is illustrated in Fig. 5.1.

Physically the minority carrier lifetime at and/or near a surface can be made
very small, and the ideal ohmic contact boundary condition can be approached,
either by putting certain metals on the surface (see App. E) or by introducing
additional recombination sites in a thin surface layer by adding certain impurities
or by damaging the crystal at the surface.

¢) Surface recombination velocity. The ohmic contact and reflecting boundary
represent two extremes of a general situation in which some extra recombination
may occur at a boundary, but some excess minority carrier population may exist
at the same boundary as well. This situation may be described by saying that
there is a finite recombination velocity at the surface in question. The amount
of recombination occurring at this surface depends on the excess minority carrier
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population there and is manifested as a finite flux of carriers “into” the surface.

Imagine, for example, that we have a surface at x = w on the right end of a p-

type semiconductor bar at which the recombination velocity is s. Mathematically

the boundary condition at x = w in this case is

t

_p, 4

dx

The general rule is that the flux is into the surface. Thus at the left end of a

sample, the negative sign in the above expression becomes a positive sign. To

illustrate, suppose that the left end of a p-type sample is at x = 0 and that the
- surface recombination velocity there is s; then, at x = 0,

= sn'(w) (5.33¢)

X=w

dn' o,
D, v o sn'(0) (5.33d)
A sample with two surfaces with finite recombination velocities is illustrated in

Fig. 5.2.

Notice that the first two boundary conditions we discussed, ohmic contacts
and reflecting boundaries, can be viewed as special cases of surfaces with recom-
bination velocities. At an ohmic contact the recombination velocity is infinite,
whereas at a reflecting boundary the recombination velocity is zero.

d) Internal boundaries. When we discussed particular solutions in Sec. 5.2.2
we suggested that, when the excitation is not continuous over the length of a
. sample, it is often desirable mathematically to divide the sample into separate
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FIGURE 5.2
A’ p-type semiconductor sample with surface recombination velocities of s; and s, on
the end surfaces at x = 0 and x = W, respectively.
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FIGURE 5.3

Internal boundary at x = xs in a p-type semiconductor sample,
illustrating the continuity of the excess minority carrier
concentration and its derivative.

regions and to obtain solutions in each individual region. Boundary conditions
then need to be found to relate the various solutions across the boundaries be-
tween these regions. Upon examination of Egs. (5.21b) and (5.23) we see that the
minority carrier concentration and its derivative must be continuous across any
boundary. A discontinuity in the gradient would imply infinite generation or re-
combination, whereas a discontinuity in the concentration would imply an infinite
current density.

The internal boundary conditions on the excess minority carrier concentra-
tion and its derivative are illustrated for a p-type sample in Fig. 5.3.

e) Injecting contacts. A final boundary condition that we will encounter in semi-
conductor devices is one where either the excess minority carrier population or
the minority carrier current is set by conditions external to the sample. It is usu-
ally the excess minority carrier population that is constrained, but in either case
the boundary condition on the excess minority carrier population or its derivative
(i.e., the minority carrier current density) will be obvious.

A word of caution is in order at this point. In order to maintain quasineutrality
and to have a quasistatic situation, we must remove at least as much charge as we
inject. Thus a sample with an injecting contact at one end must have an ohmic
contact at the other, and the two contacts must be connected in some manner
through an external circuit, as Fig. 5.4 illustrates. If they are not, the problem
will not fit within the class of flow problems.

5.2.4 The Total Current

In Sec. 5.1.6 a procedure was outlined for obtaining the majority carrier current,
the electric field, and the excess majority carrier concentration once the excess
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Injecting Ohmic
p-type
Rr 1vr
AN I ]
FIGURE 5.4

Sample with an injecting contact on one end and an ohmic contact on
the other. The current will be determined by the characteristics of the
specific injecting contact and the external circuit.

minority carrier concentration and the total current are known. At this point we
should make a few additional comments concerning the total current, particularly
how we can determine its value.

When ohmic and/or injecting contacts are not on both ends of a sample, or
when ohmic contacts are not part of a complete circuit, then the total current is
trivially zero.

When there is an injecting contact at one end of a sample and an ohmic
contact at the other, the sample must be part of an external circuit; to have a
well-specified problem either the total current or the majority carrier current will
have to be set by this circuit.

When there are ohmic contacts on both ends of a sample and they are con-
nected through an external circuit, the total current density will simply be related
to the voltage difference between the two ohmic contacts by the conductivity of
the sample, o, (i.e., by Ohm’s law). To obtain this result we begin by adding
Egs. (5.15) and (5.16) to get an equation for Jror!
dp' dn'
| e + qDeE (5.34)
Assume that the sample extends from x = x4 to x = xp, and integrate Jror
from one end of the sample to the other:

Jror = 0,€ — gDy,

e dr—o | e _ dp' **dn’
Tor dx = 0, (x)dx — gDy, 7 dx +qD, 7] dx (5.35)
X4 XA XA x X4 X
Looking at each term we have
Xp
j Jror dx = Jror (X3 — x4) (5.36a)
X4
xp
crof E(x)dx = o,vpa (5.36b)
XA
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Dn [T dx = gDy [0 s) - p'(xa)] = O (5.36¢)

qiy —d7'x~q h[p(xB) P x4 -20C
XA ’
*8 dn' ! !

qDe _d?dx = (]De[n (XB) —n (XA)] =0 (536d)
XA

The last two integrals are zero because the excess carrier populations must
be zero at the two ohmic contacts. Combining these results, we then have our
final result: '

v
Jror = A —— EAXA) (5.37)

5.2.5 Specific Situations

We now have the mathematical models and tools we need to solve flow problems,
but our task is still formidable. There is an infinite variety of possible generation
functions g;(x), and finding solutions for them is in general very difficult. Fortu-
nately, most of the flow problem situations that are of interest to us in devices—in,
for example, p-n diodes and bipolar transistors—can be solved analytically. These
situations correspond to cases in which there is (1) uniform injection over all or
part of a sample, (2) there is injection only from an injecting contact or boundary,
and/or (3) the minority carrier lifetime is infinite (i.e., the minority carrier dif-
fusion length is very long). We will discuss each of these situations and present
examples of each, in the following several subsections.

In still other situations, in which it is in general difficult or impossible to
get analytical solutions, there are steps we can take to get approximate solutions
and thereby gain insight into the full solution. Of course, as well-trained electrical
engineers with a full arsenal of analytical techniques for treating linear differential
equations and quasi-infinite computational power at our disposal, we can certainly
grind out a solution in any complex situation, but we would like to do better. We
need methods of getting quick, engineering solutions. We will discuss approximate
techniques to do just that after we consider those cases in which we can find
analytical solutions.

We are first going to solve for the excess minority carrier population from
the quasistatic diffusion equation, which, assuming a p-type sample, is

d*n’ _n' _ gu(x)
dx? L2 D,

(5.38)
- Then, we can proceed to calculate J.(x), Jp(x), é(x), and p'(x).

a) Partially illuminated bar. One situation for which an analytical solution can
be obtained is when the generation function has a constant value throughout
various regions of the sample. The particular solutions in those regions are then
constants. They are equal to the strength of the generation function, say G, mul-
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tiplied by the minority carrier lifetime 7y, That is, if gy (x) is Gy between x,
and x,, the particular solution between x; and x2 iS Gr7min. The solution for
the entire bar is obtained by matching the solutions at the boundaries between the
various regions.

Example

Question. Consider the p-type silicon sample of length w illustrated in Fig. 5.5a.
The sample end at x = 0 is a reflecting surface, and there is an ohmic contact at x =
w. The excitation g7 (x) is Gy for 0 = x =< x and zero for x; = x < w, Assume
that N4, iy, Me, Dy, De, Te, T, and the sample dimensions are all specified.
What are the excess minority carrier population and minority carrier current in this
sample?

Discussion. To find n'(x) we first divide the problem into two sections: from x = 0
to x = x; and from x = x| to x = w. We have the following homogeneous
solution:

nl (x) = Ae*/Le 4 Be=*/Le  for0=x = x
ks Ce*/Le 1 De~*/Le forx;=x=w

The particular solution is

/ _ | Gr7e for0=x=x;
7 ps(¥) - {O forxy=sx=w

The total solution is

n/(x) - Ae*/Le 'i'Be_x/Lé +Gpre for0=x=x;
Ce*/Le 4 De=%/Le forx;=x=w

The boundary conditions are as follows:

dn'
At x = O. -E =0
x=0
At x = xj: n'(xl_) = n'(x])
aw'| _aw
dx _ dx +
x=xl x=x1

Atx = w: n'w) =0

The only item in this list that we have not discussed already is the particular
solution for x ‘between 0 and x;. There are several points to keep in mind about
particular solutions. The first is that they are unique. Thus we can be confident
that if we find a solution that works, it will be the only one. The second point is
that particular solutions in general take the same shape, or functional form, as the
excitation. Thus a good first guess is a function that looks like the excitation. In
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(a) A uniformly doped, p-type silicon bar with a reflecting boundary on
one end and an ohmic contact on the other; (b) uniform illumination
between x = 0 and x = x; and zero illumination elsewhere; (c) solution
for n’(x); (d) solution for J.(x).
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this case we guess a constant value, or if that doesn’t work, a polynomial. In the
present problem, a constant value works just fine.

We have four constants to determine by fitting the total solution to the boundary
conditions. We have four independent bourdary conditions, which give us four
equations in our four unknowns, A, B, C, and D. Their solution requires an algebraic
tour de force and teaches us little except that we can get a solution if we really have
to. For the record, the results are

_n_ G X1 x1\_ [(x1 —W)}
A=B-= 5 cosh (Le ){tanh(Le tanh _———.Le

sinh(x1/Le)
cosh[(xy —w)/L.]

C = _e-ZW/LeD = Ae—w/Lg

The corresponding n'(x) is plotted in Fig. 5.5¢, and the minority carrier current
density J.(x) is plotted in Fig. 5.5d. We see that the minority carrier population is
highest where there is generation and then drops off toward the ohmic contact. The
electron flux J.(x)/ ¢ builds up due to the generation, from zero at x = 0 to a peak
at x = x1, and then decreases from xj to w as some of the electrons recombine
with holes.

Rather than proceeding to obtain J;(x), €(x), and p'(x) in the above exam-
ple, we will leave this problem and move on to some additional special situations
that will give us more insight into solutions for flow problems.

b) Impulse illumination. Another important situation is that in which the gen-
eration function is a spatial impulse. As we shall see by looking at an example, in

_ this situation the generation function is zero almost everywhere and the solution
is simply the homogeneous solution. The role of the generation is to impose new
boundary conditions at the position(s) of the impulse(s). Impulse generation is of
particular importance to us because if we know the impulse response of a linear
system, such as we have in flow problems, then we can get the response to any
arbitrary generation function.

Example

Question. Imagine that all of the generation in the sample pictured in Fig. 5.5q is
concentrated very near the end at x = 0. Mathematically, consider the limit as x;
goes to zero, but at the same time you reduce x 1, increase G in such a manner that
the product Gy x{ remains constant and equal to M. In this limit, g;(x) becomes
an impulse at x = 0 of intensity M cm™2s™!, as is illustrated in Figs. 5.6a and b.
What are n'(x) and J.(x) in this situation?

Discussion. We could get a solution by taking the appropriate limit of the so-
lution we just obtained for a bar with illumination from O to x;, but we will
instead take another approach. We recognize that as x; becomes very small we
will inevitably be in the limit x; << L., and thus in the region 0 = x = xg,
L., will always be much larger than x. Thus on the size scale with which
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(a) A p-type semiconductor bar; () impulse illumination at x = 0; (¢)
solution for n'(x): and (d) solution for J.(x).
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we are dealing, L, is effectively infinite, and once we can assume that L,
is infinite, Eq. (5.21b) immediately simplifies to Eq. (5.32b):

dx2 D, D,

for 0 = x = x,. Integrating twice, we obtain directly the total solution for n'(x) for
0 = x = x;. (For a more thorough discussion of this method of solving for n'(x),
see subsection d below.) Thus our total solution for all x becomes

"2D,

. 2
n/(x):{ GLx +Ax +B forO0=sx = x;
Cex/Le +De—x/Le for X1=x=w

Applying our boundary conditions to these expressions, we find first that A = 0
from the boundary condition at x = 0. Second, from the condition at x = w, we
find that

Ce"/te £ De™W/le = ¢
Next, by matching n' at x = x;, we obtain

_ GL.X%
2D,

+B = Ce¥t/te 4 De=*1/Le

which, in the limit. x; — 0 and G- « such that Gy x| = M, is
v B=C+D
Finally, by matching dn'/dx at x; we obtain

- Grxy;  Ce*t/le —pe=*i/Le
D. L.

which in our limit is

Solving for C and D we obtain our total solution

MLg e(w—):)/Le —_ e"(W"x)/Le
D, ew/Le 4+ ¢=w/Le

n'(x) = for0=sx=sw

This can also be written as

ML, sinh[{(w — x)/L.]
D, cosh(w/L,)

n'(x) = for0sx=sw

(Note that since we have let x; go to zero, the region 0 = x =< x| no longer exists.)
The electron current density is

cosh[(w — x)/Le‘]

cosh(w/Le) for0=sx=w

Je(x) = —gM
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You will note that J,(0) = —gM . This result might at first seem to be inconsistent
with having a reflecting surface at x = 0, but everything is proper because with our
impulse illumination we are injecting M hole-electron pairs right at the surface at
x = 0. These carriers diffuse away, giving an electron flux at x = 0 of M, or a
current density of —gM.

The expressions we have found for n'(x) and —~J,(x) are plotted in Figs. 5.6¢
and d, respectively.

In the above example, the impulse occurred at the end of the sample. If it
were to occur within the bulk of the sample, the injected carriers would in general
diffuse both to the left and to the right. The boundary conditions at the position
of the impulse are then (1) that the excess minority carrier population will be
continuous and (2) that there will be a discontinuity in the minority carrier current
density equal to the strength of the impulse multiplied by the minority carrier
charge (which is —g for electrons, +g¢ for holes).

c¢) Injecting contacts. The above example in which there was impulse generation
at one end of a sample corresponds to the situation that arises when there is an
injecting contact at one end of a sample. This situation is extremely important
to us because it is what occurs in junction devices (e.g., p-n diodes and bipolar
transistors). :

Refer to Fig. 5.6a. If instead of an impulse of light at x = O we had an
injecting contact at the same point that was injecting M electrons/cm? - s, the
solutions for n'(x) and J.(x) would be unchanged. The injecting contact, as we
have specified it, imposes exactly the same boundary condition as did the impulse
generation function.

Another way of specifying an injecting contact is to say that it fixes the
excess minority carrier population at the contact. That is, in our example, we
might have specified that the injecting contact at x = 0 maintains »'(0) at some
value, say N'. The shapes of the n'(x) and J,(x) profiles would be the same as
they were previously, but the magnitudes would be different, depending now on
the value of N’.

Example

Question. Consider a sample identical to that pictured in Fig. 5.6a except that it
has an injecting contact at x = 0; g (x) is identically zero. The injecting contact
establishes n'(0) = N’ . What are n’(x) and J.(x)?

Discussion. The total solution for n'(x) is just the homogeneous solution with
the two constants chosen to fit the boundary conditions, namely n'(0) = N’ and -
n'(w) = 0. Thus we have

n'(x) = Ae*/Le 4 Bg%/Le
Applying the boundary condition constraints tells us that

A+B =N’
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and
Ae®Le 4 Be™W/Le =

from which we can easily solve for A and B.

By now, however, we should start being more clever in our solutions. Specif-
ically, we know that the homogeneous solutions can be written as combinations of
sinh and cosh functions, and we know certain properties of sinh and cosh. We know,
for instance, that a sinh function can have a zero value and thus could be chosen to
solve the boundary conditions. A little thought should convince you that the solution

we seek for n'(x) is

N sinh[(w — x)/L.]
sinh(w/L,)

n'(x) =

If this is not “obvious” to you, and it may well not be, you should be able to solve
for A and B above and arrive at the same result. Having n'(x), we can immediately
find J.(x):

_qDeN'cosh[(w — x)/L.]
L, sinh(w/L,)

Je(x) =

Comparing these results with those we obtained for impulse excitation will show
you that the shapes are identical and that only the magnitudes are different. [The
magnitudes differ only because the boundary condition in this case was on n'(x),
whereas in the earlier case it was on J.(x).] '

Two special cases of samples with one injecting contact are those in which
the sample is either very long or very short. By very long we mean that the
ohmic contact on the other end of the sample is many minority carrier diffusion
lengths away from the injecting contact (i.e., w >> L,, where w is the length of
the sample). By very short we mean the opposite (i.e., w << L,).

In the case of a very long device, which we will refer to as the long-base
limit, the profiles are single decaying exponentials falling away from the injecting
contact. All of the excess minority carriers injected at the contact recombine well
before they reach the ohmic contact, and the minority carrier current drops to zero
well before the ohmic contact.

Example

Question. Consider a p-type sample like that discussed above with an injecting
contact at x = 0 injecting M electrons/cm? - s, with an ohmic contact at x = w,
and in which L, is much smaller than w (i.e., L, << w). What are n/(x) and J,.(x)
in this sample?

Discussion. In the limit w > L., our solutions for impulse injection at x = 0 are

M__.Le e"x/Le

e

n'(x) =
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and

Je(x) = —qu_x/Le

These results are plotted in Figs. 5.7a and b. We see that the excess holes and
electrons generated at x = 0 all recombine well before they reach the ohmic contact.
Consequently the electron current has also gone to zero well before x = w.

In the other extreme, that of very short devices, which we will refer to
as the short-base limit, we have the situation we discussed in Sec. 5.2.1 that
corresponds to an essentially infinite minority carrier lifetime. The solution for
n'(x) in a sample with an injecting contact on one end and an ohmic contact on
the other is a straight line that decreases from a finite value at the injecting contact
to zero at the ohmic contact. The minority carrier current is constant throughout
the sample because there is essentially no recombination in the sample and almost
every excess minority carrier injected at the contact flows through the sample to
the ohmic contact, where it recombines.

Example

Question. Consider a p-type sample like that discussed above with an injecting
contact at x = 0 injecting M electrons/cm? - s, with an ohmic contact at x = w,
and in which L, is much greater than w (i.e., L, >> w). What are n'(x) and J.(x)
in this sample?

Discussion. In the limit w << L., our solutions are
M
1
n(x)~=—(w-x
() = 50w = x)

and
Je(x) = —qM

These results are plotted in Figs. 5.7¢ and d. Note that now n'(x) decreases linearly
to zero at x = w, as we said it would, and note that J.(x) is constant between O
and w. This is because having L, => w is equivalent to an extremely long minority
carrier lifetime. This in turn implies that very little recombination occurs in the
sample (except, of course, at the ohmic contact, where essentially all of the excess
hole-electron pairs recombine). ‘

We say that “essentially none” of the carriers injected at the contact re-
combine in a sample in the short-base/infinite lifetime limit because very little
recombination occurs and for purposes of calculating n'(x) and J.(x) we can
ignore it. At the same time, it is important to realize that if we ever really need
to know how much recombination occurs we can readily estimate it. To do so we
simply notice that the recombination occurring at any point x is n'(x)/7.. Thus,
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FIGURE 5.7

Minority carrier concentration and current density, respectively, as
functions of position in a p-type silicon bar with a contact
injecting M electrons/em? - s at x = 0: (a and b) for L, < w; (¢

and d) for L, >> w.
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the total recombination per unit area occurring between 0 and w is

w !
Fr =J G (5.39)
0 Te
which in the case considered in the last example is
Mw? w?
2= 35 = Mo 649

Of the total number M of hole-electron pairs unit area that were generated at
x = 0, a fraction equal to w?/2L? recombine between 0 and w; the rest recombine
at the contact, Clearly, when L, > w, a very small fraction recombine because
w?/L? is a very small number.

Repeating this exercise for the case L, << w, we find that

w i

Fg = j P Gy = M (5.41)
0 Te

Now all of the hole-electron pairs generated at x = 0 recombine in the sample,

and none recombine at the ohmic contact, which is just what we had concluded

earlier by looking at the electron current.

d) Infinite lifetime solutions. We have mentioned that in short samples, where
“short” implies small relative to the minority carrier diffusion length, the qua-
sistatic diffusion equation reduces to

d*n' _ _ gu(x)
dx? D,

This situation is often referred to as the infinite lifetime approximation be-
cause the same result is obtained in the limit 7, — o and, more physically, because
the term that has dropped out of the equation is the recombination term n'/ 7, (ac-
tually, n'/L2). No recombination implies infinite lifetime.

It is not necessary to find homogeneous and particular solutions to solve Eq.
(5.32). Doing so works, but it is far easier to simply integrate twice; the boundary
conditions are then used to determine the two constants of integration.

(5.32)

Example

Question. Consider a p-type sample of length w with ohmic contacts on each
end (1.e., at x = 0 and at x = w). The minority carrier lifetime in this sample
is sufficiently long that L, > w, and it is illuminated by light generating g;(x)
carriers/cm? - s. What are n'(x) and J.(x)?

Discussion. Integrating Eq. (5.32) yields
dn' 1 j *

0

- ! !
Jx ) grlxNdx +A .
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and integrating again yields
1 (xrx'
n'(x) = -————-f J gr(x"Ydx"dx' + Ax + B
D, 0 JO

We now must use the boundary conditions to evaluate the two constants of integra-
tion, A and B. In this example the sample has ohmic contacts on both ends, so the
boundary conditions are that n'(0) and n'(w) are zero. Imposing these conditions,
we find from the condition at x = 0 that B is zero; from the condition at x = w
we find that A is given as

'

1 w X
A= D wjo L gr(x"dx"dx’
L4

If the boundary conditions had been on the current, that is, if we had had injecting
contacts and/or reflecting boundaries, then we would have had to use our solution
for the gradient of n' to evaluate one or more of the constants.

e) Finite lifetime solutions. The observation that it is relatively easy to find
n'(x) when the lifetime is infinite leads us to suggest a convenient method of
estimating the solution in situations where the assumption of an infinite lifetime is
not valid and where finding the particular solution proves difficult or impossible.
In such cases we can first assume that the lifetime is infinite and get the solution
by integrating g (x) twice as we have shown. We can then “adjust” this solution
for the fact that the lifetime is finite by letting the infinite lifetime solution “sag”
appropriately. To appreciate what this means, compare Figs. 5.7a (short lifetime),
5.6¢ (moderate lifetime), and 5.7c (infinite lifetime). The increasing “sag” in
the profile with decreasing lifetime is quite graphic. Fig. 5.8 summarizes these
observations. '

f) Superposition. The diffusion equation is a linear differential equation, so the
response to a sum of excitations is equal to the sum of the responses to the
individual excitations. We can thus use superposition to solve flow problems. An
example is illustrated in Fig. 5.9.

Keep in mind, however, that the total solution must satisfy our assumptions:
it is not enough that the individual parts alone each satisfy the assumptions. Thus,
for example, the total »' must be much less than p, for low-level injection to be
a valid assumption. It is not enough for n’ due to each individual excitation to
satisfy this condition.

5.2.6 The Currents, Electric Field,
and Net Charge

Thus far we have concentrated on the problem of finding the excess minority
carrier concentration, and rightly so, because that is the difficult part. Once this
concentration is known, finding the currents, electric field, and net charge is more
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FIGURE 5.8
Tlustration of the “sag” in n'(x) as the lifetime is decreased: (a) assuming
constant injected flux; (b) assuming constant 7'(0).
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Ohmic Ohmic
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FIGURE 5.9

Iustration of superposition. Note that n'(x) need not consist of straight
lines for superposition to be valid.

or less mechanical. Nonetheless, we can still make some general comments on
the majority carrier current, the electric field, and the net charge density (from
which we determine the excess majority carrier concentration) that can help you
develop some insight with respect to these quantities.

First, we note that the spatial variation of the majority carrier current den-
sity mirrors that of the minority carrier current density. Since the sum of the
two currents is a constant, Jtor, when one increases the other must decrease
and vice versa. Physically, when the magnitude of the current changes, there is
hole-electron pair generation or recombination. If, for example, the hole current
density increases going from left to right, holes are being added to the flux stream,
so there must be net generation in that region. Correspondingly, the electron cur-
rent density will decrease going from left to right because more negative charge
is simultaneously being added to the stream. If, on the other hand, the hole cur-
rent is decreasing, holes are disappearing (i.e., recombining) in that region. At the
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same time the electron flux must also be decreasing, implying an increase in the
electron current. The two fluxes must change in concert.

Second, we note that the shape of the electric field reflects that of the
currents. This can easily be seen by referring to Eq. (5.26), but we can go further
with the help of a bit of algebraic manipulation. Assuming that we have a p-type
sample, we can show that the electric field can be written as either

g(x) = Jror 11 ;;f;iDe)]Je(x)

(5.42)

or -

_ _D_hJTOT + [(De/Dp) - I]Jh(x)
D, qHrDPo

€(x) (5.43)
Realizing that D, < D, in the typical semiconductor, we see that the shape of the
electric field is the same as that of the hole current (offset by a constant amount
proportional to Jror). Physically this results from the fact that the electrons diffuse
more quickly than the holes, so the electric field that develops to maintain charge
neutrality must be such that it pushes holes in the direction of any concentration
gradients. Thus the hole drift and diffusion currents are codirectional.

The same conclusion is reached even if the sample is n-type. A bit of algebra
tells us that in an n-type sample the field is

_ Jror + [1 = (Dp/D)1Jp(x)
GHello

Comparing this result with that for the p-type sample above reveals that the forms
are identical. The two results do differ in magnitude, however. If we compare
samples with identical doping levels (i.e., majority carrier concentrations), the
field in the p-type sample is larger by a factor of D,/ D}, (or, equivalently, w./ mp).
This simply reflects the fact that less field is needed to adjust the majority carrier
population in an n-type sample than in a p-type sample because electrons drift
more readily than holes.

_Finally, we note that we can show that the net charge is directly proportional
to the net generation of hole-electron pairs. Assuming a p-type sample, we use
our expression above for 4(x), Eq. (5.42), in Poisson’s equation, Eq. (5.19), to
write the net charge density p(x), which equals g[p'(x) — n'(x)], as

o dé(x) g i {1 _Dn
px) = e— = Jirp.dx [JTOT (1 De>Je(X)] (5.45)

é(x)

(5.44)

Using the fact that Jror is not a function of x and that J.(x) can be written as
gD (dn'/dx), we arrive at

MrPo  dx?

px) = (5.46)
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Note that d%n'/dx? is proportional to the negative of the net generation, that is,
~[gr(x) = n'/7.] [see Eq. (5.21a)], so we have

(D — Dy) n' :
p(x) =& inpaD. {gL(x) TeJ - (547
We could pursue this line of discussion further and reach additional conclusions
on quasineutrality, but that would be too much detail for now. It is important to
realize that p(x) should look like the net generation, particularly when 7, is very
large, and that you can use this fact as a check on your answer when you are
calculating p(x).

One last point to make is that if we differentiate the electric field and solve
Poisson’s equation for p(x), we find an impulse of negative charge at an ohmic
contact (assuming that excess carriers diffuse that far and recombine there) because
the electric field drops immediately to zero at the contact. This is totally consistent
with Eq. (5.47) because there is infinite recombination at an ohmic contact, but
it is hard to reconcile with the assumption of quasineutrality. The problem stems
from our modeling of the ohmic contact and the fact that things are happening very
quickly (spatially) there. Our model for an ohmic contact is itself an approximation
in which we assume that the recombination becomes infinite at the contact. If we
use a more physically realistic model that had the recombination occur over a small
but finite distance, we can avoid having infinite recombination, but our model
needlessly becomes much more complex. We probably still could not apply our
quasineutrality assumption in such a thin region because the region would be small
relative to an extrinsic Debye length. However, we do not need to know in detail
what goes on in the contact. The situation is very much like the case of impulse
injection. Furthermore, if we intend to simplify our modeling task by ignoring
what goes on in detail in the contact and assume infinite recombination, then we
should not be disturbed if our model seems to predict other nonphysical results.
One of the lessons of modeling is learning when to worry about nonphysical
results (i.e., when they indicate serious problems with the model) and when not
to worry about them (i.e., when they are artifacts that are harmless and can be

ignored).

5.3 SUMMARY

In this chapter we have considered situations in which one particular set of as-
sumptions concerning a semiconductor is valid, and we have learned how to
determine the excess carrier concentrations, the various current densities, and the
electric field in such situations. We have seen that when we can assume that we
are dealing with uniformly doped, extrinsic material under low-level quasistatic
excitation, and when quasineutrality is valid and the minority carrier drift current
is negligible, then the five coupled nonlinear differential equations we developed
in Chap. 4 to describe semiconductors in general can be simplified to one second-
order linear differential equation for the excess minority carrier concentration (we
assume a p-type sample for the purposes of our discussion):
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d’n' _n' _  g1(x)

dx? L2~ D,
where L, is the minority carrier diffusion length given by ./D.7.. Since this
is a second-order differential equation, there are two unknown parameters in the
solution and two boundary conditions are needed to determine them. We have
discussed several common boundaries we might encounter, including ohmic con-
tacts, reflecting boundaries, and injecting contacts, as well as internal boundaries.
We have labeled this special class of problems as flow problems, and we have
discussed their solution in a variety of situations.

A particularly important situation for device analysis occurs when the minor-
ity carrier diffusion length L. is very large compared to the size of the sample.
In this sitvation, which is referred to either as the infinite lifetime case or the
short-base limit, the factor n'/L? is negligible and our equation becomes

d’n’ _ gr(x)

dx? D,
This equation can be solved by integrating twice; again two boundary conditions
are needed, this time to evaluate the two constants of integration.

Once the excess minority carrier concentration is known, we have seen that
it is relatively easy to determine the currents, the electric field, and the net charge
density, from which we calculate the excess majority carrier concentration. One
other factor that we do need to determine, however, is the total current density
Jror, but we have seen that this is just a constant and that it is in general possible
to determine its value from the problem specifications.

As a practical matter, we will find when we discuss devices that 90 percent
of the flow problems in devices are one of two types: low-level injection at one
end of a bar, and arbitrary low-level excitation of a bar with infinite lifetime (or
minority carrier diffusion length). In the first instance the excess minority carrier
distributions look like those in Fig. 5.8, and are given by

ML, sinh[(w — x)/L.]
D, cosh(w/L,)

where we have assumed that we have a p-type sample with an injecting contact
at x = 0 injecting M electrons/cm? - s and an ohmic contact at x = w. In the
second instance the excess minority carrier concentration is found by integrating
the generation function:

n'(x) =

X x!
n'(x) = Jo J.o gr(x")dx"dx'+ Ax + B

1
D,
The constants A and B are determined by fitting the boundary conditions.

PROBLEMS

5.1 Consider the p-type silicon sample (p, = 1017 ¢cm™3) shown in Fig. P5.1 in which
the minority carrier lifetime is zero in the portion x < 0 and is 10~ s elsewhere.
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(2]
o

[}

o

T,=10-¢

0 L,/10

FIGURE P5.1

5.2

/ N, =5%107 cm3

Ohrmic

The sample is illuminated with light, creating an excess minority carrier population of
10%5 ¢m™3 across the plane at x = L./ 10, where L, is the minority carrier diffusion
length. ‘
(a) What is n'(x)? Give three expressions valid in each of the reglons x=0,0=

x = L,/10, and L./10 = x. Sketch your answer.
(b) What is the optical hole-electron pair generation rate in the plane x = Lg/107
This problem concerns the p-type silicon bar of length w illustrated i 1n Fig. P5.2a.
There are ohmic contacts on each end of the bar, Ny= 5 X 1017 cm™3, MHe = 1500
em?/V +'s, wp = 600 cm?/V -5, and the minority carrier lifetime is 6 X 107> s. You
may assume that the minority carrier diffusion length is much greater than w (i.e.,
L, >>w).

The bar is illuminated by a constant light (i.e., dgy/dt = 0) in such a way
that the electron current density is as illustrated in Fig. P5.2b.
Assume that low-level injection and quasineutrality are both valid assumptions.

(a) Sketch and dimension the hole current Jy(x) for 0 = x = w, being careful to

indicate its values at x = 0, w/2, and w.
(b) (i) What is the ratio of the electron diffusion current density at x = w/4 to the

hole diffusion current density at x = w/47
(ii) What is the ratio of the electron drift current density at x = w/4 to the hole
drift current density at x = w/4?

Ohmic

Si, p-type /V

] ! x

0 w

FIGURE P5.2a
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\ 3
W/ZN w

FIGURE PS.2b

5.3

5.4

Ohmic

(c) Sketch and dimension (i) the electric field and (ii) the net charge density for
O0=x=w.

(d) Sketch and dimension the excess electron concentration n'(x), for 0 < x = w,
being careful to indicate its values at x = O and w, and the shape of n'(x).

(¢) Sketch and dimension the optical generation rate gy, (x) for 0 = x = w. Specify
the peak value of gy (x).

Consider the uniform p-type sample illustrated in Fig. P5.3 for which L, >> L. It is
uniformly illuminated for L/3 = x = 2L/3 with light that generates Gy, hole-electron
pairs/cm? - s in the bulk. One end of the sample has an ohmic contact, the other has
a reflecting boundary.

Assume that low-level injection, quasineutrality, and minority carrier flow by
diffusion are valid assumptions. Assume room temperature also.

Sketch and dimension the following quantities:

(@n'(x)

(b) Je(x)

(€) Tp(x)

() 6(x)

(e) p'(x) — n'(x)

Consider the uniform n-type (N; = 1017 c¢cm™3) silicon sample illustrated in Fig.
P5.4, The two light sources at x = L/3 and x = 2L/3 are identical and each generate
1015 hole-electron pairs/em? «s. L = 1074 cm.

Reflecting

/n/

1 —1 i | x

0 L/3

FIGURE P5.3
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(@) (i) Assume that Ly >> L, and find p'(x).
(ii) Sketch and dimension your result. -
(iif) On your sketch indicate p'(x) due to M, alone illuminating the sample and

p'(x) due to M, alone illuminating the sample.

(iv) Indicate whether superposition is valid,

(b) Assume that L, is no longer much greater than L, but rather that the two are
comparable. Make a rough sketch of p'(x) now, indicating how the shapes and
peak values change relative to those corresponding to part a.

5.5 Consider the uniformly doped p-type sample illustrated in Fig. P5.5a, which has
ohmic contacts on both ends and is open-circuited. The doping level is 1016 cm™3,
D, = 40 cm?/s, D, = 10 cm?/s, and the minority carrier diffusion length is much
greater than L (i.e., L, >> L).

The sample is illuminated nonuniformly in such a manner that the electron
current density is as plotted in Fig. P5.55.
Sketch and label the following quantities for 0 = x = L:
{a)Hole current density Jj(x)
(b) Excess electron density n'(x)
(c) Electric field, €(x)
(d) Generation function gz (x).
(e) Net charge density p(x).

Ohmic Ohmic
-t
\f\ p-type /\_/

N,=10%cm3, 7,200

1 ] | 1 - x

0 L/3 2L/3 L
FIGURE P5.5a -




NONUNIFORM CARRIER INJECTION: FLOW PROBLEMS 108

J()[A/em?)

1

2

!
i
L3 2L/3 L

-1

2

Y

FIGURE PS5.5b

5.6 The uniformly doped p-type (Vs — Nz = 1017 cm™3) Si sample of length L = 6 um
and cross section 0.1 cm? with ohmic contacts on each end illustrated in Fig. P5.6 is
illuminated by light, with the resultant excess electron population also shown.

Assume the following for silicon at room temperature: u, = 1500 cm?/V - s,
mp = 600 cm?/V +s, n; = 1.0 X 1010 cm™3. Assume also that L, >> 6 pm.

(a) What are the diffusion coefficients D, and Dy, in this sample?
(b)If it is known that the minority carrier diffusion length in this sample is 60 pm,
what is the minority carrier lifetime?

Ohmic Ohmic
\J\ p- Si /\/

Cross section
N,-N;=10" em3

A=0.1cm?

n’ (cm>3)
J
H 1
13 I [
2X107 po—mmm o Km o m ANt "
! | 107 x 0<x<2
l % nx)=40505-u=3"110"  2<xx4
Ix10° ! | (6-x10 4<x56
| {
1 i
: :
0 ' > > x{pm)
0 2 4 6

FIGURE P5.6
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(c) Sketch and dimension the following quantities assuming L >> 6 um.
(i) Electron current density J.(x).
(ii) Total current density JtoT(x).
(iii) Hole current density Jp(x).
(iv) Optical generanon function gy (x).
(d) Using the value you found in Part (b) for 7., calculate the total

recombination occurring within this sample between x = 0+ and x = 2.
(Note: The units of your answer should be hole-electron pairs per second.)

5.7 We argue that it is very difficult to maintain charge imbalances for long times or over
long distances in an extrinsic semiconductor, and thus that the material tends to stay
electrically neutral (we call it quasineutral). The relevant time factor is the dielectric
relaxation time; the relevant distance factor is the Debye length (see App. D). This
problem deals with dielectric relaxation time,

(a) A macroscopic example of dieleciric relaxation is the decay of charge stored on
a “leaky capacitor.” Such a capacitor might be a parallel plate capacitor having
a conducting dielectric (i.e., one with a dielectric constant ¢ and a nonzero con-
ductivity o). A “leaky capacitor” can be modeled as an ideal capacitor in parallel
with an ideal resistor.
(i) Show that the charge stored on a capacitor of capacitance C in parallel with
a resistor of resistance R will delay as

IQ(t) = Qoe_t/Rc

if the charge at t = 0 is Q5.
(ii) Find an expression for the resistance R of a leaky capacitor with plate area A
and plate separation d .
(iii) Find an expression for the capacitance C of the same leaky capacitor as in -
part ii.
{iv) Find an expression for the RC time constant of the above leaky capacitor.
This is the dielectric relaxation time.
(b) Calculate the dielectric relaxation time /o of the following materials:
(i) A metal with o = 106 (Q -cm)™! and e = 10713 C/V - cm
(ii) An insulator with o = 1071 (Q -cm)" ! and e = 3x 10713 C/V - cm
(iii) A semiconductor with o = 10° (Q -cm)~! and & = 10712 C/V - em
§.8 The sample illustrated in Fig. P5.8 is illuminated on one end, a reflecting boundary,
with light generating a sheet of electron-hole pairs at x = 0. The light has sufficient
energy that all of the generated electrons are given so much energy that they are ejected
from the semiconductor, where they are attracted to the positively biased electrode and
appear as a current / in the external circuit. (This process is called photoemission.)
The light generates M hole-electron pairs/cm?-s at x = 0, and thus i = gAM,
where A is the cross-sectional area of the sample. L = 10Lj, and D, = 3D,.
(a)Sketch p'(x) for 0 = x = L. Indicate the values of p'(x)atx = Oandatx = L.
(b) (i) Sketch the total current density Jrop(x) for 0 < x < L.
(ii) Sketch the hole current density Jj,(x) for 0 < x < L. Indicate the values of
Ju(x) at x = 0%, that is, just to the right of the surface at x = 0, and of
Jp(x) at x = L™, that is, just before the ohmic contact at x = L.
(iii) Sketch the electron current density J.(x). Indicate the values of J,(0") and
Je(L7).
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5.9 Consider an open-circuited silicon bar 100 wm long with ohmic contacts on each end.
The bar is p-type with N4 = 5x 106 cm™3; the electron mobility p. is 1600 cm?/Vs;
the hole mobility w, is 600 cm?/V - s; and the minority carrier lifetime 7 is 1073 s,
The bar is illuminated with constant illumination generating g;(x) hole-electron
pairs/em® - s in its bulk so that the resulting excess minority carrier concentration
is as illustrated in Fig. P5.9.

(a) Calculate the minority carrier diffusion length for this sample, and justify the
assumption of infinite lifetime. (See the discussion in Sec. 5.23d.)

(b) Sketch and dimension the minority carrier current J,(x) for 0 = x = 100 pm.

(c) Sketch-and dimension the majority carrier current J;,(x) for 0 = x = 100 um.

(d) Sketch and dimension the electric field %(x) for 0 = x = 100 pm.

(e) What is the generation function g7 (x)? Sketch and dimension gz (x) for0 = x =
100 pm.

n’ (cm-3)
[

3x 108

2X 1013 F==m= ==+

1x 1013

1 1 L 1 ! x wm)
20 40 60 80 100

FIGURE P5.9
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(f) Sketch and dimension the net charge density p(x) for 0 = x = 100 um.
Compare your sketches of p(x) and gy (x). They should look similar, which gives
you a check on the consistency of your solution. (This is discussed in Sec. 5.2.6.)

(g) Thus far in this problem you have assumed no recombination in the bulk of this
sample (i.e., infinite lifetime), but 7, is not infinite, and recombination does occur.

(i) What is the total recombination flux density in the bulk of this sample.in
hole-electron pairs/cm? - s? [See Eq. (5.35) and the discussion preceding it.]
(ii) Compare this with the total rate at which hole-electron pairs are being gener-
ated (injected) in this sample by g;(x).
(iii) Where do the other hole-electron pairs go?

5.10 In this problem we want to compare the average velocities of drifting and diffusing
charge carriers in the p-type silicon sample illustrated in Fig. P5.10. In this sample
Ny =1x1017 em™3, p, = 1600 cm?/V s, uj, =600 cm?/V-s, D, = 40 cm?/s,
Dy =15 cm?/s, and 7, = 107 6s.

(a)If we apply a voltage of 2 V to this sample, what are the electron and hole drift
current densities and what are the average drift velocities of the electrons and

. holes?

b) Assume that the sample is illuminated with a narrow beam of light that generates
hole-electron pairs in the plane at x = 5 um and produces an excess electron
population n' at x = 5 um of 5 x 1015 ¢cm™3,

(i) What are the electron and hole diffusion current densities in the bar, and
what are the average diffusion velocities of the electrons and holes at x = 1
pm? ,

(ii) What are the average drift velocities of the holes and electrons at x = 1
pm?

(c) At some point along the bar the average diffusing velocity of the minority carriers
exceeds the thermal velocity, approximately 107 cm/s, which is inconsistent with
the assumptions made in developing the diffusing model and with what actually
happens. In practice, the velocity of diffusion carriers saturates at about 107 cm/s,
and the velocity of drifting carriers saturates at about the same level,

(i) Find the regions in the bar in which the diffusion model is not valid for the
minority carriers.

(ii) Is the diffusion model valid in these regions for the majority carriers? Why?

(ili) What happens to the electrons in these regions?
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NONUNIFORMLY
DOPED
SEMICONDUCTORS
IN THERMAL
EQUILIBRIUM

Thus far we have considered only uniformly doped, homogeneous samples. We
now want to consider samples in which the doping is a function of position.
We restrict ourselves to one-dimensional variations, that is, Ny(x) and N,(x),
and begin by considering samples in thermal equilibrium. The question we will
ask is, “Given Ny(x) and N,(x), what are the thermal equilibrium hole and
electron concentrations, p,(x) and n,(x), respectively, and what is the electric
field 4é(x)?” We do not ask about the electron and hole currents, J, and Jy,
because in thermal equilibrium these currents are identically equal to zero and we
need not be concerned any further with calculating them. In addition, we will
show that it is still true in thermal equilibrium that n,(x) po(x) = n,z even if n,
and p, are functions of position. Thus if we know n,(x), we know p,(x), and
vice versa.

Before proceeding with answering the above question, we should consider
why we even have a problem. Imagine that we have an n-type sample with Np(x)
as illustrated in the Fig. 6.1. If we assume that n,(x) = Np(x), then n,(x) would
increase going from left to right and p,(x) would decrease. However, these gra-
dients in n, and p, will cause the diffusion of electrons to the left and holes to
the right, which in turn will lead to a charge imbalance and a negative electric
field. This field will oppose the diffusion by tending to drift the holes to the left
and electrons to the right (i.e., back to their original positions). A balance, or

109
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Np(x)

/

FIGURE 6.1
Example of a net donor concentration Np(x), which varies with
position.

-

X

equilibrium, is.established in which the drift and diffusion fluxes just cancel each
other. Clearly, however, we must anticipate that n,(x) will not equal Np(x), and
that there will be an electric field.

6.1 GENERAL DESCRIPTION: THE
POISSON-BOLTZMANN EQUATION

We begin by rewriting our five basic equations from Chap. 4:

Te(x1) = gnie, O (280x, 1) + gDo() ) (4.15)

Ta(x) = gp(x0ps B0 - gDy B @
—éw;(;’t) + an((;;’t) = gr(x,t) — r(T)[p(x,t)n(x,ﬁ - n¥T)]  (4.17)
é‘”’gj’) . ‘9*";’;’” = e(x,1) - ;(T)[p(x,t)n(x,t) —aXTY]  (4.18)
M{%&fﬂ = glp(x,0) = n(x,0) + Ng(x) = No(x)]  (4.19)

In the special circumstances that we are dealing with now (i.e., nonuniform doping
and thermal equilibrium), there is no generation [i.e., g7 (x,t) is zero]; the currents
Je and Jj, are identically zero; and the carrier populations have their thermal
equilibrium values. Furthermore, there is no time variation, so the time derivatives
[in Egs. (4.17) and (4.18)] are zero and all of the partial derivatives become total
derivatives. In this case, Egs. (4.17) and (4.18) reduce to 0 = 0 and our five
equations become three:

dn,(x)
dx

0 = gno(x)pe(x)é(x) + gD(x) (6.1a)
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0 = gpo(®a()8(x) - gDy(r) 222 (6.10)
BN~ 41 o) = mole) + Na(x) = No(x)] 6.10)

In spite of the enormous simplifications that these three equations represent com-
pared to our initial five equations, they still form a set of coupled, nonlinear
differential equations, and their solution is still difficult.

In order to proceed toward finding p,(x), n,(x), and é(x) given N;(x)
and N,(x) we start with Eq. (6.1a). Writing the electric field €(x), as —d¢/dx,
where ¢(x) is the electrostatic potential, and rearranging terms yields

L dno(x) _ pedop(x)
no(x) dx D, dx 6.2)

This equation can be integrated from a reference point to the position x of interest.
We obtain '

Inno(x) = Inngp = el ~ Greil (6.3a)
D,
or, equivalently,
no(x) = nrefe#e[¢(x)—¢ref]/De (6.3b)

where ¢ps is the electrostatic potential at some point that we will take as our
reference position and nys is the electron concentration at that same position.

It can be shown that the mobility w and diffusion coefficient D of a carrier
are related through what is called the Einstein relation:

Be _ Hn . 4 (6.4)

This relation occurs because both drift and diffusion involve carrier motion in
gradients (of electrostatic potential energy and of concentration, respectively) and
are dominated by the random thermal motion of carriers and collisions with the
crystal lattice and defects. The Einstein relationship is easy to remember because
it thymes: “Mu over dee, is cue over kay tee.” In fact, inverted it still rhymes:
“Dee over mu, is kay tee over cue.”

Using the Einstein relation, Eq. (6.3b) becomes

no(x) = nrefefJ[¢(X)—¢rer]/kT (6.5)
From the hole current equation we can obtain a similar expression for holes:
Po(x) = prefe-qw(x)—@er]/k?" (6.6)

We will take as our reference point intrinsic material. Thus n.r = n; and
Pref = n;. We will also take the zero reference for our potential to be intrinsic
material (i.e., ¢rs = 0). We can do this as long as we are consistent and measure
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all potentials relative to this zero reference. With this reference convention Egs.
(6.5) and (6.6) become

no(x) = n,-e‘mquT (67)

and .
po(x) = n;e 90/ (6.8)

The exponential factors in these equations are called Boltzmann factors. We
can see that they take the form

¢ FE/TE (6.9)

where PE is the potential energy of the particle and TE is the thermal energy kT
The equations for n,(x) and p,(x) state that the ratio of the density, n; or p,
of carriers with potential energy PE;, to the density, n, or p,, of carriers with
potential energy PE; is a Boltzmann factor dependent on the difference between
PE; and PE;:

no_ Pio_ ,~(PEi-PE)/T
na D2

This type of behavior of a particle population at thermal equilibrium is found in a
large number of physical systems. It is a feature we will make use of in a number
of different device contexts. _

Equations (6.7) and (6.8) give us two equations in three unknowns, p,(x),
no(x), and ¢(x). Equation (6.1c), which is Poisson’s equation, is the third equa-
tion. Assuming that the dielectric constant & does not vary with position and
writing €(x) as —d¢/dx, we have

d2
dd;(;) = —%[Po(ﬂ ~ no(x)+ Np(x)] (6.11)

where we have also used ND(x) = N, (x) — N,(x) to denote the net donor con-
centration. Using Egs. (6.7) and (6.8) in Eq. 6.11 gives us one equation in one
unknown, ¢(x):

= ¢ APE/MT (6.10)

2
4 9x) d";(zx) = —%[n,-(e—qd’(")/” — 9%®/FTy 4 Np(x)] (6.12a)
or, equivalently,
’ d*p(x) _ g, .. gPx)
5 = ~[2n; sinh <= Np(x)] (6.12b)

This equation is called the Poisson-Boltzmann equation. It is a nonlinear, second-
order differential equation that is in general difficult to solve analytically. It can be
readily solved by iteration using numerical methods, but it is still a solution best
left for a computer. There are two special cases, however, in which approximate
solutions can be found analytically: the first is when the doping varies gradually
with position, and the second is an abrupt p-n junction. We will discuss both of
these in turn next. '
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6.2 GRADUAL SPATIAL VARIATION
OF DOPING

If Np(x) [which is defined as N4(x) — N,(x)] is sufficiently slowly varying, then
we can show that quasineutrality holds and that

no(x) = po(x) = Np(x) (6.13)

If the material is extrinsic, |[Np(x)| => n;, then for n-type materials we have
N,o(x) = Np(x) (6.14a)

2
) = 6.14b
and
kT N x

bnolx) = ~- D( No(x) (6.14c)

For p-type material, we have N,(x) greater than N;(x) and use N4(x) [defined
as N,(x) — Ng(x)] rather than Np(x). We find

Ppo(x) = Ny(x) (6.15a)
n%
Npo(x) = Nax) (6.15b)
and
kT . Na(x) :
bpolx) = = = 1n —As l" (6.15¢)

Notice that in writing Egs. (6.14) and (6.15) we have introduced subscripts to
indicate the net doping type (i.e., n or p) of the regions in question.

When Np(x) is sufficiently slowly varying we thus know all of the answers;
that is, we know n,(x), po(x), and ¢,(x). Quantitatively we can show that a
“slow” variation of Np(x) means

d¢>
dx

kT |Np|
&

(6.16)

To see what this means physically, it is first useful to notice that the quantity on
the right-hand side of this equation can be written in terms of the extrinsic Debye
length, which we have defined [see Eq. (5.13) and App. D] as

Lp = /Dmajmp (6.17)

For the sake of discussion let us assume that we have a p-type sample so that
TD = &/ qUpPpo and Doy = Dy = upkT/q. Using these we can rewrite Lp as

ekT

q2ppo

LD—_—

(6.18)
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Writing Lp this way we see that Eq. (6.16) can also be stated as

d¢
Ir < qLD (6.19)
Now we can interpret this constraint more easily. It says that any change
in the electrostatic potential of k7T /g must occur over many extrinsic Debye
lengths Lp; alternatively, it says that over a distance of one extrinsic Debye
length, the change in electrostatic potential must be much less than k7 /g for the
quasineutrality condition to hold.
To cast these statements in terms of a variation in the doping concentration
directly, assume that we have an n-type sample for which Np(x) is sufficiently
slowly varying that n,,(x) = Np(x). In this case we also have

b(x) = % 1n Yo%)

(6.20)

ni
and thus

dp kT dNp

dx  gNp(x) dx (6.21)

Inserting this into Eq. (6.19), we see that for our aslsumptioh of quasineutrality
to hold, we must have

dNp

| Np |
<<
dx

T (6.22)

where we have added absolute value signs to handle positive and negative doping
gradients and net acceptor, as well as net donor, concentrations.

Thus far in this section, we have simply stated Eq. (6.16) and its other forms,
Egs. (6.19) and (6.22). To develop a feel for where these results come from we
now look at an example in which we can obtain an approximate analytical solution.
Consider a doping profile in which Np(x) = N, for x > 0 and Np(x) = N,+AN
for x <0, where AN/N, is small. This situation is illustrated in Fig. 6.2a.

For large x, that is, x >> 0, we have ¢(x) = qbo(kT/q)ln(N /n;). For any
position we can write ¢(x) as

d(x) = ¢Po + Ap(x) (6.23)

and we can write the Poisson-Boltzmann equation for x > 0 as

dx? dx?

Assuming that | A¢ |<< kT /q and N, > n;, we find that this can be simpliﬁed
to

a2 _ d’Aé { eIt AOVKT _ ,a@o*tA/AT] _ 3y

d?A¢ _ g?N,A¢
dx? ekT

(6.24)
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N(x)
|

N,+AN

(a)

¢(x0)

J

- ¢o+ A¢ (x)
\¢—\

(b)

FIGURE 6.2
(a) Doping profile with a step decrease in concentration at x = 0; (b) the
" corresponding ¢(x).

From this we obtain the result that, for x > 0,
Ad(x) = Ae /Lo (6.25)

with Lp = (ekT/g2N,)Y/2. Figure 6.2b illustrates this function, which tells us
that the carrier concentration will track the doping profile with a natural reaction
distance of Lp. Our restriction, Eq. (6.19), follows directly.

We could continue with this solution, solving for x < 0 and (by matching
the two solutions at x = 0) determining A, but the significance of the extrinsic
Debye length should already be clear, and there is little to be gained by going
further. ‘

To summarize: if the variation in the doping profile N (x) is gradual, then the
equilibrium majority carrier population will be approximately | N(x) |. A “gradual”
variation in doping implies a change in doping of no more than roughly 10 to 20
percent in one extrinsic Debye length Lp.

6.3 p-n JUNCTION: THE DEPLETION
APPROXIMATION

A doping variation with tremendous practical importance is one in which the semi-
conductor type changes from n-type to p-type over a relatively short distance.
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Such structures are called p-n junctions, which form the heart of many electronic |
devices, as we shall learn.

6.3.1 Abrupt p-n Junction

An abrupt p-n junction is one in which the change from n- to p-type occurs
abruptly and in which the doping levels on either side of the junction are constant.
This situation, illustrated in Fig. 6.3, can be represented mathematically by saying
that Np(x) = —Ny, for x <0 and Np(x) = Np, for x = 0.

To treat the problem of abrupt p-» junctions we will use an approximation
called the depletion approximation. This approximation, which can be used to
treat junctions with many different doping profiles, has its foundations in the
exponential variation of the equilibrium carrier concentrations with electrostatic
potential, that is, Egs. (6.7) and (6.8). This dependence implies that small changes
in the potential ¢ will lead to very large changes in carrier concentrations, 7, and
Do, and this fact can be exploited to our advantage. ‘

In the n-type region, far from the junction, n, = Np,, po = n?/Np,, and
¢ = (kT/q)In(Np,/n;). In the p-type region, far from the junction, p, = Ny,
no, = n?/Ny, and ¢ = —(kT/q)In(N4,/n;). The electrostatic potential on the
n-side is written as ¢, and on the p-side as ¢,, and we have

_ (kT Npn
an = (q >1n Py : (6263.)
and
_ kT Nyp
¢p = <q )n . (6.26b)
Example

Question. What is the value of the electrostatic potential, referenced to intrinsic
material, in each of the following silicon samples at room temperature: a) Np, =

~Ny,

FIGURE 6.3
Doping profile at an abrupt p-n junction.
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2.5% 1015 em™3; b) Np, = 2x 1017 ecm™3; and ¢) Ny, = 4 % 1016 cm™3? Assume
that n; is 1 X 1010 cm™3 and k7/q is 0.025 V.

Discussion. Using Egs. (6.26) we find that ¢ is 0.31 V in sample a, and 0.42 V in.
sample b, and —0.38 V in sample c. We see that although the doping levels differ
by almost two orders of magnitude, the magnitudes of the electrostatic potentials
are all very comparable; this reflects the fact that the electrostatic potential depends
only logarithmically on the doping level.

Crossing from the n-region to the p-region, n, changes many orders of
magnitude and the associated gradient in concentration leads to a diffusion flux
of electrons from the n-side to the p-side of the junction. The complementary
change in p, leads to an oppositely directed diffusion of holes. These diffusion
currents will be counterbalanced by drift currents because the motion of negatively
charged electrons in one direction and positively charged holes in the other causes
a polarization, or charge imbalance, that creates an electric drift field that opposes
further motion. An equilibrium situation develops in which the drift and diffusion
currents exactly. cancel and the net hole and electron currents are identically zero,
as we have discussed before.

The electric field, of course, reflects the fact that ¢ changes from ¢,
to ¢, going across the junction. As ¢(x) decreases from ¢, as the junction
is approached, it must be true that n,(x) decreases even more quickly from
Np, (because it depends exponentially on ¢). This is illustrated in Fig. 6.4.
Any decrease in n, (X) below Np,, leaves a net, fixed positive charge density
p(x) = q[Np, — n,(x)] at that position. This is illustrated in Fig. 6.4. The hole
population p,(x) is increasing exponentially at the same time that n,(x) is de-
creasing, but until ¢(x) becomes very negative (approximately —¢,) the amount
of charge due to the mobile holes is negligible. Thus when the change in ¢ is

¢ [V] 1,(x) [em~3]
A /

14(T)q) 1046 bom o JR—

11 T/q)

5x 1014 ‘\

Xy Xy

(a) ()

X

FIGURE 6.4

Comparison of changes in (a) electrostatic potential, versus (b) equilibrium electron
population. (The values at x = 0 correspond to silicon at room temperature with
Np, = 1016 cm™3))
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more than a few kT /q, n,(x) will be much smaller than Np,, and the net charge
density p(x) will be essentially gNp,.

Similarly, on the p-side, as ¢(x) increases from ¢,, p,(x) decreases
quickly, and after an increase of only a few kT/g in ¢, p,(x) is much less than
N4p and we have p(x) = —qNyp.

The total change in potential, ¢, — ¢, is many kT /g, so we might anticipate
that these initial changes of only a few k7 /g will occur over only a small fraction
of the total distance over which the total change in ¢ occurs. In the depletion
approximation we assume that the changes illustrated in Fig. 6.4 occur over
negligibly short distances and thus that the change from p(x) = 0to p(x) = gNp,
on the n-side occurs abruptly at some x = x,. Similarly we say that p(x) changes
abruptly from 0 to ~gN4, at x = —x, on the p-side. Between x = —x, and
X = xp, both n,(x) and p,(x) are assumed to be negligibly small compared to
the fixed donor and acceptor densities, N4, and Np,. This is illustrated in Fig.
6.5a. Having an estimate of the net charge density p(x), we can proceed to solve
Eq. (6.11) for the electrostatic potential.

Formally, in the depletion approximation we assume that the charge density
has the following positional dependence:

0 for x<-xp
—gNyp for —x,<x<0
+qNp, for 0<x<x,

0 for Xp < Xx

p(x) = (6.27)

The positions x , and x, are unknown at this point in our discussion, but we will
obtain expressions for them shortly. We will get one relationship between x , and
x, by insisting that the total change in the potential must be equal to ¢, — ¢ .
We can get another relationship by noticing that the total charge in the system
must be conserved and that the net charge must be zero. Thus it must be true that

GNapxp = gNpnX»n
SO We can write

Xn NAp
In = 4P 6.28
Having specified p(x), we next obtain the electric field €(x) by integrating
the charge density once. We find )

0 for x<-xp
~gNap(x + xp)/e for —x,<x<0
gNpn(x — x,)/e for 0<x<x,

0 for Xp<Xx

€(x) = (6.29)

In arriving at this result, we have used the boundary condition that there is no
electric field far away from the junction on either side of the space charge region.
This electric field is plotted in Fig. 6.5b.
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FIGURE 6.5

Depletion approximation solution in the vicinity of an abrupt p-n junction for:
(@) the net charge density; (b) the electric field; (¢) the electrostatic potential;

and (d) the mobile charge populations. 119
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Next, a second integration gives us ¢(x):
¢p for x < =x,
b(x) = ¢p + gNap(x + xp)?/2e for —x,<x<0
¢bn — qNpp(x — x,)?/2e for 0<x<ux,
bn for Xp <X
This result is plotted in Fig. 6.5c¢.

We obtain our second relationship between x, and x, by matching the
expressions for ¢(x) at x = 0. Doing this and using Eq. (6.28), we arrive at

(6.30)

2e¢hy Nap
= 6.31
i \/ 7 NonWap + Npp) (©312)
2edy Np,
_ 6.31b
¥ = TG Nap@iap + Now) (6.31b)

In writing these equations we have introduced the quantity ¢,, which we call
the built-in potential and define as ¢, — ¢, the total change in potential seen in
traversing the junction. Using Egs. (6.26) we see that the built-in potential can
be written as '

¢y = LI (N—————D”JZVA"> (6.32)
q n}
The total depletion region width w is given by

2e¢p, Nap + Npy
wW=x,+x, = /
g P Y q NApNDn

The peak electric field in the junction, which occurs at x = 0, is given by

Box = €0) = 129y | NapNp, (6.34)
& NAP + NDn
Example

Question. Consider two silicon p-n junctions, the first in which the p-side doping
Nyap is 4 X 1018 cm™3 and the n-side doping Np, is 2.5 X 1015 cm™3, and the
second in which Ny, is 4 x 10'6 cm™3 and Np, is 2 x 1017 cm™. What are the
built-in potentials, what are the widths of the depletion regions, what fraction of
this width is on the n-side of the junction, and what are the peak electric fields in
each of these two junctions?

(6.33)

Discussion. Substituting the appropriate values into Eq. (6.32) for the built-in po-
tential we calculate that ¢, is 0.69 V in the first junction and 0.80 V in the second.
These two values are comparable even though the doping levels on the n-sides of
the junctions differ by a factor of 80. This reflects the fact that the built-in potential
depends only logarithmically on the doping levels.

Using Eq. (6.33) for the depletion region width we calculate that w is 0.6
pm (600 nm) in the first junction and 0.17 um (170 nm) in the second. We see
that the width is greater in the more lightly doped junction (i.e., the first junction).
This is true in general and is an important observation.
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In the first junction the depletion region on the n-side is 16 times as wide as
that on the p-side, since, as we know from Eq. (6.28), the widths vary inversely
with the doping levels. Thus 94 percent of the depletion occurs in the n-region,
which is the more lightly doped side of this junction. In the second junction, in
which the n-side of the junction is the more heavily doped, the depletion region on
the n-side is the smaller of the two depletion regions, being one-fifth as large as that
on the p-side. The observation that the depletion region extends primarily into the
more lightly doped side of a junction has important implications and applications.
We will encounter it in several device situations.

Finally, using Eq. (6.34) to calculate the peak electric field in each of the
two junctions, we find that it is 2.2 x 104 V/cm in the first and 8.8 X 10% V/em in
the second. That the electric field is higher in the more heavily doped junction is
another general observation that must be taken into consideration in device design.

The solution of the depletion approximation is now complete in that we have
an expression for ¢(x). This is only an approximate solution, however. Notice
that it is not a self-consistent solution. If we use our approximate ¢(x) to calculate
no(x) and po(x) using the Boltzmann factor expressions, Egs. (6.7) and (6.8),
we get the results shown in Fig. 6.5d. If we then calculate p(x), we find that
it is not the same as we originally assumed, that is, according to Eq. (6.27). In
particular, p(x) does not change from 0 to gN4, abruptly at x = —x,, nor does
it change abruptly at x = x,, as we of course know it must not. But it does
change quickly, changing by a factor of 100 within about three extrinsic Debye
lengths. If we wish to improve the solution (and the self-consistency) we could
use the “new” p(x) as the starting point for a second solution for ¢(x), integrating
p(x) twice as we did with our first p(x). This iteration process could be continued
as long as we wished, that is, until the solution converged to within acceptable
limits (set by us) to the “true” solution, as evidenced by how little it changed
between successive iterations. Because of the exponential dependence of n, and
Po on ¢ and because the two integrations have a strong smoothing effect, this
iterative process converges very quickly. This is one common method of solving
the Poisson-Boltzmann equation numerically.

In Fig. 6.6 more accurate solutions obtained by such an iterative technique
are compared with the depletion approximation. Certainly in terms of the quantities
of interest, the peak electric field and the depletion region width, the depletion
approximation is very good and is an extremely useful model.

Example

Question. For the junctions considered in the previous example, what are the extrin-
sic Debye lengths on the n- and p-sides of the junctions and how do they compare
with x, and x p, respectively?

Discussion, The extrinsic Debye lengths are 40 nm, 10 nm, and 4.5 nm, respec-
tively, in the regions doped to 2.5 x 1015 cm™3, 4 x 1016 cm™3, and 2 x 1017 cm™3.
In the first diode the depletion width on the p-side of the junction is 35 nm and on
the n-side is 565 nm. The corresponding extrinsic Debye lengths are 10 and 80 nm,
respectively. We can see that the depletion region width is only 7 extrinsic De-

bye lengths on the p-side, whereas it is more than 10 on the n-side, Nonetheless, the
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Comparison of accurate solutions in the vicinity of an abrupt p-n junction
with the results of the depletion approximation: (a) p(x); (b) ¥(x); (c) P(x);
(d) no(x) and p,(x). (Dashed lines represent the approximation.)
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depletion approximation is a good model even on the p-side. In the second diode
the depletion width on the p-side of the junction is 140 nm, whereas the extrinsic
Debye length is 10 nm; and on the n-side x, is 28 nm and Lp, is 2.5 nm. The
depletion approximation can be expected to be very good for this junction.

6.3.2 Other p-n Junction Profiles

The abrupt p-n junction is only one of many possible doping profiles encountered
in practical situations. Strictly speaking, a perfectly abrupt junction is never found
in practice because the change from p- to n-type doping always occurs over a finite
distance, depending on the fabrication technique used to produce the junction. If
the distance is much less than the depletion region width w, however, and the
regions outside the transition are uniformly doped, then the assumption that the
junction is abrupt will still be a good one. If the change is somewhat more gradual
but still narrower than w, the depletion approximation can still be applied, as long
as the true Np(x) is used.

In fact, the depletion approximation can be applied to any junction profile
for which Np(x) is “slowly varying” (as described earlier) at the edges of the
depletion region. The only difficulty may be in obtaining a closed-form solution
because the change in potential in crossing the junction will depend on the doping
levels at the edges of the depletion region. A certain amount of additional iteration
is required.

A useful nonabrupt doping profile is the linearly graded junction, that is,
one in which Np(x) can be expressed as

Np(x) = ax (6.35)

where the grading constant a has units of cm™*. This profile is illustrated in Fig.
6.7(a). Another common profile is the exponentially graded junction:

Np (x) Np (x)
|

- -N

(@) (b)

FIGURE 6.7
Two commonly encountered junction profiles: (a) linearly graded; (b) exponentially
graded,
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Np(x) = N[e¥ /L — 1] (6.36)

where x; is the position of the junction and L is the dimension describing the
specific profile under study. This profile, with x; = 0, is illustrated in Fig. 6.7b.

6.4 THE ELECTROSTATIC POTENTIAL
AROUND A CIRCUIT

A reasonable question to ask upon looking at Fig. 6.5c is whether the potential
change of ¢, going from the p-side to the n-side of a p-n junction can be
measured with a voltmeter at the diode terminals and possibly even be used as
a battery. The answer is no, but understanding why requires a bit of explanation
and is worth considering before the next chapter, where we will be applying an
external bias to such diodes.

To measure the voltage across a junction requires that we apply contacts to
the end of the device. In the process, we form several other junctions including
those between the contact metal or metals and the n- and p-type semiconductor,
and possibly between several semiconductor regions with different doping levels.
A possible example is illustrated in Fig. 6.8a. In this figure we assume that the
contact metal and wires are all aluminum. We have also added heavily doped n-
and p-regions on either end of the diode to facilitate making good ohmic contacts.

We can calculate the electrostatic potential relative to intrinsic silicon in
each of the variously doped regions of the semiconductor bar in Fig. 6.8 using
Eqs. (6.26). The electrostatic potential of aluminum relative to intrinsic silicon is
approximately —0.3 V. If we now plot the potential, moving from one lead and
contact into the heavily p-type region and on through the device to the other con-
tact and lead, we find that the potential decreases at some junctions and increases
at others, as is illustrated in Fig. 6.8b. The net change in potential, however, is
zero. Thus no voltage is measured between the terminals and no current flows
when the two leads are shorted together, as they are in Fig. 6.8a. We know this
must be the case if we are in thermal equilibrium because a nonzero current
would imply that there is a net flow of energy, which is clearly not an equilibrium
situation.

At each junction in the circuit a dipole layer forms, just as it did at the
p-n junction where a relatively wide depletion region formed. At points where
the potential steps are small, and between two similarly doped regions (i.e., n to
nt or p to p*), the dipole layer is very thin and will be of little consequence
to us when we study current flow in Chap. 7. Between the aluminum and the
n-silicon, however, the potential step is large and could introduce a significant
barrier, but again the depletion region can be made very narrow and the junction
inconsequential by heavily doping the silicon next to the metal. This is part of
the science of making good ohmic contacts; such technology is not our concern
here, but it is discussed in Apps. E and G. It will be sufficient in Chap. 7 for
us to say that we can build diodes in which the only junction that “matters” as
far as the external bias and current flow are concerned is the main p-» junction.
For purposes of our thermal equilibrium discussion in this chapter, however, it
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FIGURE 6.8

(a) Typical abrupt p-n diode with two aluminum ohmic contacts and an
aluminum wire connecting them; (b) plot of the electrostatic potential
through the structure in (a); (¢) the corresponding net charge distribution.

does not even matter whether the dipole layers are thick or thin. In either event
the total potential step crossing each junction is the difference in the electrostatic
potentials on either side, and thus the total potential charge in going around a
circuit is identically zero.

Consider what would happen if one of the leads on the device in Fig.
6.8a were copper. As soon as you complete the circuit—whether by touching the
copper and aluminum leads or by shorting them together with yet a third metal,
say silver—small dipole layers develop at each new junction and the appropriate
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potential steps develop. The total potential drop going around the circuit is still
zero and no current flows. This must, of course, always be the case because we
are in thermal equilibrium.

6.5 SUMMARY

In this chapter we have first shown that in the case of an arbitrarily doped semicon-
ductor in thermal equilibrium, our five basic equations describing semiconductors
reduce to a single second-order differential equation for the electrostatic potential;
we call this equation the Poisson-Boltzmann equation. Knowing the electrostatic
potential ¢(x), we can immediately determine the equilibrium hole and electron
concentrations, p,(x) and n,(x):

no(x) = n;e?$VKT
po(x) = nie—q¢(X)/kT

We can alsd readily calculate the electric field €:

_do(x)
dx

(In thermal equilibrium there are no currents.)

We have considered two common special cases of nonuniform doping. The
first was that in which the doping changes gradually in magnitude, but not type,
with position, and we found that in this case the majority carrier population tracks
the net doping concentration profile. The second case was an abrupt p-n junction,
for which we found that we could use a model called the depletion approximation
to estimate the depletion region width and the electric field in the depletion region
(also called the space charge layer). In the depletion approximation model, we
assume that the mobile hole and electron populations are identically zero within
the depletion region and have their equilibrium values elsewhere. This gives an
eestimate for the net charge distribution, which we can then integrate twice to get
the electrostatic potential. Fitting the result to the known potential change across
the junction, which we call the built-in potential, gives us the depletion region
widths on the n- and p-sides of the junction.

Having developed our model, we observed that the depletion region extends
predominantly into the more lightly doped side of a junction and also that the
depletion region is wider in more lightly doped junctions and relatively narrower
in heavily doped junctions. We have also seen that the peak electric field in the
depletion region is greater in more heavily doped junctions. These are all important
observations that we will use when designing junction devices such as diodes and
bipolar transistors.

Finally, we have discussed the electrostatic potential change experienced
crossing a p-n junction and asked whether it represents a possible source of
energy. We argued that as we add leads to our device and complete the circuit
through which this energy would flow, we find that there are, in fact, potential
steps, some up and some down, at each interface or junction between different
materials in the circuit. We saw that the net result is that the change in potential

E(x) =
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going around a circuit in thermal equilibrium is zero and that a p-n junction in
thermal equilibrium is not a battery.

PROBLEMS

6.1 This problem provides practice with basic relationships.

(a)Find the electrostatic potential ¢ in the following samples, assuming ¢ is zero in
intrinsic material:

(@) n-type Si, no = 5x 1017 cm™3
(i) p-type Si, po = 1 x 1018 cm™3
(iif) p-type Si, po = 1% 1016 cm™3
(iv) p-type Ge, po = 1 X 1016 cm™

{b)Find the carrier diffusion coefficient or mobility as indicated in each of the fol-
lowing samples at room temperature (300 K, k7/q =~ 0.025 V):

() Sit pe = 1500 cm?/V - s, D, = ?

(i) Si: D, = 30 cm?/s, p, = ?

(iii) GaP: D, = 30 cm?/s, pte = ?
(iv) Ge: mj = 2000 cm?/s, Dy = ?

(c)Repeat b at 125°C (approximately 400 K).

6.2 In this problem we will be concerned with three different silicon samples: an n-sample
with Ny = 5% 101° cm™3, an n*-sample with N, = 1018 cm™3, and a p-sample
with Np = 1017 cm™3. (Note: By writing n* we denote a heavily doped n-type
sample.)

(a) Following our convention that ¢ = 0 in intrinsic material, what is ¢ in each of
these samples at room temperature?

(b)Calculate the built-in voltage ¢, of a junction (i) between the p- and n-samples
and (ii) between the p- and n™*-samples.

(c)Derive an expression for the electrostatic potential difference between two uni-
formly doped n-type regions. Use this expression to calculate the potential differ-
ence (built-in potential) between the n- and n*-samples.

(d) The electrostatic potential of a certain metal relative to intrinsic silicon is —0.,05
V at room temperature. What is the contact potential between this metal and (i)
the n*-sample? (ii) the p-sample?

(e) Use your answers from parts a through d to show that the change in electrostatic
potential going around the circuit shown in Fig. P6.2 is zero.

6.3 Calculate the depletion region width in the following junctions. In each case com-
pare your answer to the extrinsic Debye length on the more lightly doped side of the
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FIGURE P6.2
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junction. Refer to Table A.1 of App. A as needed.
(a)Silicon: Np,, = 1017 em™3, Ny, = 5% 1015 cm™3
(b)Silicon: Np,, = 107 cm™3, Ngp = 5% 1018 ¢cm™3
(c) Germanium: Np, = 1015 cm™3, Ny, = 5 x 1016 cm™3
(d) Gallium arsenide: Np, = 107 em™3, Ny, = 5 x 1018 ¢cm~3
6.4 A linearly graded junction is an approximation to the doping profile created by the dif-
fusion of impurities into a semiconductor to form a deep p-n junction. It is described
by the relationship

N(x) = Ng(x) ~ Ng(x) = ax

where g has the units of cm™#% and is called the grading constant.
g 4

(a)Use the depletion approximation to calculate expressions for and make rough
sketches of the following quantities when v4 = 0, assuming that the depletlon
region width w is known:

(i) Net charge density p(x) for —w < x <w
(ii) Electric field €(x) for -~ w <x <w
(iii) Electrostatic potential ¢(x) for ~w < x < w -
(b) Derive two expressions for the built-in potential ¢p = d(w/2)—¢(—w/2) as follows:
(i) Based on your expression in part (iii) above
(ii) Based on knowing p;(—w/2) and n,(w/2) and usmg the Boltzmann relations
(n = n;e90/kT etc)

(c) Setting equal the two expressions you found in b for ¢ equal yields a transcen-
dental equation that would have to be solved to find w. Write out this equation
and find ¢, and w when a is 1020 cm™4,

6.5 A useful variant on the abrupt p-n junction is the p-i-n diode, where i stands for
intrinsic. An example is pictured in Fig. P6.5. The idea of this structure is that the
largest electric fields and most of the voltage drop occurs across the intrinsic region.
In this problem use w, = wp = 2 umand w; = 1 um. Also assume that T = 27°C
(300 K) and that n; = 1010 cm™3.

(a) What is the electrostatic potential on the n- and p-sides of this diode far from the
interfaces (i.e., in the quasineutral regions)?

(b) What are both n, and p, in each of the two quasineutral regions?

‘(c) Sketch and dimension N(x), the net donor concentration as a function of x, for
—Wwp <X <w; +wy.

(d) Assummg depletlon regions of width x, and x, on the p- and n-sides of the
junction, respectively, what is the ratio of x, to x?

; ; Ohmic
: . : contact
14 | d ) n
| I
| |
| |
N,=5%107cm-3] N =0 | N,=10"8cm-3
Ohmic } !
contact 1 |
1 1 ! L » x -
-W 0 w; Wi+ w,

g2
FIGURE P6.5
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(e) Sketch and dimension the net charge distribution p(x) as a function of x for
~Wwp < x < w; +w,, assuming that the depletion approximation is a good model.
Do not solve for x, and x p» but assume that they are known and are smaller
than w;.

(f) Sketch and dimension the electric field profile 4(x) for —w, < x < w; +w,, using
the depletion approximation. Assume that x, and x , are known and are smaller
than w;.

(g) Estimate a realistic lower bound for the approximate applied voltage that would
result in a peak electric field of 103 V/cm in this device. Think about this question
a bit; you should not have to solve for x, and x , in order to answer.

6.6 Consider a silicon diode with the doping profile illustrated in Fig. P6.6.

(a) Sketch and label the net charge distribution p(x) in this structure, assuming that
the depletion approximation is valid.

(b) Sketch and label the electric field profile (x) throughout this structure.

(c) Sketch and label the electrostatic potential ¢(x) in this structure.

(d) Calculate the zero bias depletion region width in this structure.

6.7 Find the electric field and electrotatic potential profile due to the charge distribution

shown in Fig. P6.7. Make labeled sketches of €(x) and the potential ¢(x). In your
potential plot take the reference potential to be ¢ = 0 at x = 0.

2=

________ - —po

Charge distribution
FIGURE P6.7
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6.8 The p-n junction shown in Fig. P6.8 has an impulse of doping, o, at the origin. The
width of the space charge layer on the p-side is x , and on the n-side is x,.
(a)Find an expression that relates x, to x P
(b)(i) Make a labeled plot of €(x). Label in terms of N, o, x, and 8.

(i) Do the same for ¢(x).
‘(c) Write an equation for x , (in terms of g, N, o, €, and ¢;) that you can use to
solve for the value of x .



CHAPTER

7

JUNCTION DIODES

The p-n junction diode is a very important device that we are now in a position
to understand. We have just discussed modeling a p-n junction in thermal equi-
librium, and the next logical step is to force our junction out of equilibrium. We
will do this by applying a voltage, illumination, or both to it, and we will then
see what happens. As we shall see shortly, some extremely useful things happen,
and we will be able to do a great deal even with a single p-» junction.

7.1 APPLYING VOLTAGE TO A p-n
JUNCTION

In Sec. 6.4 we considered the changes in the electrostatic potential as we went
around a circuit through a short-circuited abrupt p-n diode and found that although
there were steps up and down, the net change in potential was zero, as we knew
it had to be. Now consider breaking the circuit by parting the wire connecting the
two ohmic contacts, which we label A and B, and applying an external voltage
source that will create a potential difference v g between the two contacts. This
is illustrated in Fig. 7.1a.

In our model for a p-n diode, we will assume that the only effect of in-
troducing vap on the electrostatic potential picture of Fig. 6.5¢ is to change the
potential step in crossing the junction from ¢; to ¢, — vag. None of the other
potential steps change.

This assumption, in effect, says that none of the other parts of the diode
structure present a significant impediment to current flow and equilibrium; only
the abrupt p-n junction plays a major role, and it somehow (as we shall describe
shortly) “absorbs” the deviation from equilibrium (i.e., the effects of the nonequi-
librium external voltage source excitation).

131
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FIGURE 7.1

(a) The diode of Fig. 6.8a with an external voltage applied to the terminals;
{b) the possible contributions to the effective nonlinear resistance of a p-n
diode like that in Fig. 7.la; (¢) the variation in the electrostatic potential
through the structure with a negative applied bias (i.e., vag <0).

A simple picture may help you understand. Figure 7.1b shows schematically
the various pieces in the diode circuit that might impede current flow and thus ab-
sorb some of the applied voltage. We picture these pieces as resistors, recognizing
that this may be very crude given that there is no a priori reason to expect all of
these regions to show ohmic behavior (i.e., a linear relationship between voltage
and current). Beginning with the left-most contact, we have first the interface be-
tween the metal and the p*-silicon (R;), then the resistance of the p*-region (R;),
the p*-p junction (R3), the resistance of the p-region up to the edge of the space
charge region (R4), the p-n junction proper (Rs), the resistance of the n-region
(Rs), the n-n junction (R7), the resistance of the n*-region (Rg), the n* -region-
to-metal contact (Rg), and finally the resistance of the wire (R1p). Some of these
resistances (R, R4, Rg, and Rg) can clearly be made low by suitably doping the
semiconductor and others (Rjg) by using good wire.
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The contact resistances (R; and Rg) and the p*-p and n-n* resistances
(R3 and R7) are less familiar to you. Referring to Fig.7.1c and looking first at
the p-p* and n-n* interfaces, we know from Chapter 6 that the potential step
height at each of these interfaces is simply k7/q times the natural logarithm of
the ratio of the two doping levels. Thus if the doping changes by three orders
of magnitude, a typical situation, then the step height is about 7kT/g, or 0.17 V
at room temperature. It turns out that this is a very ineffective barrier to current
flow and that these resistances, Rz and R7, are negligible. The potential step at
the contact to the p* region is similarly small, and R; is also negligible. The
contact to the n* region is more troublesome because the potential step height
is relatively large and because making a low-resistance contact to n-type silicon
requires some effort. If aluminum is put on lightly n-doped silicon it does not
form a low-resistance contact but rather looks like a diode itself; this is called a
metal-semiconductor, or Schottky diode (see App. E). To make a low-resistance
contact we need to use a heavily doped n-region (i.e., an n*-region) under the
metal, as we have here. Then the depletion region in the n*-silicon is so narrow
and the electric field at the interface so high that the carriers can readily penetrate
right through the barrier. This “tunneling” through a very narrow barrier is a
quantum mechanical effect. We will not attempt to model it further in this text.
Suffice it to say, however, that it allows us to make low-resistance ohmic contacts
to n-type silicon in spite of the large electrostatic potential step at the interface
and, in this case, to make Ry negligible. Thus in a well-designed p-n diode, the
only significant impediment to current flow is the p-n junction itself (Rs in Fig.
7.16). .

Summarizing, we conclude that in a well-designed p-n junction diode, all
of the voltage applied to the external terminals, vap, appears across the depletion
region as a change in the potential step from ¢, to ¢, — vap. There are two
main consequences of this that we will treat in turn next. First, the width of the
depletion region changes and, along with it, the net charge, electric field, and
electrostatic potential profiles. Second, current flows.

7.2 DEPLETION REGION CHANGES

We can still use the depletion approximation model for the p-n junction depletion
region unless there is a significant increase in the charge in the depletion region
because a current is flowing. When a negative voltage is applied to the p-n diode
we will see (as you may already know) that only a very small current flows. It
is not difficult to accept that there is little additional charge associated with such
a small current. When vap is positive, however, much larger currents flow, as
we shall see, but even then the charge density of the carriers flowing through the
depletion region is much less than the charge density of the ionized donors and
acceptors. Thus to an excellent approximation, the net charge distribution p(x)
can still be assumed to be given by Eq. (6.27), as pictured in Fig. 6.5a. The
only difference is that now x, and x , are changed because the potential step is
¢p — vap rather than ¢,. We will look first at this change and then at its practical
implications.
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7.2.1 Depletion Width Variation with Voltage

The derivation of the electric field and potential profiles through an abrupt p-n
junction with an applied bias is identical to what was done in Chap. 6, except
that ¢, is replaced everywhere with ¢, — vap. Thus we can immediately write an
expression for the total depletion region width, as well as x, and x ,, by referring
to Egs. (6.31) and (6.32). The results are

2e(¢pp ~ vaB) Nap + Npy
. wly = 7.1
(vaB) \/ p NiNon (7.1)
and, as before,

NAp ‘

Xp = W————F—— 7.2a

"= Y Ny + Now (7.22)

X, Non (7.2b)

= W_—"
(NAp + NDn)

We see that the depletion region increases with increasingly negative applied
voltage and that the increase is roughly as the square root of the magnitude of
the voltage. Incidentally, we often call the applied voltage a bias and speak of a
negative bias as a reverse bias.

The peak electric field is also changed by the applied bias, similarly increas-
ing with increasing reverse bias. With bias, Eq. (6.34) becomes

_ [2q(¢y —vaB) NapNpn |
Eox(vap) = f . ®ay + No0) (7.3)

The appearance in Egs. (7.1) and (7.3) of the term (¢, — vap)Y/? raises the
concern that there might be a problem if v,p is greater than ¢, at which point the
term becomes imaginary. As we shall see, however, we will never encounter this
situation because as vap is increased toward ¢, the current increases exponen-
tially. Long before vap equals ¢, our assumptions of modest currents, negligible
voltage drop elsewhere in the device, negligible charge density in the depletion
region due to the charge carrier fluxes, and low-level injection are violated and
our model will have to be modified. We will discuss this further in Sec. 7.3.3.

7.2.2 Depletion Capacitance

. If the voltage bias on a p-n diode is changed, the depletion region width changes,
as we have just seen, and some of the current that flows will be that which supplies
or removes the charge associated with the change in the depletion region width.
If v4p is made more positive, the depletion region decreases and positive charge
(i.e., holes) must flow into the p-terminal to neutralize some of the depleted
acceptors and reduce x ,, whereas on the n-side of the junction, electrons must
be supplied to reduce x,. Similarly, if vap is made more negative, the depletion
region widens, some holes must be removed from the p-side as x , increases,
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and electrons must be removed from the n-side as x, increases. This process is
pictured in Fig. 7.2.

The depletion region of a p-n diode thus stores charge, a fact that must be
included in our modeling of the current-voltage characteristics of a diode. We
begin by considering how the charge on the p-side of the junction, gpp(vag),
depends on the voltage v,g. The depletion region charge gpp(vag) on the p-side
of the junction is given by '

QDP(VAB) = —AqNApxp (7.4)

where A is the cross-sectional area of the junction. Using Eq. (6.31b) we have

NApNDn

Nay + Now) (7:3)

gpp(VaB) = —A\/286](¢b — VaB)

We see that the stored charge is a nonlinear function of the applied voltage, so we
clearly cannot identify a conventional linear capacitor with the depletion region.
However, if the change in voltage is small enough, the corresponding change in
the stored charge will be linearly proportional to the change in the voltage. In this
case we can define a linear depletion capacitance Cgj.
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FIGURE 7.2
Changes in the charge distribution in the vicinity of an abrupt p-n junction: (@) as
vap 1S increased; (b) as vap is decreased.
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Imagine that the voltage on the diode, vag, changes from Vag to Vag + vap,
where v, is “small.” The charge gpp will change fromi gpp(Vag), which we
denote as Qpp, to gpp(Vap + Vap), Which we denote as Qpp + qgp- We know (and
will show below) that if vy, is small enough, then gq4, will be linearly related to
Vap as

ddp = Cdpvab ‘ (7.6)

where Cg, will in general depend on Vag.
There are several ways we might proceed to obtain an expression for Cdp
One is to consider approximating gp about Va5 using a Taylor series expansion:

vgp + Higher-order terms 7.7
Vas

d
gop(Va + vav) = qop(Vap) + 7120
VAB

If v,y is small enough we can neglect the higher-order terms. Doing this and then
comparing Eq. (7.7) to Eq. (7.6), we find that

‘ d
Cap(Vap) = dQDP (7.8a)
VAB Vip
Another way to get this same result is to take the limit:
Cop(Vap) = lim gop(Vap + van) — qop(Vas) _ dgpp (7.8b)
vp—0 Vab dVAB Vam

We will use Eq. (7.8a) to define what we mean by the small signal depletion
capacitance Cdp(VAB) of a junction. Using this definition to evaluate Cap(Vap) for
an abrupt p-n junction, we obtain

&q | NapNpn
=A .
Cap(Vap) \/2(¢b = Vi) Wap + Now) (7.9)

Summarizing, Cgp(Vag) relates the change gg4p in the depletion layer charge
gpp due to a small change v, in the applied voltage vap about the bias voltage
Vag, to the small voltage change v,,:

Cop = 122 (7.10)

where it is understood that Cg, is a function of V.

Example
Question. Consider two silicon p-n diodes: the first with Ny , equal to 4X 1016 cm
and Np,, equal to 2.5 x 1015 cm™3; the second with an Nyp of 4 X 1016 ¢m~3 and

Np, of 2 x 1017 cm™3. What is the depletion capacitance per unit area of each of
these diodes at room temperature for small-signal operation about the following bias
points: a) Vyg = 0 V; b) Vap = =5 V; and ¢) Vap = +0.4 V?
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Discussion. Notice that these diodes are the same as those considered in the ex-
amples of Chap. 6. We calculated ¢, for these junctions there; substituting those
results and the other parameter values into Eq. (7.9), we find that Cgj, at zero bias is
approximately 1.7 x 1078 F/cm? in the first diode and approximately 6 x 10~8 F/cm?
in the second.

Because device areas are often measured in microns, a useful unit for area is
microns squared, um?. In these terms, Cgp for these two devices is 0.17 fF/um? and
0.6 fF/um? for diodes one and two, respectively. The “f” here stands for “femto,”
the suffix implying a multiplier of 10713, that is, 1 fF is equal to 101 E

The fact that Cg, is higher in the more heavily doped diode is a general result
that reflects the fact that the depletion region is narrower in more heavily doped
junctions.

At a reverse bias of ~5 V, the depletion capacitances of the two junctions
decrease to approximately 0.06 and 0.2 fF/ um?, respectively. At a forward bias of
0.4 V, they increase to approximately 0.27 and 0.86 fF/um?, respectively,

If the voltage v,, is a function of time, there will be a current equal to
dqgep/ dt, into the diode due to this small-signal depletion capacitance. That is,
. _dqap _ dvay
b= T Ceg
We will use this result when we develop circuit models for p-n diodes.
Before leaving our discussion of depletion capacitances, notice that Cgp can
be expressed in terms of the depletion region width w when vap = Vag. Using
Eq. (7.1) in Eq. (7.9), we find that we can write

A
Cyp(Vap) = fw— (7.12)

(7.11)

where w is the depletion region width at vag = Vap. This is simply the expression
for the capacitance of a parallel-plate capacitance of width w. It may help to refer
to Fig. 7.2 to see that this makes perfect sense. Clearly, any additional charge is
added or removed from the outer edges of the depletion region.

7.2.3 Applications of the Depletion
Capacitance

The linear small signal depletion capacitance associated with a p-n junction turns
out to be an extremely useful “device” in its own right. It can, for example, be
used in circuits as a voltage-variable capacitor; it can also be used as an analytical
tool to characterize the doping profile in a diode. We will discuss each of these
applications briefly below.

a) Voltage-variable capacitors. The depletion .capacitance clearly depends on
the bias voltage V5, as Eq. (7.9) shows. This fact can be useful in certain circuits
as a way of obtaining frequency tunability. You know from other course work that
the time constants and resonant frequencies of RC and LRC circuits depend on
the sizes of the capacitors in them. If one of those capacitors is a junction depletion
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capacitance, its value can be changed by changing the reverse-bias voltage on it.
Thus one can adjust, or “tune,” the time constants and resonances of the circuit by
changing the bias voltage on the relevant junction. A junction designed specifically
for such an application is called a varactor.

A word of caution is in order here. You must remember that the charge stored
in the depletion region is a nonlinear function of the voltage applied to the junction
and that we cannot represent this large signal charge with a linear capacitance. We
define a linear depletion capacitance only for small-signal variations about a bias
level. The large signal dynamic behavior of RC and LRC circuits containing p-n
junctions will in general be complicated to analyze and quite different from what
you are familiar with from linear circuit theory. Analyzing the linear behavior for
small-signal operation about a bias point, on the other hand, is something very
familiar to you.

The bias voltage dependence of Cg, in an abrupt p-n junction is rather weak,
and, as you might expect, circuit designers would like capacitors that vary more
strongly with bias. The solution is to use diodes with doping profiles that are not
abrupt but instead are graded, and furthermore are graded in such a manner that
the doping level decreases as one moves away from the junction. This grading is
the opposite of that found in a linearly graded or exponentially graded diode (see
Sec. 6.3.2) and is much more difficult to obtain. It is, however, commonly used
in commercial varactors. '

b) Doping profile characterization. A measurement of the small-signal depletion
capacitance of a p-n junction as a function of the bias voltage provides a great deal
of information on the doping profile in that junction. To appreciate this, rewrite
Eq. (7.9) by inverting and squaring it; the result is

1 2 (Nap+Npn)

= =V 7.9
2 ~ %A% NapNo, (¢ — Vas) (7.99

Graphing 1/ Cgp ‘versus Vap should thus yield a linear plot. If it does not, the
junction doping profile is not abrupt and the assumption that Eq. (7.9) is valid
is incorrect. (We will discuss this situation in the next paragraph.) If the plot is
. linear, the junction doping is abrupt and Eq. (7.9) is valid. If we fit a straight
line to this plot, the intercept of this line on the voltage axis (i.e., /C2 =

is the built-in voltage ¢,. The slope of this line contains 1nformat10n on the
doping levels on either side of the junction, N4, and Np,. If the junction is
asymmetrically doped, as is often the case, then the doping-dependent term in the
slope, NapNpn/(N4p + Npy), is approximately equal to the doping level on the
more lightly doped side of the junction. For example, in a p*-n junction, this
term is approximately equal to Np,, and we have

1 2
ez = gy, @ V) (7.9)

Thus in an asymmetrically doped junction, the slope of the graph of 1/ Cg'p ver-
sus Vyp tells us the doping level on the more lightly doped side of the junction.
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The doping level on the more heavily doped side can then be calculated from ¢,
(which, as we have said, we get from the intercept with the horizontal axis, that
is, the extrapolation to 1/ Cgp = 0) using Eq. (6.32):

2V,
by = %T—ln (N———Dnz““’) (6.32)
i
Solving this equation for N4,, we have
n?
Nap = i oq¢s/kT (7.13)

NDn

At this point you can check that the junction is indeed asymmetrical, as was
assumed to obtain Np,,.

If the graph of 1/ Cgp versus Vap is not a straight line, the doping profile is
not abrupt but the data on the dependence of Cg4, on Vg may still be very useful.
We can show, in fact, that in an asymmetrically. doped junction it can give us
detailed information on the doping profile on the more lightly doped side of the
Jjunction. Specifically, the slope of the Cy, versus Vap curve at each bias point is
proportional to the doping level at the edge of the depletion region on the more
lightly doped side of this junction for that same bias level. By changing the bias
level and moving the edge of the depletion region through the device, the doping
level can be measured as a function of position through the device.

Measurements of this sort are commonly referred to as C-V profiles. They
are a very important, widely used characterization technique.

7.3 CURRENT FLOW

We have just studied how the depletion region width of a p-n junction changes
when we apply bias. The other thing that happens when we bias a p-n junction
is that current flows. Our objective in this section is first to understand how this
current comes about and then to develop a quantitative model relating the current
ip through a p-n junction diode to the applied voltage vag.

We argued in Chap. 6 that there can be no net current in thermal equilibrium,
and we used this observation to show that in a p-n junction at equilibrium the
tendency of the charge carriers to diffuse from the region in which they are in
the majority to that in which they are in the minority is counterbalanced by an
electric field that develops in the intervening depletion region. Drift (due to the
field) and diffusion (due to the concentration gradient) exactly balance, and the
current is zero.

When we apply a bias to a p-n junction we change the height of the elec-
trostatic potential barrier at the junction and the magnitude of the electric field in
the depletion region, and we disturb the balance between drift and diffusion. For
example, consider applying a forward bias, vap > 0. This reduces the electric
field and drift, and more carriers can diffuse across the junction. Alternatively, we
can say that the barrier height is reduced and that more carriers can surmount it.
In either case, a current flows and the magnitude of this current increases as we ap-
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ply more forward bias, further lowering the barrier to diffusion and, equivalently,
further reducing the drift field.

When we apply a reverse bias, the potential barrier height is increased along
with the magnitude of the electric field and there will be a net current in the reverse
(by convention “negative”) direction. However, it will not be a very large current
because there are very few electrons on the p-side of the junction and there are
very few holes on the n-side of the junction to drift across. The few minority
carriers that wander to the edge of depletion region and experience the large field
- are quickly swept across the junction, to be sure, but there are so few of these
carriers that the current remains small even at very high reverse-bias levels.

To quantify the above discussion we will pursue a line of reasoning first
presented by William Shockley in the late 1940s. Shockley pointed out that except
at very high current levels—and we will be able to quantify what we mean by
“very high” later—our p-n diode can be divided into three regions: the depletion
region and two quasineutral regions (one on the p-side and one on the n-side
of the junction). This is illustrated in Fig. 7.3. The quasineutral regions can be
treated using the techniques we developed for solving flow problems in Chap. 5
as long as low-level injection conditions are satisfied. We simply need to know
the boundary conditions on the excess minority carrier populations on either side
of the depletion region, that is, p'(x,) and n'(—x,), and we can get these by
extending the models introduced in Chap. 6. Given the boundary conditions, we
can solve the flow problems in the two quasineutral regions to find the minority
carrier currents there. Knowing the minority carrier currents on either side of
the depletion region, we relate them across this region and in a straightforward
manner obtain an expression for the total diode current.

We thus first turn our attention to a consideration of modeling the excess
populations, n' and p', on either side of the depletion region, then to solving
the relevant flow problems in the quasineutral regions, and finally to getting the
current-voltage relationship. Once we obtain our result we will look back at what

Quasineutral Depletion Quasineutral |
region region region
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FIGURE 7.3
Identification of the depletion region and the two quasineutral regions in a
general p-n junction diode.



juncTion plopes 141

assumptions and approximations we have made and will discuss the limitations
of our model.

7.3.1 Excess Populations at the Depletion
Region Edges

To understand how we can model the minority carrier populations at the edges
of the depletion region, we begin by again considering the structure in thermal
equilibrium. Looking first at the holes, we have p,(—x ) = N4, and po(x,) =
n?/Np,. Dividing these two expressions relates the hole population on one side
of the depletion region to that on the other:

po(;-xp)n%
Xn =
pO( ) NDnNAp
Referring back to Eq. (6.32), _
b, = %ln<l12;_21‘£m) | (6.32)
£

we can relate the factor n;?'/ (NpnNap) to the potential barrier at the junction, that
is,

2
I etk
NDnNAp

and we see that p,(x,) can be written as
Po(xn) = po(=xp)e 1P/ (7.14)

Equation (7.14) reflects a useful result from statistical thermodynamics that
models the energy distribution of particles such as holes and electrons. Specifi-
cally it tells us that the particles in any population at thermal equilibrium have a
distribution of thermal energies. Many have low thermal energy, and fewer have
higher amounts of energy. Mathematically we say that if the concentration with
energy E; or greater is c;, then the concentration c, with energy E, or greater,
where E; > E;, is ¢;e~E2~EWV/AT I other words,

co(E = Ep) = ¢1(E = Ep)e E2~E0/KT (7.15)

‘ Returning now to Eq. (7.14) and the holes, the variation in the electrostatic
potential energy of holes g¢ encountered in moving from one side of a junction
to the other is illustrated in Fig. 7.4. At x = —x,,¢ is ¢, and the population
of holes with energy greater than g¢, is p,(—x,). As we move to the right
of —x,, the potential energy increases and thus the population of holes should
decrease because fewer and fewer have that much energy. We have a potential
energy “hill” for holes that rises a total of g¢, up to a height of g, at x = x,.
The population of holes with sufficient energy to surmount the hill (i.e., with more
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" Potential energy of holes

g¢)
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FIGURE 7.4

Potential energy hill for holes at an abrupt p-n junction in thermal equilibrium,

energy than g¢,) should be related to the total population at the bottom of the
hill according to Eq. (7.15) as follows:

Po(xr) = po(—xp)e 9%/KT (7.14)

This is just Eq. (7.14) again. Stating this in words, we say that the hole population
is in thermal equilibrium with the potential barrier at the junction. The population
to the right of the barrier is related to the population to the left of the barrier by
the Boltzman factor, e~ 9%5/*T

The electron population is also in thermal equilibrium with the potential
barrier, but because the potential energy of electrons is —g¢, the low side of the
hill is to the right for n-type material and the “top” is to the left. You can easily
show that the equivalent to Eq. (7.14) for electrons is

no(—x,) = ny(x,)e 99/KT (7.16)

Thus far we have been in thermal equilibrium, but now we want to apply a
voltage vap. The potential barrier at the junction changes from ¢, to ¢, — vag,
but what happens to the carrier populations? We look first at the majority car-
rier populations, specifically the hole population on the p-side. Assume that we
maintain low-level injection conditions in the p-side to the left of —x, so that
the hole population at —x, remains unchanged at N,p. Further assume that
the hole population can maintain itself in equilibrium with the potential barrier
throughout the depletion region, that is, up to x = x,. Past that point (i.e., for
X > xp,), the holes are minority carriers in a quasineutral region and their motion
is limited by their diffusion away from the edge of the depletion region into the
‘n-side. Saying that the holes maintain themselves in equilibrium with the poten-
tial barrier in the depletion region means that the holes can move across this region -
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rather freely. The depletion region does not represent a bottleneck, as it were, to
their motion, whereas diffusion in the quasineutral region, which is in series with
it, does.

If we can say that the holes are in equilibrium with the barrier, it must still
be true that p(—x,) and p(x,) are related by a Boltzmann factor, which in this

case iS € 7(6s v“B)/k . Ihat is,
P(«'Cn) p( X )e (b ¢ )/k (;.1;3)
P

Furthermore, as long as low-level injection conditions are maintained, we will
have p(—x,) = po(—xp). Thus

P(xn) = Po(—x p)e~9@s—van)/ kT (7.17b)

This situation is illustrated in Fig. 7.5.
Eq. (7.17b) can be written in terms of the equilibrium hole population at

x, using Eq. (7.14). We have

p(xn) = polx,)ed ss/kT (7.17¢)
and because we know that p,(x,) = n?/Np, we have
n?
p(xn) = s-eTrae/kT £ (7.17d)
NDn

Finally, the excess hole population at x,, p'(x,) [wWhichis p(x,) — po(xn)]

is given by
2
ne
pl(xn) = Nt

Dn

(e9va8/¥T — 1) (7.18)

Potential energy of holes
y . p =ppoe—q(¢b—VAB)/kT

P = Ppo

FIGURE 7.5
Potential energy barrier for holes and the hole populations on either side of a
biased p-n junction.
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Similarly we can argue that the electron population stays in equilibrium with
the barrier, and we find that

,
n+
n'(—xp) = —(e9"/*T — 1) (7.19)
Nap
These excess minority carrier populations are the boundary conditions we
need to solve for the minority carrier currents in the p- and n-regions of the diode
and to ultimately calculate the total diode current.

7.3.2 Current-Voltage Relationship for an
Ideal Diode

Having established the boundary conditions at either side of the depletion region
of a biased p-n junction, we are in a position to solve the flow problems in the two
quasineutral regions. Looking first at the n-side of the junction, we have p'(x,)
given by Eq. (7.18), p’(w,) = 0, and gz(x) = 0. The solution for p’(x) for
Xy = X = w, is

sinh[(Wn — x)/L4)

(x)=p' . .20
P@) = Pl e (7.20)
This result is illustrated in Fig. 7.6a.
The hole current on the n-side for x, < x =< w,, is therefore

_ Dynp'(xn) cosh[(wy — x)/Ly]
) = T S = %)/ L] (721

‘Substituting Eq. (7.18) for p'(x,) into this result, we obtain

—x 2 ’

Ly sinh[(w, — x,)/Ly] Npy,

Following the same reasoning to find the excess minority carrier (electron)
population on the p-side and then calculating the diffusion current, we find J.(x)
for —w, = x < —x, to be

D, cosh[(w, ~ x)/L.] n?

= g— vaB/kT _
Je(x) qLe SInhL(w, — x,)/Le] Nay (e? 1) (7.23)

These results are illustrated in Fig. 7.6b.

We almost have our answer. We want the total current, which we know is
the sum of the electron and hole currents and is not a function of x. Thus if we
knew both the hole and the electron currents at one point x, we could add them
together and know the total current. The problem is that we don’t know the hole
and electron currents at the same x. We know J,(x) for x, < x <w,, and we
know J.(x) for —w, < x < —x,, but these two spans do not overlap.

~ We proceed by assuming that there is negligible generation or recombination
in the depletion region. That is, we say that the only holes that flow out of the
depletion region at x = x, are the ones that entered at x = —x .
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(@) Excess carrier populations in a forward-biased p-n junction diode; (b)
the corresponding minority carrier diffusion current densities on either side
of the junction; (c) the connection of the currents through the depletion
region to obtain total current density.
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Thus
Jn(xn) = Jp(=xp) (7.24)
It follows that the same thing must then be true for the electrons:
Jo(=xp) = Jo(xy) (7.25)

These results are illustrated in Fig. 7.6c¢. With this assumption we can immediately
write

Jror = Je(—%p) + Jp(xp) (7.26)
Using Egs. (7.22) and (7.23) in Eq. (7.26), we find

D D
= 2 e h qvas/kT _
Jror = gn;] <NApW} + N )(e 1) (7.27)

where w’, and wj, are the effective widths of the p- and n-sides, respectively,
defined as

w;‘, = L, tanh{(w, — x,)/L.] (7.28a)

w, = Ly tanh[(w, — x,)/ L] (7.28b)

Often we will be in either of two limits: the short-base limit, which corre-
sponds to the situation when the minority carrier diffusion length is much greater
than the width of the device, and the long-base limit, which corresponds to the
situation when the minority carrier diffusion length is much smaller than the width
of the device. Looking first at the short-base limit, if we assume, for example,
that L, > w,, we find that Eq. (7.28a) reduces to wj, ~ W, — Xp. In general,
in the short-base limit the effective width of the relevant side of the device is the
actual physical width of the corresponding quasineutral region.

Turning next to the long-base limit, if we assume that L, << wp, then Eq.
(7.28a) reduces to wj, =~ L.. In general, in the long-base limit the effective width
of the relevant side of the device is the minority carrier diffusion length.

To illustrate these two limiting cases, and to compare them with the interme-
diate situation, refer to Fig. 7.7. In this figure, the hole and electron currents are
plotted as a function of position throughout a p —n diode for three cases: L, = w,
and Ly = wy,; L, > w, and Ly > w, (that is, short base); and L, << w, and
L, < w, (that is, long base).

The total diode current is the total current density multiplied by the cross-
sectional area of the diode, A. Thus

ip = AJtor
We often write
ip = Ig(e?»/kT _ 1) (7.29)
and we can now write the saturation current I as
Is = Aqn?(NADp;}; + N;fﬁv;;) (7.30)
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The current-voltage relationship for an ideal exponential diode, Eq. (7.29), is
plotted as the solid curve in Fig. 7.8.

Example

Question. Consider the two diodes in the preceding example. Assume that the
effective widths of the n- and p-sides of these devices, w;, and w’;, is 1. um, and
that D, is 40 cm?/s and D}, is 15 cm?/s. What are the relative sizes of the saturation
current densities of these two diodes?

Discussion. We must use Eq. (7.30) to answer this question. Substituting the ap-
propriate values into this expression, we calculate that J; is 2.4 X 107 A/em? for
the first diode and 3.6 x 10710 A/em? for the second. The ratio is 6.7 to 1, with
the lightly doped diode showing the higher current..

When vap is more than a few kT / g positive, the 1 in Eq. (7.29) is negligiblé
and we can write

ip = Igedvas/KT when Vap >> qu (7.31)

The diode current increases exponentially, which means that it does so relatively
quickly. At room temperature it increases by a factor of 10 every 60 mV (roughly
2.3 kT /g at 300 K). The saturation current /g is itself generally very, very small,
but because of the exponential multiplier, ip can be large.

When vap is more than a few kT /g negative, the exponential factor is
negligible and the current remains fixed at —7g. We refer to this as ip “saturating”
at —Ig in reverse bias and write

ip~-Is when vap<< Zgz (7.32)

This “reverse” current is very small, essentially zero when compared to the current
flowing under forward bias. Physically, the current under reverse bias is limited
to a small value because there are so few electrons on the p-side of the junction
and so few holes on the n-side. The minority carrier concentrations at the edges
of the space charge layer go to zero when the junction is reverse-biased by more
than a few kT /g, so at —x , the excess electron concentration is =7, and at x,
the excess hole concentration is — p,,, as shown in Fig. 7.9. This is as negative
as these excesses can get, so the diffusion-driving concentration gradient cannot
become any larger either, even if the magnitude of the reverse bias becomes very
large. Thus the current saturates and does so at a very low level. Under forward
bias, by contrast, there is no limit to how large the excess populations and the
concentration gradients can get; accordingly, the forward current can be very much
larger than the reverse current.
Returning to our expression Is [e.g., Eq. (7.30)]:

D, D
2 e h
Is Aqn, (Npr; ND”W;) (7.30)
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Current-voltage relationship for a p-n junction on a semilog scale:

(a) forward bias; (b) reverse bias. [The solid curve is the ideal
exponential diode expression, Eq.(7.29), and the dashed curve is typical
of what one would measure for a real diode (see Sec. 7.3.3).]
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(a) The excess carrier populations in a reverse-biased p-n junction; (b) the
corresponding current densities. (Except for x, and x ,, these plots do not
change with increasing reverse bias once vap is more than a few kT/q
negative.)

we see that the doping levels on both sides of the junction play a major role in
determining both the magnitude of the current and whether the junction current
is carried primarily by holes or electrons. The device dimensions and carrier
transport parameters also enter this expression, but in most diodes the effective
widths of the n- and p-sides tend to be of the same order of magnitude; so do the
minority carrier diffusion coefficients. The doping levels, on the other hand, can
be varied over many orders of magnitude by the device designer to modify the
magnitude and make-up of /5. For example, Eq. (7.30) tells us that I is larger
in more lightly doped junctions. It also tells us that if Ny, >> Np,, the current
will consist primarily of holes flowing, or “injected,” from the p-side into the n-
side. On the other hand, if Np, >> Ny, the current will primarily be electrons
injected into the p-side. This ability to control the nature of the junction current
is very important in the design of bipolar transistors and other devices involving
p-n junctions, ‘ '

Example
Question. Consider again the two diodes in the preceding example. What is the ratio
of electron current to hole current crossing the junction in each of these devices?

Discussion. Looking back at Egs. (7.22) and (7.23) we see that the ratio of elec-

tron to hole current across the junction is given by DeNan’,';/DhNpr"“,. Upon

evaluating this factor we find that it is 0.17, or 1/6, for the first diode and 13 for the
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second. We see that electrons dominate the current in the diode that has its n-side
more heavily doped than its p-side (diode #2), whereas holes dominate when the
p-type side is the more heavily doped (diode #1). We must be careful generalizing
here because the diffusion coefficients and effective widths, as well as the doping
levels, enter this relation, but the relative doping level is a very useful parameter to
use to control injection across a junction.

7.3.3 Limitations to the Simple Model

If we plot the ideal diode current-voltage relationship, Eq. (7.29), on a semilog
plot, we obtain the curve given by the solid line in Fig. 7.8. If we then measure a
real p-n diode and plot its current-voltage relationship on the same graph, the data
will typically look more like the dashed curve in Fig. 7.8. The general shapes of
the curves are similar, and they agree quantitatively over a substantial range of
forward biases, but there are important differences at low and high current levels,
We want now to understand the reason for these differences and to decide whether
they present serious problems. We begin by examining the region of low biases
and then considering large forward and reverse biases.

a) Low current levels. At low forward-bias levels and low to moderate reverse-
bias levels, where the magnitude of the current is ideally on the order of /g or
less, we find in actual diodes that the magnitude of the current is considerably
higher than /5. More extensive study of the “extra” current reveals that it is due
to generation and recombination in the depletion region. In forward bias there
are excess holes and electrons in the depletion region, and we should anticipate
that there will be some recombination in the depletion region. In our ideal diode
model we neglected this recombination and arrived at Egs. (7.24) and (7.25). In
order to include a depletion region recombination current, assume that the total
recombination in the depletion region is R(vag) hole-electron pairs/cm?s, which,
as we have indicated, will be a function of the applied voltage. The hole current
due to this recombination is gR, and the electron current is —gR.

To relate the currents in and out of the depletion region we now note that
if there is recombination in the depletion region more holes must flow in from
the left than flow out to the right (assuming an orientation like that in Fig. 7.1).
Defining Jr as gR, we thus write

Jn(=xp) = Jp(xy) + JR (7.33a)

For electrons, more electrons must flow in from the right than flow out to the left.
The correct expression is

Je('"xp)'f'JR = Je(xn) (7.33b)
Thus, the total current is now
Jror = Je(_xp) + Jp(xn) + Jr (7.34)

which is the ideal diode current plus Jg.
Jr 1s itself a function of the applied voltage. It turns out that a good ap-
proximate model for Jg is that it varies exponentially with vp as e?”s8/7kT for
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vap >> kT /q, where n is approximately 2. The factor of two in the denominator
of the exponential means that Jz does not increase as quickly with increasing bias
vap as does the ideal diffusion current and that at sufficiently high forward bias
the ideal relationship dominates. This variation is illustrated in Fig. 7.8a.

The factor of two in the denominator of the exponential in Jg arises because
of the fact that the carriers halfway up the potential hill on either side of the
junction barrier are the most active in the recombination process. The model that
is used to describe this process is called the Shockley-Read-Hall model, but we
will not study it specifically in this text. Our primary concern is to learn that if
we go to very low currents our ideal model may be incomplete; beyond that we
will simply try to avoid working at such low current levels.

For reverse biases, there is a deficiency rather than an excess of holes and
electrons in the depletion region and generation rather than recombination. Addi-
tional holes and electrons are created in the depletion region, so more flow out
than flow in. If the generation is G, then the hole generation current will be —gG
and the electron generation current will be ¢G. G will be only a weak function
of vap because the depletion region width will increase slightly with increasingly
negative vap. If we neglect this effect, to first order we can write a general
depletion region generation-recombination current as

Jor = Jors(e?/HT — 1) (7.35)
and, writing AJgrs as Igrs, we can write the total current as
ip = Is(e?"#8/FT — 1) 4 Igrg(e?"48/%T — 1) (7.36)

Igrs is typically much greater than [g.

’ You need not be concerned with learning Eq. (7.36). The important message
is that depletion region generation and recombination have a weaker dependence
on applied bias vap than the diffusion currents, so that at sufficiently high forward
bias the ideal behavior will dominate. This is where we will want to operate p-
n junctions used in bipolar transistor emitter-base junctions. It is also why we
use high-purity single crystals to make p-n diodes; if we did not, Jgrs would
be so large that the ideal behavior might never dominate the junction current. In
building diodes we always want to minimize Jggs.

b) Large forward bias. At large forward biases the current does not increase as
quickly as the ideal diode expression indicates that it should. Two effects account
for this. The first is that at high current levels we can no longer neglect resistive
voltage drops in the bulk n- and p-regions of the diode (R4 and Re in Fig. 7.1b).
Thus the entire applied voltage vag does not appear across the junction but rather
is reduced by ip(R4 + Rg). Our current-voltage relation at high current levels
becomes transcendental: - :

ip = Ige?0an~ipRI/KT (1.37)
where R = Ry + Rg + any other series resistances.

The second effect that becomes important at high current levels is high-level
injection into the quasineutral regions. Our entire diffusive flow model becomes
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questionable then, and we have a much more difficult problem to treat analytically.
Interestingly, if we include high-level injection in our boundary condition model,
Egs. (7.18) and (7.19), we find that the excesses increase only as e¢9"as/2kT at
high injection levels. A factor of two now appears in the denominator, and again
the rate of increase is less than the ideal diode equation would predict.

The onset of high-level injection is often taken to be the point at which
the excess minority carrier population on either side of the junction equals some
percentage of the equilibrium majority carrier population; in an asymmetric diode
this occurs first on the more lightly doped side of the junction. Suppose, for
example, that we have an n*-p junction with a doping level on the p-side of Ny,
and that high-level injection occurs when n), = Ny4,. Using Eq. (7.19) we thus
see that the junction voltage at the onset of high-level injection is given by

Vap = “-In =l (7.38)

As was the case at low current levels, our main concern in this text is
to realize that there is a limit to ideal diode behavior at high current levels. In
general, we want to operate below this limit.

¢) Large reverse voltages. At large reverse biases the current in any real diode
will suddenly increase abruptly. We call this phenomenon reverse breakdown, but
it is not necessarily a destructive process. It is, in fact, used in several impor-
tant devices, namely voltage reference diodes and avalanche photodiodes. The
sharp increase in reverse current when a diode junction breaks down is due to a
sharp increase in the depletion region generation current caused by one of two
mechanisms. In most junctions, the few carriers flowing across the junction in
reverse bias gain enough energy because of the large potential energy step that
if they happen to collide with an electron in a bond they can knock it free. The
carrier pair created and the original carrier can in turn accelerate, collide with
more bonds, and create still more hole-electron pairs. An avalanche of carriers is
suddenly created. This process is called avalanche breakdown.

In very heavily doped junctions, the depletion region is very narrow and the
electric field is very large. The distances are too short for an avalanche to build
up. Instead, breakdown occurs when the fields get so intense that electrons can
actually be torn from the bonds; hole-electron pairs are generated in this fashion.
This process is called Zener breakdown, after the man who first suggested it.

We often model breakdown by saying that it occurs when the electric field
in a junction reaches a critical value €cryr, Which to first order we take to be
constant for a given material. Using Eq. (7.3), we see that the breakdown voltage
VBR is

_ &€&rir Nap + Np»)
2q NApNDn

==

Ver (7.39)

Looking at this expression, we see that the last term is dominated by the doping
level of the more lightly doped side of the junction and that |Vpg| varies inversely
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with that doping level (i.e., it is larger for a lightly doped junction than for a
heavily doped junction).

Because reverse breakdown is so sharp and is not destructive, it is often used
to provide a voltage reference. Both breakdown processes occur at very specific
peak electric field intensities, and it is possible through suitable selections of Ny,
and Np, to design diodes to break down at specific applied voltages using Eq.
(7.3) and knowledge of the breakdown field of the semiconductor being used.

7.3.4 Diffusion Capacitance

In Sec. 7.2.2 we pointed out that stored charge was associated with the depletion
regions that varied with the applied voltage and looked from the device terminals
like a nonlinear capacitor. There is also stored charge associated with the excess
carrier populations on either side of a biased p-# junction. This charge also varies
with the applied bias and also looks like a nonlinear capacitor. We call this the
diffusion capacitance. We will define a linear, small-signal diffusion capacitance
Cg4 in a manner similar to the one we used for the depletion capacitance.

To minimize confusion we will treat an asymmetrically doped junction, so
that minority carriers are injected primarily into only one side of the junction,
“and we will treat a short-base diode. The model is easily generalized to arbitrary
doping levels and diffusion lengths, but treating the general case is unnecessarily
complex. Assume that we have an abrupt p*-n junction, that L, >> w,, and
that we have cross-sectional area A. The excess carrier profile through such a

n’(x),p"(x)
¥

T

1 (qvaBIkT 1)
NDu

FIGURE 7.10 ‘
Excess hole and electron profile in a forward-biased asymmetric abrupt
pt-n junction.
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device under forward bias is shown in Fig. 7.10. For a given applied bias vag,
the total excess hole concentration on the n-side of the junction, p,(vag), is given
by - '
(wn= -7Cn)n;2
2Npp

The total concentration of excess electrons is exactly the same because quasineu-
trality is a valid assumption, at least for low-level injection. The interesting thing
about the stored positive and negative charge associated with these excess hole and
electron populations is that they occupy the same physical space, x, < x < w,.
This is in contrast to a standard capacitor, where the positive charge is on one
of two capacitor plates and the negative charge is on the other. Nonetheless, the
excess populations do represent stored charge, and when the applied voltage is in-
creased (or decreased), additional positive and negative carriers have to be added
to it (or removed), as Fig. 7.11 illustrates. The positive charge is supplied from
(or removed through) the p-side of the junction and the electrons via the n-side.

pu(vap) = A (e9s/kT — 1y ' (7.40)

P, Ay

Ap’(x), An'(x)

|
| +
- ! — X

" Wy X Wy

(a) Positive change in v,p

Ap'(x), An"(x)

(b) Negative change in v

FIGURE 7.11
Changes in excess hole and electron populations: (a) for an increase in applied
voltage; (b) for a decrease in applied voltage.
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Following the same process that we used with the depletion capacitance in
Section 7.2.2, we first get an expression for the total excess positive charge gpr
(i.e., that due to excess holes). Using Eq. (7.40), we have

goF(vap) = gAY Xn) 1 nE emm/iT 1y (7.41)

2 Npn B
Again we see that the charge is a nonlinear function of the applied voltage. For
small changes in applied voltage, however, the change in gpr will be linearly
proportional to the change in the applied voltage. Again we assume that the
applied voltage changes from Vjg to Vap + v and find the change in gpg, which
we will denote as gq4¢. We will call the ratio of ggs to vy, the d1ffus1on capacitance
Cgs of the junction at this bias point. That is,

3 = g (7.42)
Vab

Clearly this ratio must equal the derivative of gpr with respect to vap at Vap: '

= 24pr (7.43)

dvas vaB = Vap

We will take Eq. (7.43) as a general definition of the diffusion capacitance of a
junction.
Using Eq. (7.41), we find for an abrupt p*-n junction that

Car(Vap) = 24 Q=20 1L paviasit (7.44)
2kT  Np,

Looking more carefully at this expression for the diffusion capacitance,
we see first that when Vg is negative (i.e., Vag << —kT/q), Cy is essentially
zero. This is not surprising because we know that the very little current and excess
charge associated with a reverse-biased p-n junction doesn’t change much with
reverse bias.

For a positive Va5, in contrast, gpp increases exponentially with bias, as
does the current. We can make the connection between Cg4r and current even
clearer if we write Cy directly in terms of the diode current. The diode current
in the asymmetrically doped p* — n device we are discussing is essentially all
. hole current. Thus

ip(Vas) = Ip(Vag) = Aq———”—'zD"—quAB/ - (7.45)
NDn (Wn - xn)
where we have assumed that Vag >> kT /g so that the 1 in (¢9"/*T — 1) can be
neglected. Inserting Eq. (7.45) into Eq. (7.42), we find immediately that we can
also write Cgs(Vag) as :

_ wa—xp)? g ,
Cyt(VaB) = _"""——ID(VAB) (7.44%)

2D, kT

The term (w,, — x,)2/2D}, has units of time and can crudely be identified with
the time that the average hole spends diffusing across the n-side of the diode. It is



JUNCTION DIoDES 157

called the transit time #. An important and perhaps startling observation is that
Cg4¢ does not depend on the junction area, only on the total current through it!
If the voltage v, is a function of time, there will be a current into the diode
equal to dgqs/dt due to the diffusion capacitance. That is,
P = %4 _ o o dvap
dt dt
We will use this result, along: with our earlier result for the current into depletion
capacitance (Eq. 7.10), when we develop circuit models for p-n diodes.

(7.46)

Example

Question. Consider a short-base p* -n diode biased at a quiescent current level of 1
mA. Assume that Dy, is 15 cm?/s and that the effective width of the n-side of the
junction, wy — xp, is 1 wm. What is the diffusion capacitance per unit area of this
junction at room temperature for small-signal operation about this bias point?

Discussion. Using Eq. (7.4b) we calculate Cgr/A to be 2.75 x 1078 F/cm?, or
0.27 fF/ um?. Interestingly, the diffusion capacitance is of the same order of mag-
nitude as the depletion capacitance of the p*-n diode in our earlier example (diode
#1). This is often the case.

7.4 CIRCUIT MODELS FOR JUNCTION
DIODES

Equation (7.29) describes the current-voltage relationship of an ideal p-n junction
diode based on our models for the depletion region and for current flow in the
quasineutral regions. We now turn to the problem of developing models for p-n
diodes that can be used to analyze circuits incorporating them. We begin with
large-signal models and then develop small-signal linear models for p-n diodes.

7.4.1 Large-Signal Models

We call a diode with terminal characteristics described by Eq. (7.29) an ideal
exponential diode. Specifying the reverse saturation current /g of such a device
specifies its terminal characteristics completely. We will use the circuit symbol
of Fig. 7.12a for an ideal exponential diode with its current-voltage relationship
shown in Fig. 7.12b.

In many situations we will want to use simplified approximations to the
ideal exponential diode representation of a p-n diode; in others we will want to
use more complicated models that include physical effects and terminal behavior
not included in the ideal exponential model. In this section we will look at a
variety of large-signal models evolving from this ideal model, beginning with
simplified models and then moving to more complex models, including dynamic
models. :

a) Simplified diode models. In certain applications, even the use of a simple
exponential expression like Eq. (7.29) is inconvenient and unnecessarily precise,
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Circuit symbols and current-voltage relationships for three relatively simple
large-signal p-n diode models: (a and &) the ideai exponential diode; (c and d) the
ideal diode; (e and f) the break-point diode.

and it is desirable to use more approximate but also more readily analyzed models.
The simplest is perhaps the ideal diode, which is shown in Fig. 7.12c. The current-
voltage relationship for this device is shown in Fig. 7.12d. Mathematically, this
relationship can be described by saying that ip = 0 when vag = 0 and vag = 0
when ip = 0.

The ideal diode model for a p-n junction diode ignores the fact that there is
some voltage drop across the diode terminals when the diode is forward-biased.
In the typical operating range of most silicon diodes, this drop ranges from 0.5 V



JUNCTION DIODES 159

to 0.7 V. We will tend to approximate it as 0.6 V in our discussions. This forward
“offset” voltage can be incorporated into our model by adding an ideal voltage
source to an ideal diode, as shown in Fig. 7.12e¢. We will call this a break-point
diode. Its current-voltage characteristics are shown in Fig. 7.12f.

The decision to use forward offset voltage when approximating the large-
signal behavior of a diode must be based on the application at hand. Because
the actual diode current increases exponentially with the applied voltage, there
is clearly no unambiguous turn-on voltage. At very low currents, a given silicon
diode might appear to turn on much below 0.6 V, say at 0.4 V, for example,
whereas at very high current levels the turn-on may appear to occur at 0.7 V or
more. And if the diode is fabricated from a semiconductor other than silicon, a
quite different turn-on voltage may be found. In general, the larger the bandgap
of the semiconductor used, the larger the turn-on voltage.

An important feature of these simplified large-signal models for a diode are
that they are piecewise linear. They are thus relatively simple to use, which in
many instances more than makes up for the lack of precision.

b) Expanded diode models. In some situations, particularly in computer-aided
modeling and analysis, the goal is not to use simplified models appropriate for
hand calculations, but rather to model as much of the detail of the device perfor-
mance as possible. We turn now to modeling diodes in this limit.

We saw in Sec. 7.3.3 and Fig. 7.8 that a typical p-n diode behaves like
an ideal exponential diode over a part of its range but deviates at low and high
current levels. At low current levels the characteristic is still exponential but with
a dependence on gvag/nkT, where n is approximately 2. This behavior has led
to the definition of a generalized exponential diode model, which we say has the
following current-voltage relationship:

ip = Is(e?s/mkT — 1) (7.29")

The factor n is called the ideality factor; along with Ig, it fully specifies any
exponential diode. The circuit model of an exponential diode is shown in Fig.
7.13a. Notice that the ideal exponential diode is a special case of the exponential
diode model for which n is 1.

The low-current behavior of a real p-n diode can be modeled as the parallel
combination of two exponential diodes, one with an ideality factor n = 1 and
a certain value of saturation current /5, and the other with n = 2 and a some-
what higher saturation current® Iggz. This is illustrated in Fig. 7.13b. The second
diode (the one with n = 2) accounts for generation and recombination in the junc-

*The notation we are using here corresponds closely to that used in the popular circuit and device
simulation program SPICE and its derivatives.
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Circuit models for a p-n diode, including elements to model the effects not included in
the ideal exponential diode model: (a) general exponential diode; (b) two general
exponential diodes used in parallel to account for low-level space charge layer
recombination; (c¢) elements included to model high-level injection and series
resistance; (d) reverse-breakdown and reverse-bias leakage also included in the model.

tion depletion region. Because the depletion region width varies with the junction
voltage, it is common, especially in computer simulation programs such as SPICE,
to make Iz vary in a similar fashion with voltage, that is, as (¢ — v;)?, where v,
is the voltage drop across the junction and, for an abrupt p-n junction, g is 0.5.

The high-current behavior can be accounted for by adding a resistor of
resistance Rg and a second n = 2 diode with a much higher saturation current
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Ixr in series with this parallel combination of diodes. This is illustrated in Fig.
7.13c. v

To better model the reverse-bias behavior of a diode, several additional
elements can be incorporated into the model. The reverse breakdown of the diode
can be modeled by shunting the forward model with another exponential diode
connected in opposite polarity relative to the other diodes and in series with a
voltage source equal in magnitude. to the breakdown voltage. When this is done,
a current source /gy has to be included in parallel with this new exponential diode
so that ip will be zero when vap is zero. This is shown in Fig. 7.134. Finally, a
resistor of resistance Rp can be added in parallel with the exponential diodes to
allow for the possibility of parasitic current leakage paths shunting the junction.
This element is also included in Fig. 7.134.

¢) Dynamic models with charge stores. The large-signal diode models we have
developed thus far do not include any information on charge stores within the
device. It is quite appropriate to ignore these charge stores when the terminal
voltage on the diode is changing slowly enough that the currents that result from
charging and/or discharging the charge stores are negligibly small. However, if
the terminal voltages change more rapidly (as occurs during a switching transient
or for a high-frequency sinusoidal input signal, for example), then the charging
and discharging currents can be substantial and must be accounted for in our
modeling. This is traditionally done by adding charge storage elements (i.e.,
capacitors) to the circuit model in the appropriate places. These capacitors are in
general nonlinear; that is, the charge stored on them is a nonlinear function of the
voltage difference between their terminals.

In the case of a p-n junction diode, we have two charge stores: the depletion
region charge store and the diffusion charge store. The charge-voltage relationship
for the depletion region charge store is given, in the case of an abrupt doping
profile, by Eq. (7.5):

N4pNpn

@ap + Now) (7.5

qop(vaB) = —A\/2861(¢b —~ VAB)

The diffusion charge is described in the case of an abrupt p* — »n diode by Eq.
(7.41): S

‘]DF(VAB) = qA w_n%n)]%(eqvm/kT — 1) (741’)
n

A little thought will show. you that these charge stores appear electrically
in parallel, so they can be represented by a single nonlinear capacitor. This non-
linear capacitor is in turn parallel with the junction, which we represent by an
exponential diode. The resulting circuit model is shown in Fig. 7.14a. Notice
that the symbol we use for nonlinear capacitor is the usual symbol for a linear
capacitor with a diagonal arrow across it. The arrow implies that the capacitance
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Addition of large-signal, nonlinear charge stores: (a) to a large-signal
exponential diode model; (b) to an exponential diode model with series
resistance (note that the charge store occurs in parallel with the junction
but in series with the diode bulk and the contacts, which together are the
source of Rg).

of this capacitor, which we define as dg/dv, varies with the voltage across the
capacitor.*

The remarks we made in Sec. 7.4.15 about expanding the complexity of our
model can be repeated here, and again our understanding of the device physics
guides us in placing the additional elements. A common example is accounting
for series resistance Rg. Clearly Ry can play an important role in any charging
and discharging transients, and it is an obvious parasitic to want to consider. A
little thought shows us that Ry enters in series with the junction and the charge
stores, and thus should be added to the model as illustrated in Fig. 7.145.

7.4.2 Static Small-Signal Linear Models

The large-signal models we developed in the preceding section are needed when
analyzing circuit situations in which the terminal voltage and currents can assume

*It is important that you keep the distinction between a capacitor and its capacitance clear. We are
using the term *capacitor” to represent any charge store ¢(v) and the term “capacitance” to indicate
the instantaneous rate of change of the charge store with terminal voltage (i.e., dg/dv). A linear
capacitor has a constant capacitance; the capacitance of a nonlinear capacitor in general varies with the
terminal voltage. To specify the nonlinear capacitor in this circuit we must specify its charge-voltage
relationship. In the present example we would have

qaB = gpr(vaB) + gpp(VAB)

where gpr(vap) and gpp(vagp) are given by Egs. (7.41) and (7.5), respectively.
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wide ranges of values. Another common type of analysis in which we will be
interested concerns small variations in the terminal variables (i.e., the voltage
and current) about some reference condition. In such cases it is often the details
of the nonlinear characteristic in the vicinity of the reference values that are of
primary interest. The reference condition values are termed the quiescent operating
point or bias point values, and if the variations about them are small enough the
changes in current and voltage will be linearly related.

To proceed, we first set up a notation convention to use in our discussion.
We denote the total variable with a lowercase letter and uppercase subscripts. Thus
the total diode voltage is vap, and the total diode current is ip. We will denote
the quiescent portion of these quantities with an uppercase letter with uppercase
subscripts. Thus, the quiescent diode voltage is Vg, and the quiescent diode
current is Ip. Any change from the quiescent value is denoted by a lowercase
letter with lowercase subscripts (i.e., v4, and i;) for the present examples. Thus
we can write

VAB = VAB + Vap (747)
and
ip =1Ip+iy (7.48)

We will in general have to determine Vap and Ip using our large-signal
models for the characteristics, but ideally, once they are known, we will be able
to determine vy, and i, using linear circuit analysis techniques. Often we will
not need to know Vap and 7p with a high degree of accuracy and our simple
piecewise linear model, possibly that of Fig. 7.12¢, will be perfectly adequate,
At the same time, we may want to know v,, and iy much more precisely, and
having linear models relating them will make it relatively easy to achieve the
necessary precision.

Returning now to the device at hand (i.e., the p-n diode), we will first
develop a small-signal linear model based on our quasistatic exponential diode
model. We will then extend our model for use with high-frequency signals by
adding linear capacitors that account for the diffusion and depletion charge stores
we identified earlier.

a) Low-frequency models. To relate v,, and i 4 for a diode, we perform a Taylor’s
series expansion of ip about vap = Vag. We write

ip(vap) = ip(Vap) + a1(vag — Vag) + aa(vap — Vap)? + Higher-order terms
(7.49a)

where a; is dip/dvap evaluated at Vag and a; is (1/2)d?ip/dviy evaluated
at Vag. The quantity ip(Vap) is Ip, and using Eqs. (7.47) and (7.48) we have
(vap — Vas) = v and (ip — Ip) = i,. Thus, Eq. (7.49a) can be written as

lg = a1Va + agvgb + Higher-order terms (7.49b)
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We are now in a position to put bounds on vy, for linear operation. We want
to be able to neglect the quadratic and higher-order terms, so we restrict [Vasl sO
that the quadratic term is no more than some fraction f of the linear term. Thus
we require that

lavd | = flavel (7.50)
which thus means that
a
|vap | = f— (7.51a)
az

If the diode is an ideal exponential diode, then ip and vap will be related
through Eq. (7.29) and a; and a; are given by

_ dip = 9 7 qVas/kT |
a; = 20a5 |1y v = kTIse (7.52a)
dziD ) 1 q2
as = =z I;e9Vas/kT 7.52b
2T 2,y  2GTRT (7.520)
Thus we have
Tval= £ 8= 2p o asn)

Restricting v,y to this range, we have our desired linear relationship
ig =~ aiva (7.53)

The factor a; has the units of conductance. We usually use the symbol g4
for this factor and call it the incremental equivalent diode conductance about the
quiescent operating point (/p, Va). In general we have
dip

g4 = (7.54)

This result tells us that incrementally any diode looks like a simple linear con-
ductance gz, where the magnitude of this conductance is simply the slope of
the diode current-voltage characteristic evaluated at the quiescent operating point.

This conclusion is illustrated in Fig. 7.15:
In the special case of an ideal exponential diode, we have

= 97 ,qVas/kT
gd kTIse (7.55a)

If V. is much greater than kT /g, then I;e?"4®/¥T is approximately /p and thus
we can also write g4 as

~ 2
g0~ 77 (7.55b)

This is the expression that we will usnally use to calculate g4.
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FIGURE 7.15

(a) Variation of the current and voltage of a p-n diode about
a quiescent operation point (Ip, Vap); (b) the corresponding
static small-signal equivalent circuit,

Example
Question. What is the incremental conductance at room temperature of a diode
biased at a quiescent current of 1 mA? If we want fto be 0.1, what is the restriction
on | vy |?

Discussion. Using Eq. (7.55b) we calculate that g, is 40 mS; the corresponding
incremental resistance ry (which is 1/g,4) is 25 ). (Notice that these values do not
depend on any of the diode dimensions, doping levels, etc. —only the bias level.)
From Eq. (7.51b), we find that the second-order term will be less than 10
percent of the linear term (i.e., f = 0.1) if [ vy, | is less than 0.2kT /g, which at
room temperature is 5 mV. This doesn’t seem like a very large voltage range, but
then an exponential is not a very linear function. We will have to see whether this
restriction is a problem when we look at applications of junction diodes.

Our notation does not identify the quiescent point explicitly; we simply write
g4, but it is very important to remember that the value of g, depends directly on
the quiescent point parameters.

To summarize our incremental model for the p-n diode, we find that for small
variations about a quiescent operating point (Ip, Vag), the changes in current and
voltage, iy and vy, respectively, are linearly related by the incremental equivalent
diode conductance g4, where g, is defined as the slope of the diode characteristic
at the quiescent operating point [i.e., Eq. (7.54)]. The fact that these small vari-
ations are linearly related is a purely mathematical result that stems from Taylor’s
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FIGURE 7.16

Small-signal equivalent circuit of a p-n
diode, including the depletion and diffusion
capacitances.

Theorem. The physics enters our analysis only when we evaluate the incremental
diode conductance g4, as we did in Eq. (7.55).

b) Small-signal models for time-varying signals. Our exponential diode expres-
sion, Eq. (7.29), and the small-signal equivalent circuit that we derived from it
were developed assuming static conditions. This does not restrict us from having
some variation of our currents and voltages with time, but it does mean such’
variations must be “slow.” Mathematically, “slow” means that all time derivatives
are negligible; physically it means that the carrier and current profiles must be
able to respond essentially instantaneously, on the scale of the time variation, to
any voltage changes and that any currents supplying or removing charge as the
depletion and diffusion charge stores change are negligible. Strictly speaking, if
we want to treat rapidly varying situations, we should return to our original equa-
tions and include the terms involving time derivatives, but this is a very difficult
task. A more manageable and highly successful approach has been to incorporate
the charge storage elements that we know must exist in the p-n diode (i.e., the
depletion capacitance and diffusion capacitance) and use the resulting hybrid (in
a theoretical or modeling sense) model.
Adding the capacitive currents to the exponential diode current, we have

dv
ig = gavap + (Cas + Cdp) 2 (7.56)

A circuit representation of this relationship is 111ustrated in Fig. 7.16.

In Eq. (7.56) and Fig. 7.16, g4 is given by Eq. (7.55), Cgr by Eq. (7.44),
and Cqy by Eq. (7.9). All are clearly functions of the quiescent operating point.
(Ip, VaB)- '

7.5 SOLAR CELLS AND PHOTODIODES

Thus far we have considered only voltage excitation of p-n junction diodes.
Another important excitation form is light. We consider next optical excitation
of p-n diodes and some useful applications of devices operated in this manner.
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7.5.1 Optical Excitation of p-n Diodes

Consider the p-n diode illustrated in Fig. 7.17, which is illuminated with spatial
impulse of light generating M hole-electron pairs/cm? - s in the plane at x = x.
Our objective is to find the diode current as a function of the terminal voltage
and the position and intensity of the illumination. For convenience, we denote the
diode current as ip(vag, M) to remind us that we have two excitations,

You know enough about p-n junctions and flow problems to solve for
ip(vas, M) directly, but it is far more instructive if we use superposition to
obtain a solution. We will first calculate the diode current with only the light
applied (i.e., with vag = 0), and then we will calculate the diode current with
only the voltage vap applied (i.e., with no light). We can then add these two cur-
rents, ip(0, M) and ip(vas, 0), respectively, to obtain ip(vag, M). We of course,
know the second of these current components already; it is just our ideal diode
relationship, Eq. (7.29). The problem is to find ip(0, M).

Before proceeding, it is worthwhile to comment about our use of super-
position. The flow problems in the quasineutral region are linear problems, and
superposition is, of course, a valid technique with them. The boundary conditions
at the edges of the depletion region, however, are not linear functions of the junc-
tion voltage vap. Thus we must be very careful when separating excitations to
make certain that we don’t run into problems. Specifically we must make certain
that only one portion of our decomposition has a nonzero voltage applied to the
junction. Clearly our formulation of the problem meets this requirement.

To calculate ip(0, M), we want to find J.(—x ) and J,(x,), add them to get
Jrot, and finally multiply by A to get ip. We begin by identifying the boundary
conditions on the excess carrier populations. Clearly, at the ohmic contacts and at
the edges of the depletion region, the excess populations are zero. At x = x;, the
discontinuity in the slopes of n'(x) on either side of x; is M /D). This information
is summarized in Fig. 7.18a, where for the sake of convenience we have assumed
a very long minority carrier diffusion length. The corresponding minority currents

M
T f T
I ] I
i | I
] ] )
ip i I !
A o—l p-type | ! | ntype j—©8B
*VaB i i | -
] i {
I ] |
I i I
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FIGURE 7.17

A p-n diode illuminated with a spatial impulse generating M hole-electron
pairs/cm? - s uniformly across the plane at x = x;.
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(a) Excess minority carrier distributions in the illuminated p-n diode of

Fig. 7.17; (b) the corresponding minority carrier diffusion current densities on
either side of the junction; (c¢) the complete current density variations
throughout the device,
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are shown in Fig. 7.18b. The complete current density variations are shown in
Fig 7.18c.
A bit of algebra leads us to the result

(Wp — x1) ' (7.57)

Jh(xfl) = —qM(wn - xn)

The electron current J.(—x ) is zero, so we have

(Wn B xL)

ip(0,M) = —qAM oy =)

(7.58)
forx, = xp = w,. ‘

Looking at Fig. 7.18 and Eq. (7.58), we see that the fraction of the optically
injected carriers that flow to the depletion region and across the junction result in
a diode current. The sign of the current is negative, and its magnitude increases
as the illumination moves nearer to the junction.

If the illumination had been on the p-side of the junction, we would have
found

(Wp - xL)

ip(0,M) = —gAM
p(0, M) g o, =%,

(7.58a)
for —wp, = xp = —xp.

If the illumination is in the depletion region, all of the injected carriers cross
the junction and

ip(O,M) = —gAM (7.58b)

for —x, = x, = x,.
In general, then, we can write

ip(0, M) = —qAMf (7.59)

where f is a number between 0 and 1 that depends on the position x; of the
illumination.
With both light and voltage applied to the diode we have

ip = I (e?*/¥T — 1y [, (7.60)

where we have defined I; as the magnitude of the optically generated current
—gAM]f in our example. This characteristic is plotted in Fig. 7.19.

7.5.2 Applications of llluminated p-r Diodes

Referring to Fig. 7.19, we can identify two important features of the current-
voltage characteristic of an illuminated p-n diode. First, there is a current in
reverse bias that is directly proportional to the illumination and is independent of
the applied voltage. This effect can be used to sense the presence of light and
forms the basis for a device called the photodiode.
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FIGURE 7.19
Current-voltage characteristic of an illuminated p-n junction
diode.

The second feature is that the diode characteristic now extends into the lower
right-hand quadrant of the i-v plane. In this quadrant the device is supplying
power; that is, the product of the current into the device times the voltage across
its terminals is negative. This observation forms the basis for a device called the
solar cell.

We will consider each of these applications in turn below.

a) Photodiodes. The magnitude of the current through a reverse-biased p-n diode
that is not illuminated is generally very small. The precise value will, of course,
depend on the particular device under consideration, but it will typically be on
the order of a few picoamperes or less. When the junction is illuminated this can
easily be increased many orders of magnitude to a level well above the background
noise. This phenomenon then provides an extremely useful method of sensing the
presence of light.

Any p-n junction will be sensitive to light, but several straightforward things
can be done with a diode’s design to enhance its sensitivity to illumination. Most
basically, one should make the junction area large and place the junction near the
top surface of the device because, as we know from our discussion of illuminated
p-n diodes in Sec. 7.5.1, it is only those photogenerated minority carriers that
are able to diffuse to the edge of the space charge region that contribute to the
photocurrent. In addition, we should make the top ohmic contact relatively small
and place it off to one side, so that it does not block the light from reaching the
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junction and does not lead to an excessive amount of recombination. A typical
device cross section is shown in Fig. 7.20. The top surface of the device will
not in general be an ideal reflecting boundary; rather, it will have a finite surface
recombination velocity (see Sec. 5.2.3c) and will thus be a source of some loss
due to recombination. One way of reducing this is putting a thin, heavily doped
region at the surface as illustrated in Fig. 7.20; referring to Fig. 6.8b, you should
realize that this creates a potential barrier that tends to keep the minority carriers
away from the surface and thereby increases the light sensitivity of the device
(i.e., increases the magnitude of the photocurrent obtained for a given light in-
put). Diodes designed in this way specifically to be sensitive to light are called
photodiodes.

The amount of photocurrent generated by light depends not only on the
intensity of the light but also on the energy of the incident photons. You know
from our earlier discussion in Chap. 3 that the energy of the photons must at least
exceed the energy gap. On the other hand, if the photons have too much energy
they will be absorbed very quickly in the semiconductor and will generate hole-
electron pairs very near the surface, where a disproportionately large fraction will
recombine. This leads to a drop in the sensitivity of a photodiode at high energies.
Thus a photodiode will in general respond only to photons within a limited range
of energies; that is, it will respond only to light falling within a limited band of
wavelengths. Light of too long a wavelength, or, equivalently, too low an energy,
will not generate hole-electron pairs; whereas light of too short a wavelength, that
1s, of too high an energy, will be absorbed so close to the surface that most of the
photogenerated minority carriers will recombine before reaching the space charge
layer. ‘

Silicon photodiodes typically respond best to light with a wavelength be-
tween 0.7 and 0.9 microns; by taking special care to shield the photogenerated
carriers from the surface and by placing the junction very close to the surface,
it is possible to extend the range of sensitivity of a Si photodiode to also cover
the visible spectrum, 0.4 to 0.7 wm, and perhaps even the ultraviolet range of
less than 0.4 wm. If you want to detect light of longer wavelength (lower en-

Front ohmic
contact

Si0,—

Back ohmic contact

FIGURE 7.20
Cross-sectional drawing of a typical silicon photodiode.
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ergy), however, silicon is not useful. A semiconductor with a smaller energy gap
is needed. Germanium and indium gallium arsenide photodiodes, for example,
are well suited for use in the near-infrared region around 1.5 um, and mercury
cadmium telluride photodiodes can be designed to respond to wavelengths of
anywhere from 2 to 20 um, depending on the relative amounts of mercury and
cadmium in them. :

Photodiodes are extensively used as light sensors in many different applica-
tions, and you very likely encounter them daily, often without realizing it. The
sensor for the remote control on a television set or VCR is a photodiode, for ex-
ample; so is the sensor for the laser scanner at the supermarket checkout counter.
The light meter in a camera very likely also uses a photodiode, and when you
call home for money, there is a good possibility that the signal carrying your con-
versation is sent as light over an optical fiber and converted back to an electrical
signal by a photodiode.

. For some applications a simple photodiode like that pictured in Fig. 7.20
is not fast enough or sensitive enough. In such situations more sophisticated
device designs are required. One alternative design is to place an undoped (i.e.,
intrinsic) layer between the p- and n-type sides of the junction. The resulting p-i-n
structure has a relatively wide, uniform electric field across the i-region. A large
fraction of the light in a p-i-n photodiode is absorbed in the depletion region, and
the photogenerated carriers are quickly swept (drifted) across the junction. The
structure is both sensitive and fast. Yet another photodiode design is the avalanche
photodiode. This device is designed to be operated with a reverse bias just at the
edge of avalanche breakdown (see Sec. 7.3.3c). Photogenerated carriers crossing
the junction then will create additional hole-electron pairs through the avalanche
process. Each photon thus creates many carriers; that is, there is gain, whereas in
the other photodiodes we have discussed each photon leads to at most one carrier
crossing the junction. Avalanche photodiodes are particularly useful where very
high sensitivity is required.

b) Solar cells. A solar cell is a simple p-n junction photodiode designed so that
its spectral response is well suited to illumination by sunlight. It is operated so
that there is net electrical power output from its terminals. The most important
characteristics of a solar cell are how efficiently it converts input solar energy
to electrical energy and, in most applications, how much it costs. As might be
expected, there are trade-offs between cost and efficiency. Silicon solar cells are by
far the most prevalent. They are relatively inexpensive and can reach efficiencies
on the order of 10 percent. The spectral response of gallium arsenide solar cells is
a somewhat better match to the solar spectrum than that of silicon, and they can
achieve efficiencies of 25 percent, but they cost considerably more. On the other
extreme, thin-film (polycrystalline or amorphous) silicon solar cells can be made
very cheaply because they do not involve high-quality single-crystal material, but
for the same reason they are relatively inefficient (only a few percent). Many
light-powered pocket calculators rely on such thin-film silicon solar cells.
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7.6 LIGHT-EMITTING DIODES

In a forward-biased long-base p-n diode, all of the excess minority carriers in-
jected into either side of the junction recombine with majority carriers in the
quasineutral regions (refer to Fig. 7.7c¢). In silicon diodes, each hole-electron
pair that recombines releases an amount of energy equivalent to the energy gap
(i.e., approximately 1.1 eV) and does so primarily in the form of thermal-energy
phonons (i.e., heat). In other semiconductors such as gallium arsenide, an appre-
ciable fraction of this recombination energy is released as optical-energy photons
(i.e., light). A forward-biased long-base GaAs diode will thus generate an appre-
ciable amount of light. If the diode is configured and packaged so that it forms
a useful source of light, it is called a light-emitting diode (LED). Getting the
light out is actually a rather difficult problem. The light is emitted in random
directions, but because of the large index of refraction of GaAs (n = 3.5) it must
intersect the surface of the device within 15° of the normal or it will suffer total
internal reflection and never get out. (It will eventually be absorbed.) The usual
solution is to keep the junction close to the top surface to minimize the absorption
before the light reaches the top surface the first time, and to package the device
in a hemisphere-shaped high-refractive-index plastic dome. The diode is typically
a rectangular chip 250 to 300 microns on a side, with the junction near the top
surface; the dome will be several millimeters in diameter, as pictured in Fig.
7.21a. The high refractive index of the plastic increases the critical angle at the
semiconductor-plastic interface, considerably increasing the fraction of the light
able to exit the semiconductor. Once the light enters the plastic it will intersect
the surface of the dome at near normal incidence and most of it will exit.
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(a) Sketch of a typical light-emitring diode chip and its package; () the emission spectrum of a GaAs LED.,
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The energy gap of GaAs is about 1.4 eV, and GaAs LEDs emit in a narrow
band at about 0.9 um, as shown in Fig. 7.215. Our eyes are not very sensitive
at this wavelength, so we cannot see this emission, but it is very well matched to
silicon photodiodes (see Sec. 7.5.2a). The light source in the remote control on
a VCR is probably a GaAs LED. ,

The red, amber, and green light-emitting diodes in the dashboards of many
cars are made from semiconductors with wider energy gaps than gallium arsenide.
Many red and amber LEDs are made of gallium arsenide phosphide. The ratio of
arsenic to phosphorus in the semiconductor crystal used to make the device deter-
mines the color. Green LEDs and some red LEDs are made of gallium phosphide.
In this case it is the dopant that determines the color. Nitrogen doping yields green
emission, whereas doping with zinc and oxygen yields red. The details of how
this works are not difficult to understand but are beyond the scope of this text.

To date there are no efficient blue LEDs, but there is a great deal of research
effort being expended in an effort to make them. In the infrared direction there
are a variety of materials that can be used to make light-emitting diodes operating
out as far as 30 microns, though most applications are much nearer to 1 micron.

Finally, it is significant that hole-electron recombination can be optically
stimulated, that is, that a photon passing a conduction electron can catalyze the
recombination of that electron with a hole, causing it to emit another photon
traveling in the same direction as (and in phase with) the original photon. If there
is a very large population of excess conduction electrons and a large population
of excess holes, then this process can lead to a veritable avalanche of coherent
photons, and with the addition of a suitable optical resonant cavity a laser can be
formed. The excess populations can be created at a forward-biased p-n junction,
and the cavity can be formed by suitably cutting the semiconductor crystal. The
details are complex and again beyond the scope of this text, but the basic concept is
quite straightforward, and laser diodes are extremely useful devices. Most compact
disc players, for example, use laser diode light sources to interrogate the discs.
Most optical fiber communication systems also use laser diode sources.

7.7 SUMMARY

In this chapter we have seen that we can develop a model for the current-voltage
relationship of a p-» junction diode by envisioning the diode as being composed of
three regions: two quasineutral regions and a depletion, or space charge, region.
We looked at current flow in quasineutral regions in Chap. 5 and unbiased deple-
tion regions in Chap. 6. In this chapter we have extended our depletion region
model to include bias by arguing first that all of the applied voltage appears across
the depletion region, reducing the potential barrier there; the depletion approxi-
mation remains a valid model for the net charge, electric field, and electrostatic
potential in the depletion region. We have also argued that the majority carrier
populations remain essentially in thermal equilibrium with the potential barrier
at the junction; this gave us a way of determining boundary conditions on the
excess minority carrier concentrations on either side of the junction. Finally, we
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have argued that except for a small amount of generation or recombination in
the depletion region, the hole and electron currents are continuous across the
depletion region; this gave us a way of determining the total diode current. With
these assumptions we obtained

ip = ]S(quAB/(kT) -1

D D,
Is = Agn? — )
s =44 '<NAPW;; Nonw:

with g given by

* * :
where w’, and w} are given by

. W, — X
w), = L, tanh <%>

e
Wy — X
W; = L}, tanh <—‘P—L;——n‘>

Looking at these expressions we have seen that the diode current can become
very large in forward bias, whereas it saturates at a very small value in reverse
bias. We have also seen that the current across an asymmetrically doped junction
tends to be dominated by carriers from the more heavily doped side. Furthermore,
for two otherwise similar diodes with the same voltages applied, the more lightly
doped diode has more current.

We have seen that there are limitations in our model, particularly at very
low and very high current levels as well as at very large reverse biases. We have
shown how our ideal exponential diode model could be extended to incorporate
effects not considered in our basic model, as well as how it could be simplified to
obtain a model useful for hand calculations. One of the important things you will
want to develop as you use these models to analyze circuits is an appreciation
of when a simple model can be used and when it is necessary to use a more
complicated model.

We have also shown that there is charge storage associated with a p-n junction
and have introduced the concepts of depletion and diffusion capacitance. The
amount of stored charge in each of these charge stores was seen to be a nonlinear
function of the diode voltage.

We have discussed linear equivalent circuit models for p-n diodes valid for
small-signal operation about a bias point. We have shown that at low frequencies a
diode looks incrementally like a resistor whose value kT /g Ip depends on the bias
current level Ip. To extend this model to higher frequencies, we have defined two
small-signal capacitances, the depletion capacitance and the diffusion capacitance,
to model the two junction charge stores in small-signal linear equivalent circuit
analyses.

Finally, we have considered the interaction of light with p-n diodes. We
have seen that an illuminated p-n diode can convert optical energy to electrical
energy and can serve as a useful power source and light detector. We have also
seen that p-n diodes fabricated in certain materials emit light when forward-biased
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because a large fraction of the accompanying hole-electron recombination occurs
via radiative processes. These red, yellow, and green light emitters can be found
in many modern electronic gadgets.

PROBLEMS

7.1

Consider an abrupt silicon p-n junction with N, = 5 x 1017 cm™3 and N, =

1016 cm™3 at room temperature:

(a) Find the numerical value for the ratio of the depletion region width on the n-side,
Xn, to the width on the p-side, x .

(b) Find the total width of the depletion layer (in microns).

(¢) Find the maximum electric field $max in this junction for applied biases of (i)
Vy=0and (i) Vy = ~12 V. ' o

(d) The breakdown electric field in moderately doped silicon is approximately 5% 103
V/cm. At what reverse bias will €max = 5% 10° V/em, and what will the depletion
region width be at that bias? :

7.2 A certain silicon p-n junction is known to have the doping profile illustrated in Fig.

P7.2. Note: Njx) = Ng(x)—Ng(x). Assume that this 'device is at room temperature,

n; = 1010 cm™3, kT/q = 0.025V, and ey = 107 2F/cm. The cross-sectional

area is 2.5 cm?. Use the depletion approximation to arrive at your answers.

(a) What is the thermal equilibrium electrostatic potential relative to intrinsic silicon
far to the left and right of the junction (i.e., for x >> 0 and for x << 0)?

(b) For a certain applied bias the width of the depletion region on the n-side, x,, is
2 um. What is the corresponding depletion region width on the p-side, x ,?
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7.3 Consider the p*-n-n* diode pictured in Fig. P7.3.

7.4

Use the depletion approximation to answer this question.

(a) At what bias level vp is the n-region fully depleted?
(b) (1) Find an expression for the depletion region width as a function of v, when
vagp is negative and | vap | is greater than the value you found in part a
(i.e., when the depletion region extends into the n*region).
(ii) Find an expression for the peak electric field in the same bias range.

(c) If the critical electrical field for breakdown is 5 x 10° V/em in Si with n, =
1016 cm™3, what is the maximum voltage that can be applied to this device
before it breaks down?

(d) Compare your answer in part ¢ to the breakdown voltage of a comparable p*-
n diode (i.e., one with a long n-region rather than the n*-region). Does the
presence of the nt-region increase or decrease the breakdown voltage? Can you
explain your answer?

This problem concerns the design of a voltage adjustable resistor like that pictured

in Fig P7.4. This device is simply a diffused resistor like the one you designed in

Problem 3.4 with a heavily doped p-region added over the conducting channel that

thins it and increases its resistance. By varying the reverse bias between the p- and

n-regions we vary the width of the conducting channel and thus adjust the resistance
of the diffused resistor.

In your design you may assume that the n-region is uniformly doped. Also assume
that the voltage drop in the resistor is small, so that it is essentially all at the
same potential for purposes of calculating the junction depletion widths. Select the
dimensions of the device and doping level of the n-region subject to the constraints
that the minimum line width, W, is 2 um; the final thickness of the n-region, T,
must fall between 1 and 4 wm; and the doping of the n-region should be between
1015 cm™3 and 1018 cm™3. You want to design a device that meets the specifications
given in part a below that has the smallest possible capacnance between terminals 2
and 1.

(a) Design a device that will have a resistance of 1 kQ with vo; = — 5V and a
resistance of 2 k{} with v9; = —10 V.

(b) Plot the resistance (at low v3;) versus vo; of the device you have designed over
what you feel is the useful operating range, Explain why you have chosen this
operating range.

(c) Discuss qualitatively how the resistance of your device changes as v3; becomes
large (i.e., on the order of a volt or more). You should find looking ahead to the
discussion in Sec. 10.2 useful in this regard.
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p =101%cm=3

" FIGURE P74

7.5 The data from a measurement of the small-signal capacitance of a silicon p*-n diode
structure as a function of bias voltage is plotted in the form 1/ Cg versus yap in Fig.
P7.5. The area of the junction is 1073 cm?2. Use this data to answer the following
questions about the device.

(@) What is the built-in potential of this junction?

(b) What is the doping level of'the more lightly doped side (n-side) of this diode
in the vicinity of the junction? Note that in a p*-n junction, N4, >> Np, and
we can write Ny ,Np,,/(Nap + Npp) = Np,,, so Eq. (7.9b) can be simplified
somewhat.
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(¢) What is the doping level of the more heavily doped side? Hint: Use your knowl-
edge of ¢, and Np,,. :

(d) At some distance from the junction the doping level changes.
(i) At what distance from the junction does the change occur?
(if) Does the doping level increase or decrease at.this point, and what does it

become?
(e Suppose that in addition to the above structure there is a very heavﬂy doped
*.region 3 um from junction. How would you expect the plot of l/C pyersus

VAB to look in this case? Sketch and explain your answer.

Consider two abrupt silicon p-n diodes with identical dimensions, carrier mobilities,

and minority carrier diffusion lengths that differ in terms of doping. In diode A,

Np = 10% cm™ and Np = 1017 cm™3; in diode B, Ny = 10!7 cm™3 and N, =

1018 cm—3,

{a) With the same reverse bias applied to each diode, which of these diodes has the
largest depletion capacitance and why?

(b) With the same forward current flowing in each diode, which of these diodes has
the larger diffusion capacitance and why?

(c) With the same forward voltage bias applied to each diode, which of these diodes
has the larger diffusion capacitance and why?

(d) Which of these diodes has the largest reverse breakdown voltage and why?

Consider a p-n diode with the following dimensions and doping levels:

n-side: Np, = 5x 107 cm™3

n=1pm
Ty = 1076 s
p-side: Ny, = 1016 cm™3
wp =4 um
7o = 107°

This diode is fabricated in silicon for which p, = 1600 cm?/V's, uj, = 600 cm? / \'g
s, and n; = 1.0 X 10'® cm™3 at room temperature. The cross-sectional area of this
device is 1074 cm?.

(a) Can this diode be modeled using either the long- or short-base approxnnatlon‘7
Which one, if either, and Why?

(b) What is I in the expression for the diode current, that is, in the relation ip =
Ig(e97aB/KT — 1)9

(c) When this diode is forward-biased, what fraction of the total current is holes
flowing from the p- to the n-side? Which fraction is electrons gomg from n to p?

(d) What is the built-in potential of this junction?

(e) At what bias level does the low-level injection assumption start to be violated,
assuming that LLI is valid as long as n' and p’ are less than 10 percent of the
majority carrier population?

(N Is LLI violated first on the n-side or on the p-side, or does violation occur
simultaneously on both?

(g) (i) What is the diode current density at the bias point of part e?

(if) What are the resistive voltage drops in the quasineutral regions at this bias
level?
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(%) Plot the excess electron concentration on the p-side of this diode on a linear scale
for the following bias conditions:

(1) 0.2 V forward bias, vag = +0.2V
(ii) 1.0 V reverse bias, vag = —1.0 V
(?) How would your plots in (ii) of part h change if vpg was —5.0 V?

7.8 Consider the three diodes shown in Fig. P7.8. All have the same cross-sectional area
A, and all contacts are ohmic, Carrier mobilities are as follows:

N4 or Np = 107/cm3 1 ., = 600 cm?/V - s
iy = 250 cm?/V +s
Np =1015/cm3 : p, = 1300 cm?/V - s

iy = 350 cm?/V-s
The minority carrier lifetime in the p-type material is 1078 s. In the n-type material
the minority carrier lifetime is 4 X 10~/ s for Np = 10'5/cm3 and 5 x 1078 s for

Np = 107/cm3. Assume the depletion region widths can be ignored.

Jj
g
o— Ny =10"/cm? Np=10%/cm? .,
el : RS
Ohmic - — Ohmic
Ohmic
o— | Ny=10"/cm? Np=10'5/cm? .
s .
Ohmic
Ohmic
o—— N, =10"/cm? Np=10"7/cm? S
s w
Ohmic
’4—2 p,m-—-><————5 Hm—

FIGURE P7.8
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(a) For each diode find the numerical ratio of the hole current to the electron current
at the junction.

(b) Find the numerical ratio of the total junction current in diode 1 to that in diode
II, and find the numerical ratio of the current in II to that in III, assuming that
the diodes are operated at the same voltage.

(¢) Diodes I and II are connected in parallel across a forward-bias voltage source
vp = 0.25 V. What fraction of the total current goes through diode 17

(d) Diodes II and III are connected in series so that both conduct in forward bias
when connected to a voltage source vp = 1 V. What fraction of the total voltage
appears across diode II?

(e) A forward-bias voltage vp = 0.36 (= kT/q1n10°) is applied to diode I. Make
labeled skeiches showing how the following quantities vary throughout the diode:
p'(x), n'(x), Jp(x), Je(x).

7.9 In Problem 6.4 you analyzed a linearly graded junction. Now consider applying bias
to this same junction. Assume that ¢, is known and that a reverse bias v4 <0 is
applied to the junction. From your expression in (i) of part b of that problem show
that w(v,4) varies as the cube root of (¢p — vy).

7.10 The short-circuited, symmetrically doped p-n diode shown in Fig. P7.10 is illu-
minated by a- distributed source that generates g; = g, sin(wx/w) hole-electron
pairs/cm3 s iti'the regioni-of 0'= x = w. Assume the following: low-level injection;
Wp = Wp =W, W << Lp, W << L¢; te =4 pip; Ng = Ng.

Make labeled sketches of the following over the range ~wp = x < w,,
(a)n'(x)
(b) Je(x)

(e) Jp(x)
(@) Find the roral short-circuit current of the diode.

7.11 Design an instrument that uses the semiconductor bar shown in Fig. P7.11, with two
p-n junctions, as part of an accurate position sensor. Although the structure resembles

SRR

1
| i
|
|

L 1 1 -
~Wp 0 Wy

FIGURE P7.10
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an n-p-n bipolar transistor, both junctions are reverse-biased during operation. The

way it works is that a spot of light hits the p-region of the sample at position x’

and the two currents iy and i are measured. From these two values, the instrument

should calculate the value of x;. The two junctions are a distance 2W apart, and for
convenience the origin is taken to be midway between the two junctions. Consider
only current flow in the x-direction.

(a) Neglect recombination in the p-region. Find iy and i, as functions of x; and the
number of electron-hole pairs generated per unit time, M. You may restrict x; to
be between —W and W.

(b) Because the light source generating the illumination has an intensity that can-
not be controlled accurately, you have to design the logic in the instrument to
find x; independent of M. What equation can you use? (Continue to neglect
recombination in the p-region.)

(c¢) During production of the instrument, one shipment of semiconductor bars was
suspected of having high recombination in the p-region. You have asked the
quality control engineer to measure iy versus x; before he returns, you calculate
the expected curve for a high-recombination case, where the electron diffusion
length in the p-region is W/5. Plot your calculated curve.

7.12 Tt has been discovered that hole-electron pair recombination in n-type nitrogen-doped
gallium phosphide, GaP, is predominantly radiative, emitting green light. A certain
device designer wants to make green GaP light-emitting diodes and has the following
materials available to use in his design:

n-type, Ny-doped, Np = 1018 cm™3
n-type, Np-doped, Np = 5 x 1016 cm™3
p-type, Zn-doped, Ny = 1018 ¢cm3
p-type, Zn-doped, Ny = 5 X 1016 ¢m~3
In each instance, D, = 25 cm?/s, Dy =35 cm?/s, and 7 = 1076 s,
(a) Which is the best combination of materials to use to make an efficient green
light-emitting p-n junction diode? Explain your answer.
(b)In a GaP green LED, we want the holes injected into the n-side to recombine

in the semiconductor and not at the ohmic contact. Thus the n-side should be
much wider than a minority carrier diffusion length. How wide, wy,, should the n-
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side be to ensure that less than 10 percent of the injected carriers recombine at the
contact? GaP is costly, so find a lower limit for the width w,. Use reasonable
approximations.

(c) When designing this device, is it better to select the width of the p-side so that
it operates in the long-base limit or short-base limit, or does it matter? Explain
your answer.

(d) Consider for the sake of argument a GaP LED that is sufficiently thick that it
operates in the long-base limit on both sides of the junction; that is, |w | >>
Le,|wn| >> L,,. Assume also that the device is doped as you said it would be in
part a above. When the diode is forward-biased, what fraction of the total current
is carried by electrons at the following positions in the device and why:

(i) In the depletion region at the junction?
(i) Inside the semiconductor close to the ohmic contact on the p-side?
(iii) Inside the semiconductor close to the ohmic contact on the n-side?

7.13 Consider the p*-n diode illustrated in Fig. P7.13. The n-side of this diode is relatively
lightly doped (1016 cm™3) over the half of its thickness nearest the junction and
is more heavily doped (1017 em™3) over the portion nearest the contact. Assume
that the low-level injection assumption is valid for the purposes of this question
and that the minority carrier diffusion lengths are much greater than w, and w, -
(i.e., that the infinite lifetime assumption is valid).

(@) (i) Find the electrostatic potential step A¢ between the lightly doped n-region
(0 < x < wp/2) and the more heavily doped n*t-region (w,/2 < x < wy).

(ii) Sketch the electrostatic potential in the vicinity of x = w,/2.

(b) (i) Find the equilibrium minority carrier population in the n- and n*-regions.

(i1) Find an expression for the ratio of the equilibrium minority carrier population
in the n-region to that in the n*-region in terms of A¢.

(c) Assume now that the diodé is forward-biased and that excess minorify carriers

(holes) are injected into the n-side of the junction.

(i) Use your result in (ii) of part b above to relate the total population of holes
just to the right of w,/2 to that just to the left of w,/2, assuming that the
hole population stays in quasiequilibrium with the potential step at w,/2,
fi.e., maintains the ratio that you found in (ii) of part b].

(if) Assuming that the excess minority carrier population p’(x) substantially
exceeds the equilibrivm minority carrier population p,(x), find a relationship
between the excess population of holes just to the right of w,/2 and that just
to the left of w,/2.

(iji) Sketch the excess minority carrier population p’(x) between the edge of
the depletion region x, and the ohmic contact at w,. The excess minority

Ohmic
A O—— pt n nt |I—o0 B
Ohmic
! ! L L -
- W, 0 CoW/2 W,

FIGURE P7.13
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carrier population at the edge of the depletion region on the n-side of the
junction is n%(eq vap/kT — 1)/Np, . Also remember that the minority carrier
diffusion length is much greater than w,. You should assume that x, is
much less than wy.

(d)Find an expression for the current through this diode, ip, as a function of the
applied voltage vag.

(¢) Compare your answer in part d to what you would have obtained if the n-side
of this diode was uniformly doped. Use this comparison to find the “effective
width” of the n-side of the original diode, where we define the effective width as
the width the n-side would have to have in a diode with a uniformly doped n-side
and the same hole current density. (Note: The effective width you find should be
much greater than w.) ,

7.14 Consider the abrupt, symmetrically doped silicon p-n diode with a n*-region next to
the n-side contact as illustrated in Fig. P7.14. The net doping level on either side of
the junction is 5 X 1016 cm™3, and the doping level in the n*-region is 1018 cm™3.
The electron and hole mobilities, . and wy, are 1600 cm?/V -s and 640 cm?/V -,
respectively, and the minority carrier lifetime throughout the device is 107 s. The
instrinsic carrier concentration n; is 1019 cm™3. Assume kT/gq is 0.025 V.

(a) What is the built-in potential at the p-n junction in this device?

(b) Sketch and dimension the electrostatic potential as a function of position in this
device for x between —5 um and +11 wm. Do not calculate any depletion region

widths.
(c) Assume now that the diode is illuminated by light that creates 1020 hole-electron
pairs/cm? - s uniformly across the plane at x = —5 pm.

(i) Sketch the excess minority carrier concentration profile as a function of
- position throughout the device with this illumination.
(ii)) What is the short-circuit current through the illuminated diode? Give an
. answer accurate to 5%,
(d)Repeat (i) and (ii) of part ¢, assuming that the illumination is now across the
plane at x = +5 pum rather than at —5 pm.

Ohm\““\ Ohmic
_ ) A/\éross-sectional
P n nt area=10"2 cm?

)/—lowcm'3

1 1 | ! 1 i 1 1 1 | | i I | { ~x(,um)

FIGURE P7.14



CHAPTER

3

BIPOLAR JUNCTION
TRANSISTORS

Having completed our modeling of the p-n junction diode, we now turn our
attention to the bipolar junction transistor, or BJT. There are two types of BJTs,
pnp and npn, one structure being simply an n-for-p and p-for-n transformation of
the other. We will initially focus our attention on the npn BIT. After that, treating
the pnp BJT will be straightforward. '

An example of what an npn bipolar junction transistor might look like is
illustrated in Fig. 8.1. The working “heart” of the device is the portion directly
beneath contact E, the emitter contact, and extending to the back contact C, the
collector contact. Contact B represents the base contact. This portion of the device
is illustrated in Fig. 8.2. This is the structure that we will analyze in this chapter
to develop a model for the terminal characteristics of the BJT. Before doing so,
however, we will first try to understand qualitatively how this device works.

The BJT can be thought of in several ways. One way is to regard it as two
closely spaced and interacting p-» junctions which is basically how our model in
this chapter will present it. One of these junctions, the base-collector junction, is
reverse-biased, and its current (the collector current) would normally be negligibly
small. In the BJT, however, this junction is very near the second junction, the
emitter-base junction. If the emitter-base junction is forward-biased, electrons will
be injected across it from the emitter info the base and foward the base-collector
junction; the result will be a collector current because these electrons will readily
flow across the reverse-biased base-collector junction. Furthermore, the size of
this collector current will depend directly on the number of electrons emitted
into the base (i.e., on the emitter current), which in turn depends directly on the
emitter-base voltage. We thus view the collector current as being controlled by
the emitter-base voltage and as being proportional to the emitter current or, equally

185
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C

FIGURE 8.1
Cross section of a rudimentary npn bipolar transistor fabricated in silicon using a so-called

planar process.

well, to the base current (which is the difference between the emitter and collector
currents).

Another way to think about an npn BJT is as two n-type semiconductor
regions separated by a p-type barrier. A positive bias is applied between one of the
n-regions, the emitter, and the other, the collector, so that electrons in the emitter
are attracted to the collector. No current flows, though, because the intervening
p-region, the base, blocks the electrons. However, by applying a second bias
between the first n-region (the emitter) and the p-region (the base), the potential
barrier to electron flow presented by the base region can be reduced and a current
will flow. If things are done correctly, a small change in the base-to-emitter voltage
will lead to a large change in the current flowing from the emitter to the collector
and the transistor will have appreciable gain. In the bipolar transistor we make
electrical contact directly to the middle, current-blocking region of the device
and we vary the potential of that region relative to the outer regions directly. Later

n P n
Ec Npg Nyp Npe °C
. - S
Ohmic Ohmic
B
1 1 P ] -
- Wg 0 Wp Wg+ We

FIGURE 8.2
Quasi-one-dimensional bipolar transistor structure to be used in modeling the device in Fig. 8.1.
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(in Chap. 10) we will see another type of device, the field effect transistor, in
which we will make capacitive contact to the blocking region. After discussing
that device it will be interesting to compare and contrast these two devices.

In this chapter we will begin with a quantitative model for the static relation-
ships between the terminal voltages and currents in the bipolar junction transistor;
the model we will develop is called the Ebers—Moll model. After discussing this
model and its limitations, we will develop several large-signal circuit models for
bipolar junction transistors, including models for time-varying signals. We will
also develop a variety of linear circuit models for BJTs suitable for describing
the response of this device to small-signal variations about a quiescent operating
point. The models we develop will vary widely in their complexity and in the
assumptions we make in deriving them; one of our goals will be to understand
which model to use when. We will conclude this chapter with a look at optically
excited BJTs, devices we call phototransistors.

8.1 THE EBERS-MOLL MODEL FOR
UNIFORMLY DOPED ONE-DIMENSIONAL
BJTS

The heart of the BJT illustrated in Fig. 8.1 is the region under the emitter contact,
which can to a large extent be modeled as a quasi-one-dimensional transistor
like that illustrated in Fig. 8.2.* The device is composed of three uniformly
doped regions—the emitter, base, and collector —with, respectively, doping levels
Npg,Nap and Npc and widths wg, wg, and wc, as illustrated in Fig. 8.2. Note
that we have added a subscript E, B, or C to indicate that we are dealing with the
emitter, base, or collector, respectively. We will also add such a subscript (an E,
B, or C) to certain other parameters to denote to which region they pertain. For
example, D,p is the electron diffusion constant in the base. Finally, the minority
carrier diffusion length in each region is assumed to be much greater than the
effective width of that region (e.g., Lz >> wi).

We apply arbitrary voltages vzg and vpc to the terminals of the device and
ask what the currents iz and ic are. That is, we want to determine i z(Vpg, Vac)
and i¢(vpg, vpc). Note that the third current, i, is not independent of these two;
that is, ip is —(ig + i¢). Similarly, the third voltage, v¢E, is also not independent;
that is, VCE is '—(VB_(;': VBE)- .

8.1.1 Superposition

It 1s possible, and not even particularly difficult, to solve this problem directly.
Once vpe and vpc are specified, all of the boundary conditions are known and

*We call this device quasi-one-dimensional because the base current, the current into terminal B,
must clearly flow in from the side, so the problem cannot be truly one-dimensional. Nonetheless, it
is a good first approximation to neglect the lateral resistive voltage drop due to this current, arguing
that it will be small over most of the operating range of most transistors.
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the corresponding flow problems are all well defined and solvable. However, a
much greater understanding of the BJT is obtained if we first break the problem
into two pieces by applying one voltage at a time, solve for the resulting currents,
and then use superposition to combine the two solutions into the total solution.
We thus divide the problem into a “forward” portion in which vgg is applied,
with vpc set to zero; and a “reverse” portion in which vpc-is applied and vpg is
Zero.

You should be a bit uncomfortable at this point because we are talking
of using superposition in a problem that contains various nonlinearities. To begin
with, the boundary conditions are nonlinear functions (exponential) of the junction
voltages. Each junction has only one nonzero voltage applied to it, however, so
this nonlinearity never becomes an issue and superposition is applicable. A more
serious nonlinearity is the dependence of the space charge layer widths and,
consequently, the dependence of the quasineutral region widths on the junction
voltages. We avoid this problem for now by assuming that we can neglect the space
charge layer widths relative to wg, wp, and wg and thus that the quasineutral
region widths are unchanged with changing junction bias (i.e., are not functions
of vpgr and vgc). We will return to this point in Sec. §.1.5 and discuss how to
design a device to ensure that this is a good assumption. We also will see how the
device characteristics are affected when this assumption begins to break down.

8.1.2 The Forward Portion (vgc = 0)

In the forward problem, we have vze = 0 and want to obtain ig(vgg, 0), which
we label igp, and ic(vpg, 0), which we label icp. The excess minority carrier
populations on either side of the base-collector junction are zero because vge = 0.
We denote this as n'(wz) = 0 and p'(wf) = 0, where the + and — superscripts
indicate the space charge layer edges on either side of the junction. Furthermore,
the excess populations at x = —wpg and at x = wp + w¢ are zero because of the
ohmic contacts on the emitter and collector, respectively.

At the emitter-base junction the excess populations are set by vgg. They are

2

p'(07) = N”—;E(eqv“/” - 1) 8.1)
2

n'(0*) = %(em/” - 1) (8.2)

Because Lyg = wg, L.p = wp, and Lyc = wc, we know that the excess
minority carrier profiles in the transistor are linear and must look as shown in Fig.
8.3. We can immediately write an expression for the emitter current:

n— rny+
igp = _qA[th*(O )+Den§0 )}
Wg Wp
‘where A is the cross-sectional area of the junction. Using Egs. (8.1) and (8.2),
this becomes

(8.3)

Dr , De )(eqvas/"—n (8.4)

; 2
ipp = —gAns
9 '(NDEWE Napwy
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FIGURE 8.3 .
Excess minority carrier profiles for the device of Fig. 8.2 with vz > 0 and vgc = 0.

This current consists of holes flowing from the base into the emitter (the first term
in the first parentheses) and electrons flowing from the emitter into the base (the
second term). That is,

igr = ipp +irF. (8.5&)

The emitter electron current iy, is the most important component of the emitter
current in npn transistors, and we will focus our attention on it. Referring to Eq.
(8.4) we see that i, can be written as

ipe = —qAn?NAIZ;* (e“BE/"T - 1) . (8.6)
B .

Using this we can write
igrp = ipe(l + SE) (8.5b)
where 8, defined as ip;/iF., is called the emitter defect. From Eq. (8.4) we see
that
_ DyNapwy
DeN DE WE
Some of the electrons in iz, recombine with holes in the base, but the vast

majority flow across the base and out the collector, Thus, the collector current can
be written as

8k (8.7)

icr = —ipe(l — 8p) (8.8)

where 8p represents the fraction of the electrons entering at the emitter that re-
combine in the base. The term 8p is called the base defect. The product Spire is
the base recombination current, which we will write as ig,.
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To calculate 85 we note that the recombination occurring on any plane x in
the base is An'(x)/7.p wWhere 7.g is the minority carrier lifetime in the base. The -
total recombination in the base is thus the integral of this quantity from 0* to wj.
Multiplying this integral by —g yields the base recombination current ig,:

‘ WE A '
igr = -—qJ " (x)dx (8.9a)
g+ TeB
or, because A and 7.5 are constants,
. . WE
i, = _Zﬁj n'(x)dx (8.9b)
TeB Jo+ .

Because the excess carrier profile is triangular, this integral is easy to evaluate.
We find by inspection that it is n'(0*)w}/2, and that

_gA n'(0")wy

T (8.9¢)

iBr =~
Recognizing that ip, = —gA Dgn'(0")/w} [see Egs. (8.3) and (8.5a)] we can
write

. Wit
ipr =

= 2L 9 8.10
T Dusres T ®.10)

Thus, because i, = dpip,., we immediately have

*2
Wg

8 = ——L — 8.11a
5 2D pTen ( )
which can also be written as
wiz
6 = —2Z (8.11b)
212,
Returning to the terminal currents, we first rewrite Eq. (8.4) as
igp = —Igs (quBE/kT - 1) (8.12a)

where we have defined Igg, the emitter-base diode saturation current, as
Igs = qAn*(Dy/Npew}h + Do/Nagw}) (8.12b)
Using Egs. (8.12) in Eq. (8.6), we find we can write ir, in terms of igp
and Igg as

N -, | _ T 1Iss qvae/kT _ '
Pe = 165 (L+ 85 (e 1) (8.67)

Combining this result with Eq. (8.8) yields

. _ _(1=6\. _ (1-20p) gvae/kT _
icp = <———1 +|6E>ZEF = e (e 1) (8.13a)
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We will write this as

icr = —apigr = arlgs (eqv”/” - 1> (8.13b)
where we have defined ap, the forward alpha, as
(1 -36p)
= 8.
*F = T +ep) (8.14)

Note that ar will be very near to 1 if 65 and 8y are small, but it will always be

less than 1.
The third current, the forward portion base current ipr, is given by

ipr = —igr — icF (8.15a)
Using Eqgs. (8.6) and (8.8), this can be written as '
ipr = —ip.(8c + Op) (8.15b)

At this point we should consider what these resuits mean. The three equations
we want to examine are Egs. (8.6), (8.8), and (8.15b), which we collect here:

igrp = ip.(1 + 8g) (8.6)
icr = —ipe(1 — 8p) (8.8)
ipr = —ip.(0g + &p) (8.15b)

The emitter current is made up of electrons flowing from the emitter into the base
region, ir,., and holes flowing from base into the emitter. Equation (8.6) focuses
our attention on the emitter electron current, because the electrons are what can
lead to collector current. The hole current is “lost,” so it is desirable to keep 6g
small. The collector current is the emitter electron current less the electrons that
recombine in the base. Clearly we also want to keep 8p small.

The base current is composed of the holes forming the hole portion of the
emitter current, ip, = —&gip., and the holes recombining with electrons in the
base, ip, = —8pip.. By making g and 8p small, we keep the magnitude of i 3¢
small relative to i and igp.

All of the terminal currents and their various components are represented in
Fig. 8.4. You may wish to refer to it and review the preceding discussion before.
proceeding. :

We often write the collector current in terms of the base current and view the
base current as the signal, or control, current. We see from Eqgs. (8.8) and (8.15b)
that icr and ipp are proportional, and we call the factor of proportionality the
forward beta, Br. We write

i
Br =L (8.16)
LBF
which we see from Egs. (8.8) and (8.15b) can be written as
(1 —6p)
= 8.17a
Br n 7 08 ( )
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FIGURE 8.4
Schematic representation of the current flux components in an npn bipolar transistor

with vgg > 0 and vpe = 0.

Br is related to ar as
ar

Br = m (8.17b)
Conversely,
___PBr
L ) (8.17¢)

We note from Eq. (8.17a) that if 6z and &p are small, Br will be large. This is,
of course, entirely consistent with Eq. (8.17b) and our earlier observation that ar
is very near 1 if 6 and §p are small. '

Summarizing, for the forward portion of the transistor characteristics, we

have

igp = —Igs(e?PE/¥T — )= —jp - (8.129
and
icF = —arpigr =Qrif (8.13a")
with |
Dy, D
Igs = gAn? + = :

A circuit model that has the same terminal characteristics is illustrated in Fig.
8.5. The diode in this circuit is an ideal exponential diode.

8.1.3 The Reverse Portion (vgg = 0)

In the reverse portion of our decomposition of the general terminal character-
istics of the BJT, we have vgg = 0 and are looking for iz(0, vzc) = igg and
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FIGURE 8.5

Circuit representation of the terminal characteristics of an npn bipolar
transistor with vgg applied and vge = 0.

ic(0,vpe) = icg. The treatment is exactly analogous to that followed in the
forward portion. We find that

. Dy, D,
= —gAn? + qvec/kT _ | 8.19
‘CR a4 <Nocw?: NABwZ )(e ) ( 2)

Writing this as

IcR = irn + iR (8.19b)
we define a collector defect 8¢, as
bc = l:ﬁ (8.20a)
LRe
From Eq. (8.19a),
bc, = %’;—:—é (8.20b)
Using Eq. (8.20a) we can write
icr = ige(1+6¢) (8.21)
Also, we find that
iEr = —ige(l — 6p) (8.22)

where the base defect dp is the same as that defined in Eq. (8.11).
We define a reverse alpha ay as

op = —ER (8.23)
ICR
which, using Egs. (8.21) and (8.22), is
_ (1—-6p)
| QR = 1550 (8.24)
We can also define a reverse beta Br as
By = -ER (8.25a)

!BR
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which can be written as

(1-38p)
= 8.25b
Pr = o T om) (8.250)
or, using Eq. (8.24), as
= &R
Br = T<on (8.25¢)
To summarize the reverse portion terminal currents, we have
ick = —Ics(edvsc/kT — 1) (8.26)
with
D, D
Ire = gAn? L+ ¢ 8.2
Ccs qAan; [NDCWE NABWE : ( 7)
and

igr = —aricr = Qrip = aglcs(e?"5c/FT — 1) (8.28)

An equivalent circuit for the reverse portion is shown in Fig. 8.6, Notice in this
figure that for convenience we have defined a new current iz, which we have

taken to be —ick.

8.1.4. Full Solution: The Ebers—Moll Model

Having solved for the current-voltage relationships at the terminals, first with
only vgg applied and then with only vpc applied, we are now ready to use
superposition to obtain the terminal characteristics when both vgg and vge are
implied. We simply add the currents to get

ig = igr + IER
Using Egs. (8.12) and (8.28) we arrive at
ip(veE, vec) = —Ips(e?"#/FT — 1) + agles(e?>e/* T — 1) (8.29)
Similarly,

ic =icr+icr

DR vs]

0
7

aRfR ICS
;o

B
FIGURE 8.6

Circuit representation of the terminal characteristics of an apn bipolar
transistor with vge applied and vgg = 0.
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FIGURE 8.7
Circuit representation of the Ebers-Moll model equations for the npn bipolar transistor.

which, using Eqgs. (8.13) and (8.26), is
ic(vae, vae) = aplps(e?BE/*T — 1) = [cg(edvec/FT — 1) (8.29b)

Equations (8.29a) and (8.29b) represent the Ebers-Moll model for the bipo-
lar junction transistor. The circuit representation is shown in Fig. 8.7, This circuit
is often referred to as the Ebers—-Moll model of the bipolar transistor, although,
of course, the model also includes the assumptions and approximations that went
into developing it.

The four parameters in the Ebers—Moll model are not all independent. Using
our earlier expressions it is easy to show that

arlps = arlcs | (8.30)

That this be true is required by reciprocity, one of the properties of realizable
systems.

8.1.5 Characteristics and Operating Regions

Now that we have obtained expressions for the terminal characteristics of a BJT,
we should see what these characteristics look like and consider what they can
teach us about how best to use this device. The BJT is a three-terminal device. We
usually view it as a two-port network that has one terminal in common with both
the input and output ports. We did this when we derived the Ebers—-Moll model,
for example; we took the base to be the common terminal, but we also could have
selected the emitter or collector, although the latter is of little interest. We will
look in this section at characteristics for two modes of operation, common-base
and common-emitter, ‘

We also have choices to make with respect to the terminal variables (i.e., cur-
rents and voltages). We must choose which variables will be dependent and which
will be independent. In the Ebers-Moll model, for example, we took the emit-
ter and collector currents to be dependent on the base-emitter and base-collector
voltages. We will consider other possibilities below.



196 MICROELECTRONIC DEVICES AND CIRCUITS

a) Common-base operation. In the Ebers-Moll model the base terminal was
common to both the forward and reverse portions. We thus speak of this model
as a common-base configuration, and we will look at the terminal characteristics
for this mode of operation first.

Consider first the collector current. The Ebers—Moll expressions tell us that
it is composed of two components: the base-collector exponential diode current
and a fraction of the emitter-base exponential diode current. These two compo-
nents are plotted as a function of the base-collector voltage vpc and for several
values of vgg in Figs. 8.8a and b, respectively. The total collector current is the
sum of these two components and is plotted in Fig. 8.8¢. This plot represents the

lcr Icr
iEF = _31
Reverse >
30!
(vge=0) —2I F
w2
-
gl
> Vpe > Vge
Forward
(vpe= 0
(@) ®
ic
. ig==3]
30 2

> Vpc

2
A J J

()

FIGURE 8.8

Common-base output characteristics of an npn BIT: (a) the base-collector exponential
diode characteristic; (b) the collector current due to the base-emitter diode current for
several values of vgg chosen to give linear increments in ig; (c) the total collector
current,
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common-base output characteristic because the base terminal is common to both
of the voltage parameters, vgc and vgg, and because the collector terminal is
commonly thought of as the output terminal, whereas in this case the emitter
terminal is viewed as the input terminal.

We indicated above that the families of curves in Fig. 8.8 were created by
varying vgg, which strictly speaking is true. However, it makes much more sense
to think of varying /g to create a family because i depends linearly on ig over a
substantial range (i.e., ic = —apip when vge < 0). In contrast, ig, and thus ic,
depend exponentially on vpg, and exponential dependences are awkward to work
with; it is much easier to deal with linear variations. Thus families of curves such
as those in Fig. 8.8¢ are presented with i rather than vpg as the input parameter.
Mathematically, we think in terms of i (ig, vgc), rather than ic(vpg, vac).

The common-base input characteristic (i.e., ig versus vpg, with i¢ or vye
as a parameter) is identical in shape to the output characteristic. It does, however,
differ quantitatively to the extent that Igg and Ics, and af and ap differ in
magnitude. Examples of both characteristics are illustrated in Figs. 8.9a and b.
(Notice that the horizontal axes are —vgg and —vpc. This differs from Fig. 8.8
and is a more common way of plotting these curves.)

Although the common-base input and output characteristics look similar, it
is important to realize that we normally operate BJTs using different regions on
each characteristic. That is, we normally operate with the emitter-base junction
forward-biased (vgg > 0) in the present apn example and with the base-collector
junction reverse-biased (vge < 0). Thus we operate in the first quadrant of the out-
put characteristics, Fig. 8.95, and in the third quadrant of the input characteristics,
Fig. 8.9a. Notice that for input characteristics we do not change the independent
variables from vgg and vgc to vgg and i¢. Because we usually use the BJT with
the base-collector junction reverse-biased, i¢ is very small and has less meaning

ig(vae, Vae) . ic (g, vge)
jr Increasing A
base-collector - ; - Iy
’ =—0i
forward bias ¢ _ ‘e £E I
o ————————— is
[fem]m - T }.'/ - I
m e ———————
::: P Vas Igy
A / - VEB l’/’ —F' VCB
'
(=-vpg) ! =y
~ v 0 bE : (=-vgc)
!
(rev. bias) :
!
(@) ()
FIGURE 8.9

Input and output families of common-base characteristics for a BIT: (a) the input
family; (b) the output family. (The normal operating region in each set of
characteristics is indicated by the solid curves.)
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than vpc, which is useful for calculating the base-collector junction depletion
capacitance.” In any event, the input characteristic of a good device is essentially
independent of the output variable, whether i¢ or vzc.

In summary, to operate the BJT in the common-base mode, we first establish
an emitter diode current ig by adjusting the input voltage vpg; the output current
i will then essentially match this input current independent of the output voltage
vpc as long as the base-collector junction is kept reverse-biased. In this operating
region, the output current tracks the input current,

Note that we could also consider operating this device with the emitter-base
junction reverse-biased and the collector-base junction forward-biased, in which
case the collector would be used as the input and the emitter as the output (i.e.,
IE =~ —agic). However, as we shall see in Sec. 8.1.6, ar is usually much closer
to 1 than ay is, so this alternative biasing arrangement is clearly less attractive.

b) Common-emitter operation. A second important mode of operating a BJT is
common-emitter operation, for which the output is taken from the collector-emitter
pair and the input is applied to the base. If we use the Ebers~Moll expressions to
calculate the common-emitter characteristics, we obtain the plots shown in Fig.
8.10. The input family of characteristics is ip as a function of vzg and vcg, and
the output family is i¢ as a function of iy and vcg. The voltage applied to the
base can also be considered the input control signal, but the best choice for the
output control parameter is the base current ip. This is so because when vcg is
more than a few tenths of a volt positive, i is essentially Brip, and when it is
negative, i¢ is —(Bg + 1)ip. These dependences are indicated in Fig. 8.10.
There are several different regions for the output characteristics of Fig.
8.10b. First, there are the active regions, which are the regions where the output
currents are proportional to ig. The forward active region corresponds to operation
with the base-emitter junction forward-biased so that the base current is positive
and with the collector-emitter voltage a few tenths of a volt positive (in which
case the base-collector junction is reverse-biased). This region corresponds to
the first quadrant where i¢c = Brip, independent of vcg. The reverse active
region corresponds to operation in the third quadrant where i¢ is —(Br + 1)i3,
or equivalently, ig = Brip. In this region, the collector-emitter voltage is a few
tenths of a volt or more negative and the base-collector junction is forward-biased,
so the base current is again positive and the emitter-base is reverse-biased. Of
these two active regions, the forward active region is the one normally used. As we
shall see in Sec. 8.1.6, BITs are usually designed to optimize their performance

in this region.

*As a useful rule of thumb, when a p-n junction is forward-biased on we usually care most about the
current through it because that is what varies over a wide range (i.e., the voltage stays within a tenth
of a volt or so of 0.6 V). For a reverse-biased p-# junction, the voltage across it is of more interest
because the current through a reverse-biased diode is largely independent of the junction voltage.
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Common-emitter characteristics, with the various regions of operation indicated: (@) input family
(the dashed curve shows a representative input curve for vog negative); () output family.

The input characteristics for a BJT biased in the forward active region (see
Fig. 8.10a) are those of the base-emitter diode and are largely independent of v¢g,
as long as vcg is greater than a few tenths of a volt positive. This corresponds to
having the base-collector junction either reverse-biased or at least not sufficiently
forward-biased to be conducting. (Notice that the bias across the base-collector
junction, vpc, is the base-emitter voltage v minus veg, so even a small positive
vcg 1s enough to ensure that the base-collector junction is off.)

Another important region on the BJT characteristics is where i is zero or
negative (in an npn device). This region is called cutoff and corresponds to the
portion of the characteristics in Fig. 8.105 along the horizontal axis where i~ and
ig are extremely small. In this region both junctions are either reverse-biased or
not sufficiently forward-biased to be turned on.

Finally, the region on the BJT characteristics in the vicinity of the vertical
axis where it is no longer true that the output current is proportional to ip and
independent of vcg is called the saturation region. In this region both of the
junctions in the BJT are forward biased. They need not be forward-biased to an
extent that they strongly conduct, but they must be forward-biased enough that
they conduct somewhat (e.g., 0.4 V in silicon devices).

The cutoff and saturation regions often represent the limits of operating a
BJT as a switch (an application we will study in Chap. 15). A cutoff BJT looks at
its output like an open switch; a saturated BJT looks like a closed switch. If, on
the other hand, we want to use a BJT as a linear amplifier (the topic of Chaps. 11
through 14), we will operate it in the forward active region. We seldom operate
in the reverse active region because Sg is typically much smaller than B7 in a
well-designed BJT.
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TABLE 8.1
Tabulation of the four possible combinations of bias

conditions of the two junctions in a BJT and the
operating regions to which they correspond.

Emitter-base junction Base-collector junction Operating region
Reverse bias Reverse bias Cutoff

Forward bias Reverse bias Forward active
Reverse bias Forward bias Reverse active
Forward bias Porward bias Saturation

The various operating regions of a BJT differ, as we have stressed, in the
bias state of the two junction diodes. A convenient way of summarizing our
discussion, then, is to make a small chart of all of the possible combinations of
forward and reverse biases on the junctions and identify each combination with
an operating region. This is illustrated in Table 8.1.

Another useful way to solidify our understanding of the operating regions
is to sketch the excess minority carrier profiles through a BJT biased in each
of the four regions. An example of such a set of plots is shown in Fig. 8.11.
In addition to helping you visualize what is happening in the device in each of
the four regions and developing your BJT intuition, these plots will also have
practical significance when we discuss how quickly transistors can be switched
from one operating region to another (as we shall do in Chap. 16). The excess
charge distributions change a great deal in going from one region of operation to
another, and the charge making up these excess distributions has to be supplied
or removed in the process of switching. The amount of charge that has to be
supplied or removed will determine how quickly the switching will occur.

8.1.6 Basic Transistor Design

We now turn our attention to what the Ebers—Moll model can teach about designing
a better transistor. Consider first the defects we defined in developing that model.
Judging from their names, one would guess that it is desirable to keep the defects,
0g, 6g, and 6¢, small when designing a bipolar transistor. We will see now that
we can indeed structure a device to keep 8z and &g small, but we will also see
that we obtain better device characteristics if we don’t insist on making éc small.

The base defect 6z [Eq. (8.11a)] will be small if wp is much less than
Lyp, which was actually one of our initial assumptions. As a consequence of
this requirement, BJTs are constructed with narrow base regions, that is, with wp
from 0.1 to 1.0 um. One limit on making wp small is the lateral resistance of
this layer. Recall that we have neglected any voltage drop due to the base current
flowing in from the side (see Fig. 8.1). In very thin-base devices, this voltage
drop may no longer be negligible when the base current becomes large, which
can severely limit the operation of the BJT at high current levels. Another limit
on wpg is our assumption that the junction depletion widths and their variation with
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Minority carrier profiles through a BIT biased in (a) cutoff, (b) the forward active region, (¢) the
reverse active region, and (d) saturation. (It is assumed that the doping level in the base is one-fifth
of that in the emitter and twice that in the collector. The same forward bias level is assumed in all
cases.)

vep and vep are negligible with respect to wg. The smaller the value of wp, the
weaker this assumption. :

The emitter defect 8¢ [Eq. (8.7)] depends on many parameters, but the most
. important are the emitter and base doping levels. Clearly it is desirable to have
. Npg much greater than N4p, so silicon BJT5 are fabricated with the emitter much
. more heavily doped than the base. The device designer has less flexibility in the
other factors that affect §z. The ratio of Dy, to D, is set by the material; in fact,
in an npn it is less than 1, which is one reason to favor an npn over a pnp. The
ratio of wy to wy, is restricted to be in the range of 2 to 5, typically, because of
the practical problems of fabricating a device with a thick wg and of keeping L,
large in heavily doped material.

The collector defect 6¢ [Eq. (8.20b)] is a function similar to §z. It can be
made small by making Npc much greater than N,g, but this leads to a problem.
BJTs normally operate with the base-collector junction reverse-biased, but the
depletion region increases with reverse bias, primarily into the lightly doped side
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of a junction (i.e., into the base if N4p < Np¢). This is very undesirable because
it leads to an effective base width wj that is very sensitive to vg¢. In extreme
cases, the depletion region will reach completely through the base, leading to a
condition called punch-through, effectively a short-circuiting of the collector to
the emitter. In order to avoid these problems, it is necessary to make N4p much
greater than Npc.

With N4p much greater than Npe, 8¢ will be large and thus Bz will be
small (in fact, less than 1). A bipolar transistor designed in accordance with these
guidelines clearly has an asymmetry and a preferred operating direction. That is,
such a transistor is designed to operate with the emitter-base junction forward-
biased and the base-collector junction reversed-biased, resulting in a large forward
current gain Br and a collector current that is insensitive to vgc. Both of these
are very desirable features for BJTs designed for use in linear amplifiers and other
analog circuits,

Some device designers do not think in terms of the defects that we have
defined here; instead they use a closely related set of parameters. For example,
instead of the emitter defect 8¢, we can equivalently speak of the emitter efficiency
Ye, which is defined as the ratio of the current flowing from the emitter into the
base, ir, in an npn, to the total emitter current, igz:

yp = ¢ (8.31a)
lEF .

This can be written in terms of dp using Eq. (8.6).

1
YE = 1+ 55
Clearly if we want the emitter defect g to be as small as possible, we also want
the emitter efficiency yg to be as close to 1 as possible.
In a similar spirit, some designers also define a base transport factor yg as
the fraction of the minority carriers injected from the emitter into the base, ig,,
that flows into the collector, —i¢cr:

(8.31b) .

5 = - lsz (8.322)
Using Eq. (8.8) we find that, in terms of 8z, yp is

vg =1—0p (8.32b)
Again it is clear that this is a factor we want to design to be as close to 1 as

possible.
When written in terms of yg and vyp, the forward alpha afp takes on a

particularly simple form:
aF = YEVB (8.33a)
whereas Br 1s a bit more complicated:

YEYB
= 33
Pr 1 —veys ' (8.336)
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From both expressions, the desirability of keeping yg and yp as close as possible
“to 1 is clear.

Example

Question. Consider a silicon npn transistor, similar in structure to the device pictured
in Fig. 8.2, with the following dimensions and properties. The emitter, base, and
collector dopings—Npg, Nag, and Npc—are 5 x 1017 em™3, 1 x 1016 ¢cm™3, and
1x10%5 em™3, respectively. The effective widths of the emitter, base, and collector —
wg, Wy, and wi—are 1 um, 0.25 um, and 5 pm, respectively. The electron and
hole diffusion coefficients are 40 cm?/s and 15 cm?/s, respectively. The minority
carrier lifetime in the base is 1 ws. The device is at room temperature, and n; =
1% 1010 cm™3, What are the defects, 6z, 85, and 8¢ ; what are the emitter efficiency
and base transport factor, yg and yp; and what are the forward and reverse alphas,
ar and ap? Also, what are the forward and reverse betas, 8p and Bz? Finally,
what are the emitter and collector saturation current densities, Jgg and Jog?

Discussion. We calculate the defects first, using Eqgs. (8.7), (8.11), and (8.20b),
and find that 85 is 2X 1073, 85 is 8 X 1079, and 8¢ is 0.2. We find that yg is 0.998
and yg is 0.999992 (or, for all practical purposes, 1, because it is much closer to 1
than is yg). Notice that the base defect is very small; this is a very typical result in
modern, narrow-base transistors. ‘

Using the defects to calculate the forward and reverse alphas, we find that oy
is 0.998 and ay, is 0.83. The corresponding forward and reverse betas, 8 and Sg,
are 500 and 5, respectively. As we anticipated because of the device asymmetry, the
reverse gain is much lower than the forward gain. Notice also that the forward beta
is dominated by the emitter defect, consistent with the very small base defect.

Finally, we calculate the emitter and collector saturation current densities, Jg g
and Jcg, to be 1.25 X 1077 A/cm?, and 1.5 X 107° A/cm?, respectively.

8.1.7 Beyond Ebers-Moll: Limitations of the
Model

The model we have presented for the bipolar junction transistor is very simple.
Therefore, although it does a remarkable job of describing the BJT and illuminates
many of the basic issues in BJT design, it does neglect many effects. These effects
tend to be important not so much in the normal forward active region of the device
but rather in setting the limits on what the normal operating region of a given
structure is. We will next look briefly at the following issues: (1) base width
modulation, (2) punch-through, (3) base-collector junction breakdown, (4) space
charge layer recombination, (5) high level injection, (6) emitter crowding, (7)
series resistances, and (8) nonuniform doping profiles.

a) Base width modulation. In a transistor in which N4p is greater than Npc,
operating in the forward active region, the depletion region width on the base
side of the base-collector junction varies very little with vep (but it does vary
some) and wj decreases with increasing |vcp|. Consequently, 8 and Of also
both decrease and B increases. This leads to a fanning out of the transistor out-
put family of characteristics, as illustrated in Fig. 8.12. [The effect is severe in this
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FIGURE 8.12
Output characteristics of a bipolar transistor with severe base width modulation, or

Early effect. As indicated, the Early effect in a device is often characterized by
extrapolating the curves back to a common voltage point on the voltage axis; this
voltage V, is called the Early voltage of the device.

figure; devices can be made (by heavily doping the base, for example) in which
base width modulation is barely observable in the characteristics.]

b) Punch-through. Punch-through is the extreme case of base width modulation
where the base-collector junction space charge layer reaches through to the emitter
and wy goes to zero. At this point the collector current increases uncontrollably
and all transistor action is lost. This is in itself not a destructive process, but if
the current is not limited by the circuit in which the transistor is being used, the
device may be destroyed by excessive Joule (i2R) heating.

¢) Base-collector junction breakdown. The base-collector junction will even-
tually break down as its reverse bias is increased further and further. Once this
happens, all control over the collector current is again lost and the transistor is no
longer useful. - ,

Both punch-through and base-collector junction breakdown appear in the
transistor characteristics as a sharp, essentially ip-independent increase in i at
some critical vzc (or vcg); the characteristic of a device displaying base-collector
junction break-down is shown in Fig. 8.13. Neither process is in and of itself
destructive, but any resulting excessive device heating can be.

In most devices junction breakdown will be the determining factor in setting
the maximum voltage rating of a transistor. Thus, in designing a transistor to
have a certain voltage rating, the doping of the collector is chosen to be just low
enough that the junction breakdown voltage exceeds the desired rating. Making
the doping level any lower needlessly increases the resistance of the collector
region. Similarly, the thickness of the collector is made only large enough to
accommodate the depletion region at the maximum reverse bias. Making it any
thicker again adds needless resistance, whereas making it thinner will reduce the
breakdown voltage.
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Output characteristics of a bipolar junction transistor
showing base-collector junction breakdown at large
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d) Space-charge layer recombination. At low forward biases, the emitter-base
junction current may have an appreciable component of space-charge layer recom-
bination current and the emitter defect will appear to be much greater than it is
in the region where the current is limited by diffusion. Thus ar and Br will be
smaller at low current levels. If we plot Br (obtained by measuring i and i and
calculating i /ip) as a function of i, a typical variation might look like that in
Fig. 8.14 (we will discuss the high-current decrease in 87 in the next section).
Another type of plot that is often used to see this effect is called a Gummel
plot. In a Gummel plot, the collector and base currents, i¢ and ig, on a log scale
are graphed versus the base-emitter voltage vpg on a linear scale. An example is
shown in Fig. 8.15, where the dashed straight lines represent the ideal exponential
behavior and the solid curve is the measured data. Since both i and ip are plotted
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FIGURE 8.14
Typical variation of B¢ with collector current level.
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Gummel plot of the collector and base currents versus the base-emitter
voltage on a log-linear scale. The effects of space-charge layer
recombination at low current levels and of high-level injection and series
resistance at high current levels are clearly seen as deviations from the
ideal (dashed) curves.

on a log scale their ratio B¢ is proportional to the vertical distance between these
two curves. The curves move closer together at high and low values of i¢ (and,
equivalently, vgg), showing the same B decrease as in Fig. 8.14. The effects of
space-charge layer recombination are evident at low vzg, where the base current is
higher than expected from the exponential model; whereas the deviations at higher
values of vpg are due to effects that we will discuss in the next subsections.

e) High-level injection. At high forward biases, the emitter-base junction current
again deviates from our ideal diffusion-limited behavior. Since the base is the more
lightly doped side of this junction, high-level injection conditions are reached in
the base and the hole current first. The hole current fails to increase as quickly
with vgp as does the electron current, and again the emitter defect increases and
Br decreases. This, coupled with the emitter crowding effect discussed in the next
subsection, leads to the decrease in B at high collector currents seen in Figs.
8.14 and 8.15. It also accounts for the bending over of the i~ and iz curves at

high vgg (see also Fig. 7.8).

. f) Emitter crowding. Based on the above discussion, it might seem that to make
a higher-current transistor we can simply make a device with a larger-area emitter-
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base junction, but simply increasing the junction area does not work. Rather, it
is the perimeter that must be increased. The problem lies in the fact that at high
current levels there will be appreciable lateral voltage drop in the base region
because of the resistance of the base layer. Thus the amount of forward bias on
the emitter-base junction will decrease as one moves under the base region away
from the outer edge. Since the amount of bias is small to begin with (i.e., 0.6
to 0.7 V in a silicon transistor) and the current is an exponential function of
the bias, the inner portions of the emitter-base junction will not even be turned
on if there is more than 0.1 or 0.2 V of lateral resistive voltage drop. Only the
edges will be active. This effect is called emitter crowding. The emitter current
is essentially crowded to the outside edges, the periphery, of the junction at high
levels, so the junction perimeter rather than the total junction area determines the
high-current performance. For this reason power transistors are designed with an
emitter composed of many thin fingers, each sufficiently narrow that no part of
the junction is more than a few microns from the thicker base contact region.

g) Series resistances. In the Ebers-Moll model, resistive voltage drops in the
quasineutral regions are neglected. At high current levels, particularly, the resis-
tance of the quasineutral region in the collector, as well as the sheet resistance of
the base, must be taken into account. We have already discussed the design of
the collector region to minimize the collector resistance and the role of the base
resistance in limiting the transistor current. We will do nothing further with these
resistances in our large-signal modeling of the BJT, but we will have more to say
about them when we discuss incremental transistor models.

h) Nonuniform doping profiles. Uniformly doped emitter and base regions are
rarely encountered in bipolar transistors, and the assumption of uniform Ng and
Np made during the development of the Ebers—-Moll model does not really apply
to many actual devices. Fortunately, it turns out to be relatively simple to account
quite accurately for the nonuniform doping and “fix” the model. Where the prod-
ucts Npwy and Ngwy appear in the Ebers-Moll expressmns we replace them,
respectively, with

jo— Ng(x)dx

—-wg

and

W
J Ng(x)dx
ot
These are simply the total doping concentrations per unit area in the emitter and
base layers, respectively.

Nonuniformly doped regions and many of the other limitations in the Ebers—
Moll model that we have pointed out are incorporated into the Gummel-Poon
model for the bipolar transistor, which is the next step in soph1st1cat10n past
Ebers-Moll in large-signal modeling.
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8.2 CIRCUIT MODELS FOR BIPOLAR
JUNCTION TRANSISTORS

The Ebers-Moll equations describe the large-signal terminal characteristics of
an ideal, quasi-one-dimensional bipolar junction transistor. We have seen that
they can be conveniently represented by a circuit composed of ideal exponential
diodes and dependent current sources (i.e., Fig. 8.7). Using this representation as
a starting point we now want to develop models we can use in circuit analysis.

8.2.1 Large-Signal Models

The Ebers-Moll equations will be our starting point in developing large-signal
circuit models for bipolar junction transistors. We will also go beyond that model
and introduce the basic elements of the Gummel-Poon model as well. We will
also. add nonlinear charge stores to the model as a first step in analyzing the
responses of BJTS to rapidly time-varying inputs.

a) Static models based on Ebers-Moll. The circuit representation of the Ebers—

Moll equations in Fig. 8.7, which we repeat here in Fig. 8.16a, is our basic model
for the terminal characteristics of a bipolar junction transistor. It is particularly
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FIGURE 8.16
Circuit representations of the npn transistor Ebers—-Moll model equations configured for use
when (a) the terminal voltages are known; () the terminal currents are known.
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useful when the terminal voltages, vgp and vcp, are known. If, however, the
terminal currents, iy and i, are known, then it is more convenient to use the
equivalent circuit shown in Fig. 8.16b. In this figure the dependent sources depend
on the terminal currents rather than the diode currents. A little algebra will show
that the models in Figs. 8.16a and b are equivalent if

Igo = Igs(1 — arag) (8.34a)
and
Ico = Ics(l — arpap) (8.34b)
For a pnp transistor we simply reverse the diodes in the circuit representations
to obtain the models in Figs. 8.17a and b. Note that the definitions of i and

ig and the polarities of the dependent current sources are, by convention, also
changed. The Ebers—-Moll equations for a pnp transistor become

ip = Ipg(e?s/*T = 1) = aglog(e?es/FT — 1) (8.352)

ic = —aplps(e™= /¥ — 1) + Ics(eTes/T — 1) (8.35b)

Example .
Question. Consider a pnp transistor with the same emitter, base, and collector
doping levels as the npn transistor in the preceding example. The two transistors are
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FIGURE 8.17
Circuit representations of a pnp BJT: (a) when the terminal voltages are known; (b) when the
terminal currents are known,
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identical in all other relevant ways as well. What are the emitter, base, and collector
defects, 8g, &g, and O¢, in this device, and what are the forward and reverse alphas

and betas?

Discussion. Our calculations proceed as before, except that the electron and hole
diffusion coefficients switch roles, a change that reduces the gains and increases the
defects. We now calculate that 8z is 1.3 X 1072, 8 is 2 x 1073, and 8¢ is 6.7.
Correspondingly, ar is 0.987 and ay is 0.13; Bp is now 76 and Bg is 0,15, The
poorer characteristics of the pnp structure compared to the npn structure are one of
the main reasons why npn is the preferred bipolar transistor type.

The full Ebers-Moll model is necessary if we are dealing with completely
general terminal voltages, but we usually work in more restricted regions; in
such cases it is often possible to simplify the model. For example, we are often
interested in situations in which the base-collector junction is reverse-biased and
the emitter-base junction is forward-biased. In this situation, the current iz will be
essentially —I¢g and will be negligible relative to i and apip. The Ebers—Moll
model circuit can then be approximated as illustrated in Fig. 8.18a. We have, for
apnp,

ip ~ Igse?ves/*T (8.36)

and
ic = —aFig (8.37)

It is also convenient to relate the collector current to the base current. We
can write ip as

ip = —ig—ic . (8.38a)
which, using Eq. (8.37), becomes
ip = —(l —ap)ig (8.38b)
Substituting Eq. (8.36) into this yields
ip = —(1 — ap)lpse?ss/ T (8.38¢)
We write this as
ip = —Ipge?'es/kT (8.38d)

where in the last equation we have defined (1 — ar)lgs as Izg. We can further
write

—

ic = ot i

©C U-ap?
Recalling that Br = ar/(1 — ar) [see Eq. (8.17b)], we see that this can be
written as

(8.39a)

ic = Prip (8.39b)

Circuit representations of Eqs. (8.38) and (8.39) are shown in Figs. 8.18b and
c. All of these representations are equivalent, and each is more useful than the
others in certain situations.
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FIGURE 8.18
Approximate large-signal models for bipolar junction transistors based on the Ebers~Moll model,
valid when the base-collector junction is reverse-biased and |/cs| is negligible, The figures to the
right correspond to npn transistors, those on the left to pnp transistors. The models in (a) are
common-base models derived directly from the Ebers-Moll models by setting g equal to zero.
The models in (b) are common-emitter models derived directly from those in (a) simply by
writing i as Brip [Bq. (8.39b)] rather than as —apig [Eq. (8.37)]. The models in (c) extend
those in (b) one step further by moving the diode from the emitter leg of the circuit to the base
leg, which requires that we also change the saturation current of the diode from Igg to Igg [see
the discussion following Eq. (8.38d)]. 211
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It is often unnecessary to use the full exponential diode model for large-
signal analysis of bipolar transistor circuits. The 0.6-V breakpoint model, Fig.
7.12¢, is usually adequate. For example, using this model for the base-emitter
diode in the npn model of Fig. 8.18c¢ yields the transistor model illustrated in Fig.
8.19a. This npn model is very widely employed for large-signal bipolar transistor
circuit analysis. The corresponding prp model should be obvious.

Often in large-signal analysis it is important to determine the onset of cutoff
and saturation. The model of Fig. 8.19a is useful for addressing the issue of
cutoff (i.e., the point at which the base-emitter diode turns off), but it gives us no
information on saturation, which is the point at which the base-collector junction
begins to conduct. The solution to this shortcoming is to add a second breakpoint
diode to the model between the base and collector terminals, as illustrated in
Fig. 8.19b. In the forward active region this diode is open and does not enter
the model. As the base-collector junction becomes forward biased, however, it
eventually begins to conduct.

The question of just when the base-collector junction begins to conduct and
a transistor enters saturation is an interesting one. Referring to Fig. 8.195, note
that the breakpoint voltage of the base-collector diode of a silicon transistor has
been taken to be 0.4 V rather than 0.6 V. If you recall our discussion near the
end of Sec. 7.4.1, there is no abrupt turn-on voltage in an exponential diode;
rather, the choice is a matter of degree. In this case then, we want to say that
we are in saturation and that the transistor has left its forward active region as
soon as the diode starts to conduct a “little bit.” We don’t want to wait until it is
forward-biased by 0.6 V and is really “on”; rather, we say that 0.4 V is sufficiently
“on” to be of concern. Recall also that /¢y is typically much larger than /gy,

C C
i i
T
—1— Ve, on
C) Brlp Brlg <> ZS (0.4 V)
BO————F B O — ]
Iy Ip
— VeE, on —L_ VaE, on
(0.6 V) I' 0.6 V)
E E
(@) (b)
FIGURE 8.19

Large-signal npn transistor models incorporating breakpoint diode models: (a) the equivalent of the

model in Fig. 8.18c; (b) the model modified to predict the onset of saturation. (The quiescent point
notation is used for the base current in this figure to emphasize that these models are used primarily
for bias point analysis. The numerical values given refer to silicon transistors.)
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so the current through the base-collector diode biased to 0.4 V may very well be
comparable to that through the emitter-base diode with 0.6 V bias.

b) Beyond Ebers-Moll, toward Gummel-Poon. We mentioned in the preceding
discussion of limitations of the simple Ebers-Moll model that there is another
model, called the Gummel-Poon model, in which effects such as nonuniform
doping of the emitter, base, and collector regions, and space-charge layer recom-
bination are taken into account. Although the development of this model is not
beyond our ability, it is beyond our needs, so we will not do it. However, we
can obtain the basic Gummel-Poon model from our Ebers—Moll model, which is
worth the effort.

The basic Gummel-Poon model is shown in Fig. 8.20. It is developed using
a formulation of the current flow problem that lets us treat nonuniformly doped
regions, so it is more general than the approach used in the Ebers—-Moll model.
At the same time, however, the approaches are equivalent for transistors with
uniformly doped emitters, bases, and collectors, and the basic Gummel-Poon for
a uniformly doped transistor can easily be obtained from the Ebers-Moll model.
The process is illustrated in Fig. 8.21 and is described in the following several
paragraphs.

We first draw the Ebers—-Moll model with the emitter down, as in Fig. 8.21a.
Then we add two pairs of equal-magnitude, oppositely directed, dependent current

Ve
Is/Br
+ 1 ip Brir — Brig
B + . CD =l (eQVBE/kT__ eqvgc/kT)
5 Y i
-—-Z Is/Pr
VgE
e
E
FIGURE 8.20

Basic Gummel-Poon model for the bipolar junction transistor. This
model is also called the large-signal hybrid-pi model. It is commonly
drawn with the emitter terminal down and the base terminal to the left,
reflecting the most common connection of bipolar transistors in
circuits,
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FIGURE 8.21
Transformation of the Ebers-Moll model into the basic Gummel-Poon model: (a) the Ebers-Moll

model drawn with the emitter down and the base terminal to the left; (b) parallel pairs of current
sources added to the circuit; (c) parallel and series pairs of current sources combined to resimplify
the circuit; (&) redefinition of the diodes and dependent current source to complete the
transformation.

sources in parallel with the original dependent sources, as shown in Fig. 8.215. We
next combine the left-most member of each of the two pairs of dependent current
sources with the original generator. Having done this, we also recognize that since
the right-most dependent sources are equal and connected in series, there must
be no current flowing in the link connecting the midpoint of this pair of genera-
tors to the rest of the circuit. This link can therefore be broken without affecting the
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performance of the circuit. Breaking this link does simplify the circuit, however,
because the right-most two generators, being identical and connected in series,
can now clearly be combined into one source. The resulting circuit is shown in
Fig. 8.21c.

The next step is to note that the dependent current sources in parallel with
the diodes are each dependent only on the current through its companion diode.
Thus they can be combined with the diodes, and each combination can again be
modeled as another ideal exponential diode. The saturation current of the diode
between the base and emitter is (1 ~ ap)/gy; the saturation current of the diode
between the base and collector is (1 — ag)I¢s. This is illustrated in Fig. 8.21d.

When we combine the current sources and diodes to simplify the circuit, we
have to realize that the other dependent current source (i.e., the one between the
collector and emitter) depends on the currents through the original diodes. If those
diodes disappear, we must recalculate the dependence of the current sources in
terms of some current that we can still clearly identify or in terms of the terminal
voltages. To do this and proceed, we next define two currents, iy and iy, as
shown in Fig. 8.21d. The current source between the collector and emitter will
then clearly depend on both ij and ip; it can be written as aiy + biy. To see
what a and b are, refer to Fig. 8.21c¢, from which it is clear that ai » must be
apip, and bip must be —arig. Writing iy, ip, iy, and ig in terms of vgg, vse,
and the diode parameters, we have

a(l = ap)lps(e? 5/ ¥l — 1) = aplpg(edvee/*T — 1) (8.40)
and
b(1 — ag)lcs(e?2¢/FT — 1) = —qglog(e?se/kT — 1) (8.41)

from which we see immediately that a is ar/(1 — ar), which we see from Eq.
8.17b is just Bp; and b is —ag/(1 — ag), which is just —Bg. This result is also
shown in Fig. 8.21d. :

The final step that we take is to define a new saturation current I, given by

Is =aplgs = arlcg - (8.42)

and to notice that in terms of I the saturation currents of the new diodes between
the base and emitter and the base and collector are I/ Br and Ig/ B, respectively.
We can then write the dependent current source, Brip — Bri, as follows:

Brip — Brip = Is(e? /KT — 1) — [¢(eqvsc/kT — 1) (8.43a)
which in turn simplifies to
Brip = Brig = Is(e?"ss/Hl — ¢@sc/FTy (8.43b)
This definition of Iy and these expfessions for the diode saturation currents and
dependent current source give us the basic Gummel-Poon model in Fig. 8.20.
We can now use our earlier expressions for Izs, o, 8g, and 8z in terms of

the device dimensions and other parameters, that is, Eqgs. (8.12), (8.14), (8.7),
and (8.11), respectively, to obtain a similar equation for /5. We can write
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2
D *
IS = qAn2 < " (]. - 63) = qAn2 De [l - (21:232) :l (8.44)
eB

‘N, ABWpg ‘N AB W;

Before continuing, look at Eq. (8.43a) and consider whether it makes sense
in light of what you know about the physics of a bipolar transistor: the excess
electron concentration at the edge of the base nearest the emitter is proportional
to (e9vse/kT — 1), and that at the collector edge is proportional to (¢9"sc/¥T — 1),
The minority carrier diffusion current across the base from emitter to collector
should therefore be proportional to their difference, which is just what Eq. (8.43a)
says. A little thought will further show you that the proportionality factor should
be gAn?D,/Napw} multiplied by (1 — 8z), which is the fraction of the minority
carriers injected at the emitter that successfully transit the base. This, of course,
is just what Eq. (8.44) says.

Efforts to add “nonideal” effects to models for the terminal characteristics
of bipolar junction transistors usually begin with the basic Gummel-Poon model.
We mentioned earlier that the effects of nonuniform doping in the various regions
of the device can be included by replacing the doping-concentration/layer-width
product that appears several places in the Ebers-Moll model with the integral of
the doping profile over the layer. An obvious example is in the expression for I
in Eq. (8.44). The effects of space-charge layer recombination are easily included
by adding two n = 2 exponential diodes between the base and emitter and the
base and collector, respectively, just as we did with the diode in Sec. 7.4.1b.

High-level injection effects can be added to the model as we did with the
diode in Sec. 7.4.1b, but more commonly we handle them by expanding the
model for B¢ to include a dependence on the collector current because the main
impact of high-level injection is on Br anyway. In an ad hoc manner we say that
Br varies as ‘

_ Bro
Br = T/ Ten (8.45)

where Brg is the zero- (i.e. low-) current forward beta and Igr is the current level
at which Br has fallen to half its low-current value. A similar model is used for

the reverse beta Bz.
Another effect that is often included in the Ebers—-Moll model for a bipolar

transistor is series resistance in the device leads. Looking back at the cross section
of a typical BJT in Fig. 8.1, it is not surprising that there may at times be
significant resistances in series with at Ieast the base and collector leads. The
possibility of significant resistance in series with the emitter is less obvious; in
fact, the emitter series resistance tends to be small, but it is not zero, and in certain
instances even a small emitter resistance can have significant consequences. To
model these resistances, suitable-value resistors can easily be added to the model
in series with the emitter, base, and collector leads. A model including elements
to account for all of these effects is shown in Fig. 8.22.
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BJT model! containing elements to account for
space-charge layer recombination and series lead
resistances.

Finally, base width modulation, or the Early effect”, is typically taken into
account through the variation of Iy with wy [see Eq. (8.44)]. The dependence
of wp on vpe and vpg is, as you can appreciate, messy mathematically, but
experience has shown that a useful fit to device characteristics can be obtained by
the following relatively simple expression:

. _ wg (0, 0)
e N AL TTATS
where V4 is called the Early voltage and V; is called either the reverse Early
voltage, or, believe it or not, the Late voltage.” V, accounts for the Early effect
in the reverse mode of operation. Equation (8.46) is used where w} appears in
the first factor in Eq. (8.44) for I, but where (wg)2 appears in 8g its variation
with voltage is neglected. ‘

(8.46)

¢) Dynamic models with charge stores. To extend our bipolar transistor mod-
els to dynamic situations it may be necessary to account for the charge stored in the

*The Early voltage is named after Dr. James Early, who first explained base width modulation.

tThe Late voltage was named by someone with the same sense of humor as the folks who brought
‘ g Y _ g
you the units “mho” for conductance and “daraf” for inverse capacitance,
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device, just as we had to do in Sec. 7.4.1c for the p-n diode. In the BJT, the most
important charge stores are those associated with the p-n junctions. They can be
modeled by adding nonlinear capacitors in parallel with the diodes representing the
two junctions in the Ebers—Moll and/or the Gummel-Poon model. For purposes
of illustration, this is done in Fig. 8.23 for the BJT model from Fig. 8.22.

8.2.2 Static Small-Signal Linear Models

Our primary motivation for developing small-signal linear models for bipolar
junction transistors is that if we can find linear relationships between the terminal
variables, then there are many possible applications of these devices in linear
circuits, such as audio amplifiers. It is also true, moreover, that nonlinear equations
are difficult to treat analytically and that we have numerous linear circuit analysis
techniques at our disposal, which we can use once we have linear models. This

is also an important consideration.

a) Common-emitter models. We proceed in a rather general way by performing
a linear expansion of the transistor terminal characteristics about a quiescent
operating point. The most useful model for us will be one in which the emitter
terminal is common to both the input and the output circuit, so we select our

C
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FIGURE 8.23

BIT model from Fig. 8.22 modified by adding two nonlinear
capacitors to account for the nonlinear charge stores
associated with the emitter-base and base-collector p-n
junctions,
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voltages as vgr and vcp and our currents as ip(vpg, veg) and ic(vpg, veg). We
will discuss other choices of variables later,

Assume that our quiescent operating point Q is (Vgg, VCE) and thus our
expansions of iz and i¢ are

. di
ip(vae, vee) = ip(Vae, Veg) + avB (vee — VaE)
BE g
95 (vce — Vcg) + Higher-order terms ~ (8.47a)
dvce 0

and
, \ dic
ic(vBE, vcE) = ic(VBe, VcE) + o (vae — VaE)
VBE ig

dic

(vce — Veg) + Higher-order terms  (8.47b)
9vee |g

Recognizing that i3(Veg, Vog) is Ip; ic(Vae, Ver) 18 Ic; (vae — Var) 1S Vie;
(vce — Veg) 1S Vee; (i — Ip) s ip; and (ic — I¢) is i,; and assuming that vy,
and v, are small enough that we can ignore the higher-order terms, we have

dig dig

[y = + 8.48a
iy Ve o Ve ver 0 Vee . ( )
and
, 9
o= Sle ) de ) (8.48b)
3VBE 0 5VCE 0

The partial derivatives have the units of conductance and are given the following
names:

Ip | < gr, input conductance (8.49)
JVBE 0

a « .

‘B | =g, reverse transconductance (8.50)

l?VcE 0

dic | o gm, forward transconductance (8.51)
&VBE 0 ‘

dic | g0, output conductance (8.52)
aVcE 0

The use of g, and g, for the input conductance and forward transconductance,
respectively, rather than g; and g, for example, is a matter of convention that
we will respect.

Thus far our small-signal modeling has been, except for our choice of a
common-emitter configuration, purely a mathematical exercise. The specific de-
vice physics enters only when we evaluate the various conductances and transcon-
ductances using our large signal model. We assume that the quiescent operating
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point Q is in the forward active region of the transistor characteristics. In that
case, the large-signal model reduces essentially to that of Fig. 8.185. We see
immediately that there is no dependence of the terminal currents on vcg, so g,
and g, are both identically zero.

Turning next to g, we can use Egs. (8.38) and (8.39) to obtain

&m = %Bﬂsseqv"”” (8.53a)
which can be conveniently written as
[ .
&m = Q% (8.53b)

Similarly we find that g, is given by
g&r = %Isseqvas/” (8.54a)

We could write this as g/p/kT, but it turns out that a more practical and more
general way of writing this is in terms of g,,. Comparing this last equation to the
first expression we obtained for g,,, we find that g, and g, are related as

g, = 5m (8.54b)
Br
We will use Egs. (8.53) and (8.54b) to evaluate g,, and g, respectively, in
this text. It turns out that in situations where 8 varies with the collector current,
Eq. (8.54b) is a valid expression for g, as long as Br is replaced with B, =
dic/diplg. This issue is discussed further in App. F
A linear circuit representing the small-signal linear model we have developed
for the bipolar junction transistor is shown in Fig. 8.24a. This model is valid for
both npn and pnp transistors. You should take the time to convince yourself of
this fact.

Example

Question. Consider an npn bipolar transistor with a forward beta S of 150, and
an Ic of 1 mA. What are g, and g for this device at this bias point? Assume
room-temperature operation,

Discussion. Using Eqgs. (8.53) and (8.54b), we find that the transconductance g,
is 40 mS and that the input conductance g is 0.267 mS. We often think in terms
of resistance when we deal with the input of a device; inverting g,, we see that
the corresponding input resistance 7, is 3.75 k(). Notice that if Bz were larger, 7
would be larger (g smaller); and if Br were smaller, 7, would be smaller (g,
larger). The value of g, does not change with By, assuming that /- remains

unchanged.

We can modify our model slightly by changing the dependent current source
from one that depends on v, the voltage across 7, to one that depends on i,,
the current through r,. Because i, is g»vp. and g, is gn, /B, the magnitude
of the dependent current source, g, Vp., is also Bi;; the model can thus be redrawn
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Static small-signal linear equivalent circuits for bipolar
transistors in a common-emitter connection: (@) gm
(transconductance) model; (b) By (current gain) model;
(¢) B-model with zero base resistance,

equivalently as shown in Fig. 8.245. This is a particularly useful configuration if
8« is large, that is, if r,. (= 1/ g,) is small, which is frequently the case because
a rough first approximation to the operation of a circuit can often be obtained by
setting 7 = 0. This model is drawn in Fig. 8.24c.

b) Common-base model. Sometimes a bipolar transistor is connected in a circuit
with its base terminal common to the input and output. To model this so-called
common-base connection, it is convenient to choose v, and v, as the inde-
pendent variables and i, and i, as the dependent variables. We could proceed



222  MICROELECTRONIC DEVICES AND CIRCUITS

exactly as we did for the common-emitter model, taking the two currents to be
dependent on the two voltages, but for a little variety let us begin by writing
ie(Vep, vep) and i.(iq, vop). We choose to make i, dependent on /., rather than on
Vep, because we expect a linear relationship between i, and i, based on the physics
of the device. Because i, is a function of v, and v, . can, of course, also be
written as a function of v, and v, simply by inserting i.(v,p, Vep) into i .(ie, vep).

Stating these observations another way, we have a certain mathematical
flexibility in how we select our variables; physically, certain choices make more
sense than others. You might ask why, when deriving the small-signal common
emitter. circuit, we did not use our knowledge of the device physics to initially
write i, as dependent on i, and v, rather than v,, and v.,, and get the model
of Fig. 8.24b directly. Based strictly on static modeling this is a valid criticism.
We will see in the next section when we discuss dynamic models, however,
that our original choice that led to the model of Fig. 8.24a is superior in some
situations. We will also see when we discuss other types of transistors in later
chapters that having the dependent current source at the output depend on the
input voltage rather than on input current is more generic to the class of three

terminal transistor-like devices.
Returning to the problem of obtaining a common-base model, we write

le = geVeb + &rbVeb ' (855)
and '
ic = afie + 8obVeb (8.56)
where we have
Ji
= JE (8.57)
JVEB 0
dig
L= 8.58
8rb dven 0 ( )
_ dic
ar = T (8.59)
_ Jdic
8o = G| (8.60)

The subscript b has been added to distinguish some of these quantities
from the common-emitter parameters. Referring to our large-signal common-base
model, Fig. 8.18a, we see that g,;, and g,, must be zero and that @y = ap. The
small-signal emitter resistance g, based on this same Ebers—-Moll-based model is
g|lIgl/kT. A more general expression, useful even when 8 varies with /¢, can
be obtained by manipulating the common-emitter models in Fig. 8.24. Doing so,
we find that we can write both @ and g, in terms of g,, and By as

_ _Br
% = BT (8.61)
and
g, = &1 | (8.62)

af
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We will use these expressions to calculate ay and g.. This common-base small-
signal model is illustrated in Fig. 8.25a.

If we were to use ic(vgg, vep) rather than ic(ig, vep), we would obtain
the model of Fig. 8.25b, where g,, is the same as for the common-emitter model.

¢) Parasitic elements. The small-signal models we have developed are satisfac-
tory in most low-frequency applications, but in certain situations it is necessary
to include small effects that we have thus far neglected. There are two such “par-
asitic” elements we will consider: the output conductance g, and the base series
resistance r . :

In the Ebers—Moll model, the output conductance g, is zero, but in Sec.
8.1.7 we saw that the Early effect, or base-width modulation, leads to a finite slope
in the output characteristics. That is, dic/dvcg (i.e., g,) is not identically zero.
In such cases the Early voltage is an important device parameter to know because
it enables us to calculate the incremental output conductance g, at any bias point
in the forward active region. This is illustrated in Fig. 8.26. Assuming that Vj is
much greater than Vg, we can approximate the slope of the characteristics (i.e.,
8,) for a given quiescent output current I as

I

¢
go i (8.63)

b
®
FIGURE 8.25

Common-base static small-signal linear equivalent circuits
for a bipolar transistor: (@) ay model; (b) g, model.
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FIGURE 8.26
OQutput characteristics of an npn BJT illustrating the relationship between

the Early voltage Vj, the quiescent collector current /~, and the
incremental output conductance g,.

> Veg

In a well-designed transistor, g, will be very small and can usually be
approximated as zero. However, in situations where the performance depends on
g, being zero, the fact that it is small but not exactly zero must be taken into
account. Conceptually, it is often easier to think in terms of 1/g,, which we
define as the output resistance r,. Typical values of r, are 10° to 10° ). When
the circuit in which the transistor is found has resistances of 10* Q or less in
parallel with r,, then r, can be neglected. If, however, resistances of comparable
or larger magnitude than r, are in parallel with it, then r, must be included.

We also assumed in the Ebers—Moll model that the base current flowed
in from the base contact unimpeded. Referring back to Fig. 8.1, however, we
see that this contact is often far off to the side of the device. Furthermore, the
base itself is quite thin and only moderately doped. Consequently there is some
resistance to lateral current flow in the base and sometimes this resistance, which
we will call the parasitic base resistance ry, becomes important. Typical r,
values are 25 to 50 {}. The issue now is what other resistances are in series with
rx. In the common-emitter configuration, this other resistance is r,. Usually,
this resistance is on the order of 103 ) and r, is negligibly smaller. In the
common-base configuration, however, r, appears in series with r, (= 1/g.),
which is considerably smaller (by a factor of roughly B¢) than r,. In common-
base applications, then, », may be a significant factor.

The low-frequency common-emitter small-signal equivalent circuit including
8o and r, is shown in Fig. 8.27.

8.2.3 Dynamic Small-Signal Transistor Models

Following the same logic we employed with p-n diodes, we will extend our static
small-signal transistor models to high-frequency time-varying signals by adding
the appropriate junction capacitances. There are two p-n junctions in a bipolar
transistor, the emitter-base junction and the base-collector junction.
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FIGURE 8.27
Common-emitter small-signal equivalent circuit including
the parasitic base resistance r, and the output conductance

§o-

In the forward active region the base-collector junction is reverse-biased, so
there is negligible diffusion capacitance associated with this junction. The base-
collector capacitance is thus exclusively depletion capacitance. By convention,
we label this capacitor C,.

The emitter-base junction is forward-biased, and the emitter-base junction
voltage determines the amount of excess carrier injection into the base, so at this
junction there is both diffusion and depletion capacitance. The sum of these two
capacitances forms the emitter-base capacitance, which we label C,,.

Cr and C, depend on the quiescent operating just as g, and g,, do. The
depletion capacitance contributions to them depend on the relevant junction volt-
age. The diffusion capacitance component of C, is most conveniently written in
terms of the quiescent collector current /. Referring to Eq. (7.44"), we find that
it can be written as

Ceb,ar = Z—D%UE'H__B:IC—qu[C' ‘ (8.64)

where we assume that 3 ¢ 18 large, so I¢ = Iy and there is negligible excess

minority carrier injection into the emitter. Defining (w3)"/2D ., 5 as the base
transit time 7, and recognizing g|Ic|/kT as g, we can write this contribution
to C, as

Ceb,df = EmTy (8.65)

Notice that the diffusion capacitance contribution to C, increases with in-
creasing /¢, which in turn increases exponentially with V£, whereas the depletion
capacitance increases only slightly. Furthermore the diffusion capacitance does not
depend on the diode area, whereas the depletion capacitance is directly propor-
tional to this area. At high current levels, then, C,, will be dominated by C,,, df
and it will dominate sooner in smaller devices. As we shall see in Chap. 14, it is
advantageous for this reason to operate transistors at high current densities when
high-speed operation is important,



226  MICROELECTRONIC DEVICES AND CIRCUITS

Adding C, and C, to the common-emitter model, we obtain the circuit
shown in Fig. 8.28a. This particular model is known as the hybrid-m model. The
capacitor C, is in a critical position, as we shall see in Chap. 14. It forms a
bridge between the input and output that couples, or feeds back, some of the
output signal to the input. Such feedback can have good as well as bad effects,
but in this case it primarily tends to be an undesirable coupling. Notice, also, that
it now becomes clear why we use a current source in the collector that depends
on the voltage across r, rather than on the base current. The base current now
includes current that flows into the two capacitors, C, and C, but it is only the
current through r, that appears at the collector. It is much more convenient in
practice, as we shall see, to keep track of v,;, the voltage across r,, than it is to
calculate the current through it.

In the common-base configuration, adding C,, and C, yields the circuit in
Fig. 8.28b. Notice that in this case there is no feedback between output and input.
As with the common-emitter model, because the emitter current now includes
current into C,, it is most convenient to use the version of the model in which
the dependent current source is a function of the voltage across r, rather than the
current through it.

- Finally, we should remind ourselves that we are still using a quasistatic
model for the bipolar transistor, to which we have added junction capacitances
in a rather ad hoc fashion. Strictly speaking, we still need to justify our assumption

bo H —0 cC

Sz (L

@)

FIGURE 8.28

High-frequency small-signal transistor models: (a) the
common-emitter, or hybrid-7, model; (b) the
common-base model.
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that this is a valid approach (i.e., that the quasistatic description of the intrinsic
bipolar transistor physics is still valid). We will return to this issue in Chap.
14 and demonstrate that our modeling is indeed justifiable after we first discuss
circuit analysis at low frequencies and look at high-frequency limits to circuit
performance.

8.3 PHOTOTRANSISTORS

In Chap. 7 we saw that interesting and useful things happen when we shine light
on a p-n diode. Interesting and useful things also happen when we illuminate
a bipolar transistor. Bipolar transistors designed to respond to light are called
phototransistors. We will discuss how they function and how they are constructed
in this section.

To model the effect of illumination on a biased bipolar transistor, we will
again use superposition. We already have a model, the Ebers-Moll model, for a
bipolar transistor excited by externally applied voltages, so we will next develop a
model for a bipolar transistor excited by light. The model we seek for a transistor
disturbed from equilibrium by both applied voltages and light can be obtained by
combining these two models.

Consider the one-dimensional npn transistor shown in Fig. 8.29a. Assume
that the transistor’s terminals are short-circuited so that the junction voltages, vgp
and v¢p, are zero. Assume further that the transistor is illuminated by light that
generates M hole-electron pairs per cm? - s uniformly across the plane at x = x;.
If x; is in the base region between 0" and wj, then the excess minority carrier
concentration profile is like that shown in Fig. 8.296 and the minority carrier
current densities are as illustrated in Fig. 8.29c¢. If the cross-sectional area of the
device is A, then the emitter current is AgMf and the collector current is AgMg,
where f'is between 0 and 1 and is given by (wg — x;)/(wz — 07) and where g is
d-1.

You should be able to convince yourself that if x; falls within the emitter-
base junction depletion region (i.e., if 07 < x; = x%), then fis 1 and g is
0; and that if x; falls within the base-collector junction depletion region (i.e.,
wy = x; = wg), then fis 0 and g is 1. Furthermore, if the illumination falls
in the emitter region (i.e., if —wg =< x; = 07), then g is equal to 0 and f is
(—wg —x;)/(—=wg —07); whereas if the light falls in the collector [i.e., if wg, =
x; = (wp +wc)], then fis 0 and g is (we + wp — x;)/(We + wp — wj).

To summarize, with a spatial impulse of illumination generating gM pairs/
cm? - s uniformly across the plane at x;, the short-circuit emitter and collector
currents are, respectively,

ip = AgMf (8.66)
and

ic = AgMg (8.67)
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FIGURE 8.29

(a) Short-circuited one-dimensional apr bipolar transistor illuminated with light generating M
hole-electron pairs/cm? - s uniformly across the plane at x = x;; (b) excess minority carrier

distribution assuming x; is in the base region; (¢) the corresponding minority carrier current

distribution.
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where the factors f and g take on the following values when x; is in each of five
regions:

f= ((—:—::—5—5%%, g=0 for —wp =< x;,<0" (8.68a)
=1, g =0 for0” = x; = 0% . (8.68b)
f= %@{—g—%, g=1-f - for0"=x;=wp (8.68¢)
f =0, g =1 forwy; =x;=wjg (8.68d)

We +wg — X v
f=0  g= ((w§+w38—w;;)) for wi .= x; = (W} + we) (8.68e)

An equivalent circuit for these characteristics is shown in Fig. 8.30a. Combining
the circuit of Fig. 8.30a with the Ebers~-Moll model (Fig. 8.7) results in the
complete large-signal phototransistor model shown in Fig. 8.305.
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FIGURE 8.30 o

(a) Large-signal equivalent circuit for the terminal characteristics of an

illuminated short-circuited npn transistor; (b) the circuit in (a) combined
with the Ebers-Moll model to give a large-signal equivalent for an npn
bipolar phototransistor.
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To see how the phototransistor differs from a photodiode, consider an npn
phototransistor biased into its forward active region with vcg very positive (i.e.,
much greater than k7' / ¢) and with the base terminal open-circuited (i.e., iz = 0).
The base-collector junction is clearly reverse-biased, and ig is I¢cs. We find after
a little algebra that

ic = —is = [Br(f +8) + glgMA + S CE%R) (8.692)
(1 —ar)

In a well-designed device, I¢s will be much smaller than gMA and Br will be
much greater than 1, so we can approximate this result as

ic = —ig = BrqMA(f + g) (8.69b)
The thing to note about this result is that the photocurrent gMA(f + g) is now
amplified by Br. In a photodiode there is no amplification and every photogen-
erated hole-electron pair results in at most only one g of charge flowing through
the device. The current through a phototransistor is Sr times as large, so a pho-
totransistor is Br times more “sensitive” than a photodiode.

We can think of the optical illumination as injecting majority carriers into
the base of a phototransistor and thereby playing the same role as the base contact.
In a common emitter connection we electrically force, or inject, carriers (current)
into the base through the base contact; if the device is biased into its forward
active region, the collector current is By times as large. The same thing happens
when we photoinject carriers into the base.

We can see from our results thus far that it does not matter which of the
two junctions is illuminated. Nor do we need to illuminate both. These observa-
tions, combined with the physical reality of a practical bipolar transistor structure
as illustrated in Fig. 8.1, (i.e., thin and spread out) lead to real phototransistors
that look like the device illustrated in cross section in Fig. 8.31. The base-collector
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FIGURE 8.31
Cross-sectional drawing of an npn bipolar phototransistor fabricated in silicon

using a planar process.
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(a) (b)

FIGURE 8.32

(@) Circuit schematic for a phototransistor like that
of Fig, 8.31, in which the nature of the device as
a photodiode merged with a transistor is
highlighted; (b) circuit schematic for a
phototransistor in which the photodiode in () is
represented as an independent current source.

junction is made as large as necessary to collect the incident signal, and the
emitter-base junction is kept small to block as little of the lower junction as
practical. Built this way, of course, the device even physically looks very much
like a photodiode merged with a bipolar transistor into a composite device like
that illustrated in Fig. 8.32a. The photodiode looks like a current source whose
output provides the base current of the transistor; Fig. 8.32b emphasizes this idea.

Phototransistors are used as sensors and detectors in many applications sim-
ilar to those of photodiodes. It would also be tempting to think of using them in
solar cell applications if we could get Br times the solar-generated current from
them, but a little thought should convince you that such an approach is unsound.
To get the gain of Br we needed to bias the transistor into its forward active
region (i.e., add an external power source). The extra current and energy come
from that source, not from the light, so the phototransistor is no better than a solar
cell at converting optical energy to electrical energy.

8.4 SUMMARY

‘We began this chapter with a development of the Ebers—-Moll model, a large-signal
model for the terminal characteristics of a bipolar junction transistor. Although it
is based upon a simplified one-dimensional approximation to a practical device
structure, this model gives us excellent insight into the internal operation of bipo-
lar transistors and provides important guidance in the design of these devices. We
have introduced the concepts of the emitter, base, and collector defects and shown
that the operation of the transistor is optimized by minimizing the emitter and base
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defects. We have seen that this can be accomplished by keeping the base as thin
as possible and by doping the emitter more heavily than the base, which is in turn
more heavily doped than the collector.

We have pointed out that there are two types of bipolar transistors, npn and
pnp, and we have developed Ebers—-Moll models for both. We have seen that
because the mobility of electrons is in general greater than that of holes, an npn
bipolar transistor will have lower defects and higher gain than an equivalent pnp
device. This observation, along with observations that we will make in Chap. 14
concerning their higher speed, often make npn transistors the devices of choice,
all else being equal.

After developing the basic Ebers—Moll model for the bipolar junction tran-
sistor and discussing its limitations, we considered approximations to this model
in certain common operating regions, in particular in the forward active region.
We have shown that the forward portion of the Ebers—-Moll model dominates the
transistor characteristics in the forward active region of operation and that in this
region the model can be simplified considerably. We have also developed variants
on this simplified model in which the base current is viewed as the signal that
controls the collector current; the parameter of interest in this approach is the
forward common-emitter current gain Bg, which we have shown can be made
very large by minimizing the emitter and base defects.

We next developed linear equivalent circuit models for the terminal behavior
of bipolar junction transistors. These models are useful for small-signal operation
about fixed quiescent, or bias, points in the forward active region; we found that
the parameter values in these models depend on the bias point chosen. We have
developed models in both the common-emitter and common-base configurations
and in which either the specific base current, the emitter current, or the base-
emitter voltage was viewed as the input signal that controls the output signal, the
collector current. We have seen that in all cases the small-signal models are the
same for both npn and pnp transistors.

We have argued that we could extend our transistor models, which were
derived under quasistatic conditions, to high frequencies by adding the energy
storage elements associated with each junction in the device. We have done this
for our incremental models by adding a capacitor in parallel with the base-emitter
junction to represent the diffusion and depletions charge stores associated with
this junction in the forward active region (i.e., when it is forward-biased); we
added a second capacitor in parallel with the base-collector junction to represent
the depletion charge store of this junction, which is reverse-biased in the forward
active region. The common-emitter small-signal high frequency model is called
the hybrid-7 model and is used extensively in circuit analysis.

Finally, we have considered the optical excitation of a bipolar transistor. We
have seen that the effect of light is to inject current into the base terminal and
that this current will be amplified by the forward common-emitter current gain of
the transistor, fBF, if it is biased in its forward active region. This process can be
used very effectively as an optical light sensor, and bipolar transistors designed
specifically to be sensitive to light are called phototransistors.
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PROBLEMS

8.1 The npn silicon transistor shown in Fig. P8.1 is characterized by the following
parameters:

Npg = 5 X 107 /cm?, wg = 3 um, 7 = 0.1 us, wyp = 250 cm?/V +s
Ngp = 5% 10%/cm3, wg = 0.8 um, T, = 0.1 us, w,g = 1000 em?/V s
Npc = 5x 10P/em®, we = 6 pm, 7,0 = 0.1 us, e = 500 em?/V s

You must not assume that the lengths w are small compared to the diffusion lengths.
Instead, you will have to check this point and proceed accordingly. The active cross-
sectional area of the transistor is § X 107%cm?2, Use kT/q = 0.025 V and n; =
1.0 x 1019/cm3,

(@) The transistor is operated in the forward mode with vgg > 0 and vg¢ = 0. Obtain.
numerical values for the base and emitter defects, gp and dpp.

(b) Obtain numerical values for the corresponding defects, 8¢ and dgg, when the
transistor is operated in the reverse mode with vge > 0 and vgp = 0.

(¢) Obtain numerical values for Sr and Bg.

(d) Obtain numerical values for the Ebers—Moll parameters: Igg, Ics, @p, @R.

(e) Show that your numerical calculations give aglgpg = arlcs.

8.2 Two npn transistors, Q 4 and Qp, are structurally identical in all respects except that
the cross-sectional area of Qp is four times that of 0 4. These transistors are both
biased in their forward active regions with ¢ = 2mA and Vo = 6 V.

The questions below concern the parameters in the Ebers—Moll and hybrid-7
models for these two devices. Indicate how each quantity specified compares for
the larger transistor Qp and the smaller transistor Q4. You may assume that space-
charge layer recombination is negligible and that the transistors are biased to operate
under low-level injection conditions.

{a) Ebers—Moll emitter-base diode saturation current Igg

(b) Ebers—Moll reverse alpha, ap

(¢) Quiescent emitter-base voltage, Vgp

{d) Hybrid-7r transconductance, g,

(e) Diffusion capacitance component Cj{ of the hybrid-7 emitter-base capacitance
Cr

() Hybrid-7 base-collector capacitance, Cy
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8.3

8.4

8.5

MICROELECTRONIC DEVICES AND CIRCUITS

Two high-gain bipolar transistors have identical dimensions and identical emitter,
base, and collector doping profiles, except that transistor A is npn and transistor B
is pnp. Indicate which device, if either, has the property stated below and explain
why.

(a) Largest forward current gain Sp

(b) Smallest transconductance g, with |/} = 1 mA

(¢) Largest base-collector diode saturation current Iqg

(d) Lowest parasitic base resistance r

Consider an npn bipolar junction transistor, like that pictured in Fig. 8.2, that is
fabricated of silicon and has the following doping levels and dimensions:

Npp =5x108 cm™, wh =05 um
Nyp =2 X 1017 em™3, wp = 0.2 um
Npc =5x10% em™, w§ =10 um

Assume that @, = 1600 cm?/V +s, up = 600 cm?/V -s, n; = 1019 cm™3, and
Toin = 1074 s. Assume also that the device is to be modeled using the Ebers—-Moll
formulation.

{a) What are the emitter, base, and collector defects in this device?

(b) What are ap and ap?

(¢) What are Jgg and Jog?

(d) Confirm that apJgs = ag Jcs

(e) What is Br?

(a) For the bipolar transistor in Problem 8.1, calculate the emitter current density at
the onset of high-level injection in the base, assuming that this corresponds to
n'(0%) = 0.1N4p.

(b) If the emitter, viewed from the top, is a rectangular stripe 3 pm wide and L um
long, how large must L be if this transistor is designed to operate at collector
currents up to 2 mA without entering high-level injection?

(c) What is the incremental transconductance g, of this transistor with a quiescent
collector current of 1 mA?

(d) (i) Calculate the resistance of the base region (i.e., between 0 and wg from

long edge to long edge). .

(ii) This type of transistor would typically be constructed with two base contact
stripes on either side of the emitter stripe; each contact will supply half of
the base current, which in turn flows at most halfway under the emitter (see
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Fig. P8.5). Estimate the lateral voltage drop from the edge to the middle of the base
region due to the base current when I = 1 mA.

8.6 A lateral transistor has the structure illustrated in Fig P8.6a (the drawing is idealized
and not to scale). Electrically this device can be modeled as a high-8 pnp transistor
Q with diodes Dg; and Dg, shunting the emitter-base and base-collector junctions.
This question concerns the Ebers—-Moll model for such a lateral pnp transistor. In
answering parts a through ¢, ignore the space-charge layer widths. Also assume
that one-dimensional models can be used for all of the junctions. Make appropriate
engineering approximations.

The device dimensions and parameters are as follows:

wp =wp =10 um, Lyp =10 pm, D, = 40 cm?/s
wsg =100 um,  wg =whp =5um, Dy = 15cm?/s

Areas of emitter and collector bottoms: 5 X 1072 cm? (each)
Areas of emitter and collector sides: 1072 cm? (each)
p*-regions: p, = 5% 1018 cm™3
n-region: n, = 1016 cm™3
Use n? = 1x10%0 cm™3,
(a) What are the numerical values of the saturation currents of the following diodes?
(1) The shunting diodes (i.e., the vertical diodes). Call this saturation current
Igs.
(ii) The Ebers-Moll model diodes of the high-£ pnp transistor (i.e., the lateral
diodes). These are Igs and Irg.
(b) Make an Ebers—Moll model valid for the composite transistor, that is, including
the shunting vertical diodes (see Fig. P8.6b).
(i) What are Ié’S and IéS in terms of Igg, Icg, Iss, ap, and ag?
(i) What are o, and ap?
(iif) Is By greater than, equal to, or less than Bp?
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(¢) Lateral transistors have symmetrical doping profiles and thus have Nyg

O C

Orig

Oplp

Nyc >> Npp. Discuss the consequences of each of the following situations for
transistor characteristics, and state whether they are desirable or not:

(i) Ngg >> Npp

(ii) Ngc >> Npp

8.7 Consider two bipolar junction transistors, an npn transistor and a pap transistor. Both
transistors have values of B = 200 and By = 20 and have comparable values of

IES.

(a) What is the numerical value of the ratio I~g/Igg for each transistor?

Assume that there is negligible recombination in the base regions of these devices.

In both transistors, the current crossing the emitter-base junction consists of both
electrons and holes.

(b) Find the numerical value for the fraction of the emitter current carried by electrons
in the npn transistor and by holes in the pap.

These transistors are used in the circuit illustrated in Fig. P8.7. Assume that the npn
transistor is operating in the forward active region.

j +VCC

O—
+

VIN

FIGURE P8.7
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(c) Determine the region of operation of the pnp transistor, and briefly justify your
choice. Your choice should be one of the following: forward active, reverse active,
saturation, or cutoff.

8.8 For each of the transistor circuits shown in Fig. P8.8, sketch the excess minority
carrier distribution through the device. For each transistor, 8g

ist = 100, VBE,ON = 06
V, and Npg=4 Ngp = 16 Npc. Assume infinite minority carrier lifetimes
and Wg=Wp =02 W¢.
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8.9 Consider designing an integrated circuit according to the following simplified design

rules:
Minimum oxide opening that can be etched: 1 pmby ! um
Minimum-width line (opening or feature) that can be defined: 1 um wide
Minimum separation between metal lines: 1 um
Minimum nesting allowance, i.e., contact opening within a diffusion, metal pat-
tern overlap of a contact opening, etc.: 2 pm all around

(a) Lay out a bipolar transistor like that pictured in Fig. 8.1 with the smallest emitter

possible under these design rules. Use a rectangular, rather than circular, geometry.

(b) Calculate the approximate ratio of the area of the base-collector junction to that

of the emitter-base junction, and discuss the implications of this for C and Cy,.

Assume a base-collector junction depth below the top wafer surface of 0.5 um and

-an emitter-base junction depth of 0.3 wm; also assume that a diffusion through
an oxide opening spreads laterally 80 percent of the junction depth.

8.10 This question concerns an npn bipolar transistor that has the following dimensions
and properties:

NDE = ZNAB = 4NDC» Dg = 2Dh

wg =wp =w, =W, L,=L;=10W

(a) Based on the-emitter-base junction, what is the ratio of hole to electron current
crossing this junction in forward bias?

(b) What fraction of the electrons flowing from from the emitter into the base when
the base-emiitter junction is forward biased recombine in the base?

(¢) Suppose you want to change the dopant densities in this transistor to improve its
forward active region characteristics. Assuming N4p is fixed, what would you
do to Npg and Np¢, and why?

8.11 A certain one-dimensional npn bipolar transistor has Npg = 2N4p = 4Npc and
Wg = Wy = 0.25W,. Throughout it the minority carrier lifetime is infinite and
De = 2.5 Dy,. This transistor can be connected in five different ways to make
a p-n diode, as illustrated in Fig. P8.11.

+0 +0 +

+ +
. Vp vp Vp

— D ’ YD

s = -
(@) ®) () C)] ‘ (e)
FIGURE P8.11
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For the same value of Vp, given that Vp >> kT /g, sketch the excess minority
carrier distribution in the device in each connection,

8.12 Consider using the emitter-base junction of an npn transistor as a diode. We want to
compare the three possible connections illustrated in Fig. P8.12. Assume D¢ = 2.5 Dy,

(@) (i) Find a relationship for ip as a function of v4p in terms of the Ebers—-Moll
parameters (ag, ag, Igs, and I¢g) of the transistor. ’

(ii) For which of these “diodes” is “I¢" largest? Smallest?

(b) For each of these connections find expressions in terms of the Ebers—-Moll param-

eters for the ratio of the collector current in the transistor to the emitter current.

(¢) Indicate on sketches of each of the connections the main current path through the

device from A to B. : ‘

(d) Sketch the excess hole and electron distributions through this transistor in each of

the connections. Assume that Npg = 2N4p = 4Np¢, and Wg = Wg = 0.5W,.
Assume infinite lifetimes.

(e) (i) In which of these diode connections is the total density of excess minority
carriers under forward bias the smallest, assuming the same applied voltage
vp, and why? "

(ii) In which of these diode connections is the total density of excess minority
carriers under forward bias the smallest, assuming the same total current i p,
and why?

(iif) In which connection is the diffusion capacitance largest, assuming the same
voltage bias Vp, and why?

§.13 A: pnptransistor with Bp = 200 and Bz = 1 is used as a switch in the circuit
shown in Fig. P8.13. For this application it is important to know the collector current

i
lc §RL‘=1kQ

Vg T 12V
-1 o+
+

FIGURE P8.13
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when the switch is in the “off” state. The switch can be turned “off” in a number
of different ways: (a) by opening the base lead, thereby reducing iz to 0; (b) by
grounding the base; (c) by applying a large reverse bias between base and ground.
The collector current for each of these cases is defined as

(a) Icgo: collector current with base open
(b) Icpg: collector current with base short-circuited
(¢) Icpx: collector current with large reverse bias from base to emitter

Find numerical values for each of these currents when Iog = 10 nA.



CHAPTER

9 |

THE MOS
CAPACITOR

In modern semiconductor electronics there are a number of fundamental structures,
including the p-n junction, the metal-semiconductor contact, and the metal-oxide-
semiconductor capacitor. We discussed p-n junctions in Chaps. 6 and 7, and
Appendix E deals with metal-semiconductor contacts. In this chapter we focus
our attention on the metal-oxide-semiconductor (MOS) capacitor structure.

The MOS capacitor forms the heart of an important family of devices called
MOS field effect transistors, or MOSFETs. In much the same way that under-
standing p-n junctions is central to understanding the operation of bipolar junc-
tion transistors, understanding the MOS capacitor is central to understanding the
operation of MOSFETs. The MOS capacitor is also a useful device in its own
right (i.e., as a capacitor), and the MOS capacitor structure is also useful as an
optical sensor.

We will begin our study of the MOS capacitor in this chapter by looking at
this structure in thermal equilibrium. We will then study what happens when we
-apply voltage to an MOS capacitor and look at the unique features that make the
MOS capacitor so useful in devices.

9.1 THE MOS CAPACITOR IN THERMAL
EQUILIBRIUM

To form an MOS capacitor we start with a sample of uniformly doped semicon-
ductor, say p-type silicon, with an ohmic contact on one side. The other side is
covered with a thin insulating layer; in the case of silicon this is usually silicon
dioxide, SiO;, or a combination of silicon dioxide and silicon nitride, SizNy4. A
thin film of metal—aluminum is a common example—deposited on this insula-
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tor completes the metal-oxide-semiconductor capacitor structure, Such an MOS
capacitor is illustrated in Fig. 9.1.

Now consider the electrostatic potential variation through this structure, as-
suming thermal equilibrium. Assume for simplicity that the ohmic contact is also
made of aluminum, as in fact it often is. As we have done before, we will be-
gin by considering variation only in one dimension, the x-direction, which in
this case we will take to be normal to the silicon surface, as illustrated in Fig.
9.2a. The potential in the aluminum relative to intrinsic silicon is ¢,;, and that
of p-type silicon is ¢,. The thickness of the silicon dioxide is ¢,. If the silicon
dioxide can be modeled as a perfect dielectric and if there are no ions in it or at
any of the interfaces, the potential profile must look like the plot in Fig. 9.25.
The two aluminum contacts are assumed to be shorted together as shown in Fig.
9.2a, and the structure is assumed to be in thermal equilibrium, so the net change
in potential going around the circuit is zero. Because the potential in the metal
is higher than that in the semiconductor, there must be a slight depletion in the
semiconductor at each surface (i.e., at x = 0 and at x = w) and an excess of
positive charge in the metal. The potential profile and net charge distribution are
illustrated in Figs. 9.2b and c, respectively.

Your attention should be focused on the metal-oxide-semiconductor structure
on the left of Fig. 9.24, rather than on the contact structure on the right. We will
assume that the contact to the silicon on the right performs like an ideal chmic
contact. All of the “action” is on the left.

The structure, as you can see, is relatively simple. Although we have yet
to quantify our description, you should be comfortable with these pictures after
having studied p-# junctions in Chap. 7.

9.2 ISOLATED MOS CAPACITOR WITH
APPLIED VOLTAGE

Given our qualitative picture of what an MOS capacitor looks like in thermal
equilibrium, let us now open the circuit and apply an external voltage source
between the two terminals. We will discuss what happens qualitatively as well as
develop a quantitative model based on the depletion approximation.

(—Al

p-type St

Ohmic contact

FIGURE 9.1
Typical MOS capacitor formed of aluminum, silicon dioxide, and
p-type silicon.
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FIGURE 9.2

(a) One-dimensional MOS capacitor structure with its terminals shorted and in
thermal equilibrium; (b) the variation in the electrostatic potential relative to
intrinsic silicon through this structure; and (c¢) the corresponding net charge
distribution,

9.2.1 Flat-band

Consider first applying a voltage vgp to the left-hand capacitor electrode,
which we label G for “gate,” relative to the ohmic contact, which we la-
bel B for “back,” that is negative. The potential at the interface between
the oxide and the semiconductor, ¢(0), decreases toward ¢,, and the deple-
tion region width also decreases. At the same time the positive charge is re-
moved from the capacitor electrode (i.e., at x = —t,). For some particular
applied voltage, there will be no depletion of the semiconductor and the po-
tential at the surface of the semiconductor will equal that in its bulk fi.e.,
¢(0) = ¢,]. This situation, illustrated in Figs. 9.3a and b, is called the flat-
band condition, and the corresponding applied voltage Vg is an important
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point of reference. For the flat-band condition the potential difference across the
oxide is also zero because there is no net charge anywhere in the structure, The

flat-band voltage is thus
Ves = —(¢m — &p) .1)

where ¢,, is the electrostatic potential of the metal relative to intrinsic silicon.
This is illustrated in Fig. 9.3a.
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FIGURE 9.3(a-f)

Electrostatic potential and net charge distributions for an MOS structure on a p-type
semiconductor under various bias conditions, assuming that the depletion approximation
is valid: (a and b) flat-band, vgg = Vg, (¢ and d) accumulation, vgp < Vgp; (e and f). .
depletion, Vgg < vgp < Vr; (g and k) threshold, vgg = Vr; (i and /) inversion,

vgs = Vr. )
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9.2.2 Accumulation

If we apply a voltage more negative than Vgp, the electrostatic potential in the
semiconductor decreases, the hole density at the surface increases rapidly, and
all of the additional field is terminated on a thin layer of holes that accumulates
in the semiconductor within a few nanoraeters of the interface. This condition is
called accumulation and is illustrated in Figs. 9.3¢ and d. Assuming that all of
the accumulated holes are right at the interface, we can write the resulting charge
density using

N
vee — Vfg = — dalo ' 9.2)

o

so that we have

gi = = (ven — Vin) = ©9.3)
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Remember that vgp — Ve is negative, so ¢} is positive. In this model, the charge
density p(x) is a spatial charge impulse of intensity g} C per cm? at x = O

. p(x) = g48(x)  [(Clem?)] (9.4)
as illustrated in Fig. 9.34.

9.2.3 Depletion

If we next apply a voltage greater than Vgg, we must induce negative charge in
the semiconductor, which implies (at least initially) that we deplete the surface,
exposing fixed, negatively charged ionized acceptors, as illustrated in Figs. 9.3e
and f. Some of the applied voltage in excess of Vgp falls across the oxide, and some
appears in the semiconductor across the depletion region, as Fig. 9.3e illustrates.
The potential drop across the oxide is (vgg — Vem) less the potential drop in the
semiconductor, ¢(0) — ¢,. It is also equal to the negative of the depletion region
charge of the semiconductor, which we will call gj,, divided by the capacitance
per unit area of the oxide, &,/¢,. Thus we can write

« o

(vep — Vi) — [#(0) ~ ¢p] = — . 9.5)

But g7}, can also be related to the change in the electrostatic potential in the
semiconductor. Using the depletion approximation and assuming that the width of
the depletion region is xp, we assume that

_ I —gNy for0=x = xp
Thus ‘
g9p = —qNaxp 9.7

The electric field must then be given by
_ gNa(x — xp) -

cg(x) — 8Si fOI'O = X = xD (9'8)
0 ) for x = xp
and the electrostatic potential must be
gN4(x — xp)? )
¢(x) — T+¢p f0r0_<—x5xD (9.9)
? forx = xp
Thus
gN4x?,
0) =

or

_ [2esil¢(0) — ép)
XD —\/ oV (9.10)



THE MOS CAPACITOR 247

and

ah = = J2e5:aNa[6(0) - ¢,] ©.11)

Using Egs. (9.5) and (9.11), we can solve for ¢(0) in terms of vgp, so we
can find xp and g}, if we so desire. '

Clearly, as the applied voltage increases, the depletion width in the semi-
conductor increases and the electrostatic potential at the oxide-semiconductor in-
terface, ¢(0), increases.

As the electrostatic potential in the semiconductor changes, the hole and
electron populations also change. We already used this fact without making note
of it when we used the depletion approximation. That is, just as when we treated
an abrupt p-n junction in Chap. 6, we implicitly argue above that as the potential
increases above ¢, for x = xp, the mobile hole population decreases rapidly and
the net charge density increases rapidly with x to —gN4. Before going further,
we must question our assumption that the carrier populations are still related to
the electrostatic potential as they are in thermal equilibrium. Specifically, is it still
valid to use the thermal equilibrium expressions

no(x) = nieq¢(x)/kT (6'7)

Po(x) = nye” 99@/KT (6.8)

when we have voltage applied to an MOS capacitor?

The answer is yes in the present situation, because in the steady state there
is no current flowing through the structure and the semiconductor remains in
thermal equilibrium. In the steady state, the source providing the applied voltage
vgp supplies no energy to the system and both the electron and hole currents are
zero. If that is the case we again arrive at Egs. (6.1), which led to the expressions
above.

Now we can see another important consequence of the increase in electro-
static potential in the semiconductor, in addition to the decrease in hole concentra-
tion p(x), for 0 = x = xp; namely, that the electron population increases. The
density stays low and the negative charge density due to electrons, —gn(x), is
negligible compared to that due to fixed ionized acceptors, —gN,, until the elec-
trostatic potential, ¢, approaches —¢,. When ¢(x) =~ —¢,, however, n(x) =
N4 and the electrons can no longer be ignored. This occurs first at the oxide-
semiconductor interface. We call the applied voltage for which ¢(Q) = —¢, the
threshold voltage Vr.

9.2.4 Threshold and Inversion

The threshold voltage Vr is defined as vgp such that ¢(0) = ~¢,. Using Egs.
(9.10) and (9.11) we can thus write ‘

Xpr = M ‘ (9.12)
V' gNa
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and

Qhr = —./2es1qN4 |2¢ ] (9.13)

where a subscript T has been added to denote threshold values and capital X
and Q are used to emphasize that these are special values. The situation in the
semiconductor when vgg = Vr, a situation we describe as “being at threshold”
is illustrated in Figs. 9.3g and 4.

By using this last result in Eq. (9.5) we can obtain

Io
Vr = Vg — 2¢, + ;\/ZSSiQNA 26| (9.14)

For Vgg = vgp = Vr the depletion approximation model described in Sec.
9.2.3 is appropriate, but for vgg = Vr we use a different model. The electron
density near the oxide-semiconductor interface increases exponentially with the
electrostatic potential ¢, so once it equals and surpasses N4, the electrons will
become the dominant source of new negative charge induced in the semiconductor
by further increases in applied voltage. A slight increase in ¢(0) above —¢,
increases n(0) dramatically (i.e., exponentially).

Rather than try to calculate n(x) for x = 0, we argue that all of these induced
electrons will be in a very thin layer near the surface, which we treat spatially
as an impulse of negative charge gy at x = 0. Thus, above threshold (i.e., for
vge > Vr) we approximate the net charge distribution in the semiconductor as

_} gn6(x) — gNy for0=x = Xpr
plx) = {ON ' for x = Xpr ©-13)

Notice that we have assumed further that the depletion region width does not
increase above threshold, neither does |g},|. We know that the electrostatic poten-
tial must increase slightly over a shallow distance near the oxide-semiconductor
interface, but we assume that this leads to a negligible increase in the depletion
region width and thus in |g}|. All of the action, if you will, above threshold is
near the interface.

The situation at the interface above threshold is analogous to what it was for
accumulation, except that now we have a high density of mobile electrons rather
than mobile holes. A thin surface layer has been created in which the majority
carriers are electrons. This pseudo-n-type layer is called a channel, or inversion
layer. The surface is said to be inverted (from p-type to n-type), and this condition
is called inversion. This situation is summarized in Figs. 9.3/ and j.

The sheet charge density in the channel, gy, is a very important quantity.
We can calculate it because, as we have said, it 1s induced by the applied voltage
in excess of threshold. Thus

gy = —(vep — VT)— (9.16)

when vgp = V7.
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Example

Question. Consider an MOS capacitor fabricated on a p-type silicon substrate that
is doped with a net acceptor concentration N,y of 2 X 1016 ¢cm™=3. The electrostatic
potential in the gate metal relative to intrinsic silicon, ¢, is +0.3 V; and the gate
dielectric is silicon dioxide 25 nm thick. The relative dielectric constant of silicon
dioxide is 3.9, and that of silicon is 11.7. What are the flat-band and threshold
voltages, Vgg and V-, respectively; what are the width of the depletion region above
threshold, Xpr, and the sheet charge density in the depletion region above threshold,
Qpr; and what is the sheet charge density in the inversion layer, ¢}, when the gate
voltage vy is 2 V greater than the threshold voltage V7 ? Assume room temperature,
and take n; to be 1010 cm™3 and kT/q to be 0.025 V.

Discussion. We first calculate the electrostatic potential ¢, in the bulk of the p-type
silicon substrate. Using Eq. (6.26b), we find that ¢, is —0.35 V. Thus, from Eq.
(9.1), we find that Vg is ~0.65 V.

To find the threshold voltage, we use Eq. (9.14) and find that V; is approxi-
mately 0.53 V.

To calculate the maximum depletion region width, Xp7, we use Eq. (9.12) and
calculate that it is approximately 0.2 pm. The corresponding sheet charge density
in the depletion region, Q% 5, is —1.34 x 1078 C/em?.

Finally, using Eq. (9.16) we calculate that with the gate biased in excess of
threshold, the sheet charge density in the inversion layer, ¢} N 18 —2 8x1077 C/cm2

This corresponds to a sheet electron density of 1.7 x 10!2 cm™

9.3 BIASED MOS CAPACITOR WITH
CONTACT TO THE CHANNEL

The n-type inversion layer that forms under an MOS capacitor structure on a
p-type semiconductor can be thought of as an n-type surface layer. Thinking this
way we can see that we have effectively formed a p-rn™ junction at the surface.
Thus far in our discussion, the semiconductor has been in thermal equilibrium
throughout, including up to the oxide-semiconductor interface, and so this junction
is also in equilibrium (i.e., zero-biased). Imagine, however, that we can make
electrical contact to the n-side of this junction and reverse-bias it by increasing
the potential on that side relative to the p-side. No appreciable current will flow,
but the potential drop across the depletion region will increase and the depletion
region width will increase above the value Xpr specified in Eq. (9.12). Clearly ¢},
will change, and as a consequence gy will also change, assuming that the voltage
on the top metal electrode, vgp, is held fixed. These effects are very important in
field effect transistors that use MOS capacitors, so we will consider them in more
detail now. First we will assume that we somehow have direct electrical contact
to the channel as we have just argued; then we will assume that we get access to
the channel through a heavily doped n-region next to the MOS capacitor.

9.3.1 Direct Contact to the Channel

To model the changes that occur when we can apply a voltage on the channel
relative to the semiconductor bulk, let us assume that we can have direct electrical
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contact to the n-type inversion-layer side of our induced p-n diode such that
we can apply a voltage vep to the channel, relative to the back contact, where
veg = 0. We assume that all of this applied reverse bias (remember that our
positive reference is now the n-side of the diode) appears across the depletion
region. The change in electrostatic potential across this region is now —2¢, +vcp
rather than simply —2¢, so the depletion region becomes

(12
Xpr(ves) = \/ oy e ©.17)

and the depletion layer charge is

Qbr(ves) = —f2e5igNa(28 5| +ver) (9.18)

The sheet mobile charge density in the inversion layer, T is found by
calculating the change in potential across the oxide and setting it equal to (g}, +
Qh7)to/ 0. Because we know Q7 from Eq. (9.18), we can calculate g},. The
potential change across the oxide must be the total potential difference between
the gate electrode and the quasineutral region (x > Xpr), which is vgp — Vgs,
less the potential change across the depletion region, which is |2¢,| + vcp. Thus
we must have

t * *
vep — Vep — [2¢p| — ver = “;ﬂ [an(ver) + Qpr(ves))]
o
Solving this for g yields
* € *
gn(vep) = —t—o vee — Ve — [2¢p| — vesl + Qpr(ves) (9.19)
(2]

where Q7 is given by Eq. (9.18), and we assume that vgp = Vip + [2¢p| +Vep.
These results are summarized in Fig. 9.4, which compares the electrostatic
potential and net charge density profiles through an MOS capacitor with vep = 0
and with veg > 0,
It is worth noticing that when vcp > 0, the inversion layer charge g can
be zero even though vgp is greater than the Vp specified in Eq. (9.14). That is,
the threshold voltage is now increased by the presence of vep to a value of

Lo A% .
Vr(vep) = Ve + [2¢p] + vep = —=Qpr(ves) (9.20)
Eo

This makes sense physically because the depletion region is wider, which in turn
means that there is more voltage drop both across it and, because g, is larger,
across the oxide. Clearly the voltage vgp that must be applied to invert the surface
and create or sustain the channel must be larger.

Finally, note that Eq. (9.16) for the channel charge density above threshold
is still valid if the appropriate expression, Eq. (9.20), is used for the threshold
voltage.
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Profiles throughout an MOS capacitor above threshold for two
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net charge density, (The dashed plots are for no voltage applied to the
channel, vep = 0, and the solid plots are for reverse bias on the
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FIGURE 9.5

MOS capacitor on a p-type silicon sample, or “substrate”
with heavily doped n-type regions adjacent to the ends of the
channel.

9.3.2 Adjacent p-n Junction

As a practical matter, electrical contact to an inversion layer is generally made
through an adjacent heavily doped region of the same type as the inversion layer
(e.g., n-type in the structure we have been discussing). An example is illustrated
in Fig. 9.5. When the region under the gate electrode G is inverted, we assume
that there is little or no barrier to electron motion from the n*-regions to the
inversion layer and vice versa. Thus the channel and the n*-regions are all at
the same potential; therefore vep = vgyp. Notice that we label the contact on the
n*-regions with an S, which stands for “source.” This name comes from the fact
that in this structure the n*-regions are the origin, or source, of the electrons that
form the inversion layer.

In the next chapter we will consider what happens when the two n*-regions
on either side of the gate electrode are not at the same potential. We will see that
there will be a gradient in potential in the channel, moving from left to right. A
gradient in potential implies an electric field, which will in turn drift the carriers
in the channel (electrons in this case) from one n*-electrode to the other. Clearly
the amount of motion (i.e., the drift current) will depend on the amount of charge
and thus on the gate voltage. The gate can therefore be used to control the current
between the two n*-regions. This phenomenon will form the basis for the MOS
field effect transistor that we will introduce in Chap. 10.

9.4 CAPACITANCE OF MOS CAPACITORS
VERSUS BIAS

We call the metal-oxide-semiconductor “sandwich” that we have been discussing
an MOS capacitor, but we have not yet looked explicitly at its capacitance, that is,
at how the charge stored in this structure varies with the voltage applied to it. This
issue is very interesting and provides us with an important tool for understanding
and characterizing MOS capacitors.
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We will take the charge stored on an MOS capacitor to be the charge on
the gate electrode, which we call gg. We envision a structure like that shown in
Fig. 9.5, with vgg = 0, and ask how gg varies with vgs. As you may already
realize, and as we shall show shortly, g is a nonlinear function of vgg, so we
cannot model this charge store as a linear capacitor, We can, however, define a
capacitance for the structure that relates incremental changes in the stored charge
to incremental changes in the gate voltage. This capacitance will clearly be a
function of the quiescent gate voltage. We define it as

996

Cgs(VGS ’ O) 5
VGS lvgs =Vis,vps =0

(9.21)

Thus for small voltage deviations away from Vgs (i.e., if vgg is Vs + vgs), the
charge on the gate, gg, will be given approximately by

g = 06 + g, = Q¢ + CygsVygs 9.22)

We next use our discussion from Secs. 9.2 and 9.3 to obtain expressions for
g¢ in each of the three bias regions of an MOS capacitor (accumulation, depletion,
and inversion). We will calculate Cgz; in each of these regions. We continue to
assume that we have an MOS structure fabricated on a p-type semiconductor;
assume further that the gate electrode is L units long and W units wide.

Beginning with accumulation, we see from Fig. 9.3d that g5, the charge
on the gate at x = —¢,, is simply —¢q ALW which, using Eq. (9.3) and recalhng
that vgg = vggs, gives us

g6 = LWf;2 (vgs — Vep) (9.232)
o

It is convenient at this point to define the factor &,/¢, as the oxide capacitance
per unit area, CJ,, so that we write

gc = LW C5(ves — Ves) (9.23b)

Applying the definition of gate capacitance, Eq. (9.21), we find that in
accumulation (i.e., for vgs =< Vig) we have

Ces(Vos = VeB) = LW Cg, (9.24)

This result makes perfect sense. In accumulation, charge is stored on either side
of the oxide just as it is in a metal plate capacitor, and the capacitance of such a
structure is its area LW multiplied by the dielectric constant of the insulator, &,,
divided by the plate spacing ¢,.

Moving next to biases in depletion, we can refer to Fig. 9.3f, where we
see that g , the charge on the gate at x = —t,, is gN4xpLW, which is also
—gpLW. We did not obtain an expression for either xp or g}, as a function of
the gate voltage in Sec. 9.2, so we need to do so now in order to see how gg
varies with vgs and to calculate C, ;. To proceed we solve Eq. (9.5) for [¢(0)—¢ ]
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and substitute it into Eq. (9.11). This yields a quadratic equation for gj, that we
can solve. Doing so yields

2
. esigNa \/ 2C"(ves — Vi)
= - 1+ -1 9.25
dp cr ( o (9.25)
We have already pointed out that g = —gpLW, so we arrive at
2
esigNa \/ 2C¢ (vas — Vi)
= LW—=—"-= 1+ -1 9.26
9¢ Cix ( . esigN4 : . ( )

This expression is not terribly instructive at this point, but it does show us that
g varies as the square root of (vgs — Ve), which reflects the depletion region
" increase with vgg. Note also that when vcs equals Veg, gg = 0, as we know it
must (see Fig. 9.3b). :
Using Eq. (9.21) to calculate Cg,, we find that in depletion

Cos(VeB < Vs < Vp) = LIWC o (9.27)

\/1 + 205 (vas — Vi)
‘ esigN4

Looking at this expression, we see that C,s has a value of C5 LW when Vgg =
Vig and decreases for Vg5 greater than the flat-band value. Physically, the depletion
region width increases with increasing vgs above Vig. Since the increments in the
charge store, g, and —¢q,, are added (and removed) from the gate and the edge -
of the depletion region, the capacitance of the structure decreases as the effective
width of the capacitor (i.e., the separation between g, and —gq,) increases.

Pursuing this line of reasoning further, we can view this structure as two
capacitors—the oxide capacitance LWC}, and the depletion region capacitance,
LWeg;i/ xp—in series. From this viewpoint, we must have

LWC;XLW (SSi/xD)

IWCy + LW (es1/xp) (9.283)

Cgs =

or, simplifying a bit,
C. = ' LW
¥ (xp/esi) + (1/C

To see that this is equivalent to the expression in Eq. (9.27), we return to Eq.
(9.25) for gy, and realize that xp = g},/qN4. Thus we have

% 2 -
I _ 1 <\/1+2C°x (s VFB)—I) (9.29)

esi Cox esigNa

(9.28b)

When this expression is substituted into Eq. (9.28b), we get Eq. (9.27).
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We have said that when vgs reaches Vr the depletion region width reaches
its maximum and that the additional charge stored for any vgs in excess of Vr
appears in the inversion layer at the oxide-semiconductor interface. By now you
should realize that this means that Cg; is just the oxide capacitance WL C,. To
see formally that this is indeed the case, refer to Fig. 9.3i; where we see that g,
is now —gy + Qpr. Using Eq. (9.16) for g}, we have

96 = WL(vgs = Vr)Co + Opr . (9.30)
and we immediately see that above threshold, Cy; is given by
Cys(Vos > Vp) = WLCE, 9.31)

A convenient way to summarize these results and to appreciate their signif-
icance is to plot C,; as a function of Vg over a range of voltages from below
the flat-band value to above threshold. An example of such a plot for an MOS ca-
pacitor on p-type silicon is shown in Fig.-9.6a. (The numerical values in this plot
correspond to those in the example earlier in this chapter.) As is consistent with
our model, we see that for biases below Vig and above Vr, Cy; is WLCg,, which
we call simply Cox in the figure. For a bias between Vg and V7 (i.e., when the
structure is in depletion), C,; is less than Cox and decreases nonlinearly with V.

You can see from Fig. 9.6a that a measurement of Cg; versus Vs can yield
a great deal of information about an MOS capacitor. First, it provides us with
a measurement of Vgg and V7. Second, from the value of C,, in the horizontal
regions (i.e., from Cyx), we can calculate the oxide thickness ¢, (assuming we
know g,, W, and L). Third, from the shape of the plot in depletion we can
estimate N4. Alternatively, we can also estimate N4 from the difference between
Vr and Vg [see Eq. (9.14)].

In practice, a plot of Cg; versus Vgs is neither as flat nor as sharp as our
ideal curve in Fig. 9.6a. The problem is that the charge stores in accumulation
and inversion are not rdeal impulse, or delta, functions at the interface; instead
they are distributed over a finite (albeit very thin) layer. Consequently Cg; in
accumulation and inversion is a bit less than Co. Furthermore, the threshold does
not correspond to a perfectly abrupt change in the state of the surface; rather, it is
a specific point along a continuous (albeit sharp) transition, so the change in Cg;
at Vr is not an abrupt step, but rather a more rounded step. Such a “real” C-V plot
for an MOS capacitor is plotted as the solid line in Fig. 9.65; the dashed curve in
this figure is the ideal curve from Fig. 9.6a. Modeling and calculating the solid
curve in Fig. 9.65 requires the use of the full Poisson-Boltzmann equation, Eq.
(6.12b), just as is necessary if we want to go beyond the depletion approximation
model when treating a p-n junction.

Finally, we should consider the effect on C; of applying a fixed reverse
bias Vps between the substrate and the n*-regions. (Note that this Vzs will be a
negative quantity.) Several things happen. First, the flat-band point on the plot is
shifted left by |Vjs| because we are now measuring the gate voltage relative to the
source, not the substrate. The actual voltage between the gate G and substrate B
at flat-band conditions is the same as before, but the corresponding vgs is |Vas]
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FIGURE 9.6

Capacitance-voltage (C-V) plots for an MOS capacitor structure like that illustrated in Fig.
9.5 and used in the example earlier in this chapter: (a) Cgs versus Vgg for Vag = 0,
assuming the depletion model and delta function inversion and accumulation layers;

(b) a “real” C-V plot on the same structure, showing the softening of the curve that
occurs in practice; (c) Cgs versus Vg (depletion model) for the same structure, assuming
Vgs = —0.5 V. [The dashed curves in (b) and (c) repeat the ideal, Vpg = O curve

from (a).]
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smaller (i.e., vgs 1S vgp + Vps and Vpg is negative). Second, the threshold point
is shifted slightly to the right by an amount [Q},(Vps) — Q}7(0)]/ Cg,, as you can
see by referring to Eq. (9.20), which gives vgp at threshold, the corresponding
vgs 18 vgg — vSB, so we obtain

ves (at threshold conditions) = Vep + |26 5] — -23Q 5 (Veg) (9.32)
o

The third change is that value of C at this threshold value of vy is smaller than
before because now the threshold depletion region width is larger. These changes
are evident in Fig. 9.6¢. -

9.5 IONS AND INTERFACE CHARGES IN
MOS STRUCTURES

Before proceeding to summarize our results and then move on to field effect
transistors, we must modify our picture slightly to make it more general and to
better represent reality. In practice we find that there are often fixed ions (i.e.,
fixed charges) at the oxide-silicon interface. If wafers become contaminated during
processing, it is also possible for there to be ions in the oxide itself. We identify
three different types of such nonideal, or extrinsic, charge: interface charge, and
fixed and mobile oxide ions.

9.5.1 Interface Charge

The charge found at the oxide-silicon interface, which we call interface charge,
is usually positive and is the result of a number of causes. A small number of
interface charges appears to be intrinsic to (or inherent in) this interface; others
arise from imperfections in the fabrication process; still others may be introduced
intentionally to adjust certain device characteristics, as we shall see later. In any
event, we should allow for the possibility of some fixed charged ions at this in-
terface. We will call this charge O}, which has units of C/cm?. Including this
fixed interface charge in our plots of potential and net charge through an MOS
capacitor in thermal equilibrium modifies these plots as shown in Fig. 9.7. Com-
paring Figs. 9.7a and b to"Rig. 9.2, we see that there is now less potential drop
across the oxide and less charge on the left-most electrode in equilibrium, but the
depletion region is somewhat wider and the depletion region charge gN4xp has
increased.

When we bias the structure to flat-band, we have the situation illustrated
in Figs. 9.7¢ and d. There is an additional potential drop ~Q7}¢,/¢e, across the
oxide, and the flat-band voltage is modified to be

Vip = — (a1 — ¢) - Q?;—Z 9.33)

The convenient thing about Q7 is that it is fixed, so its effects are indepen-
dent of vgp and can simply be superimposed on all of the effects of our preceding
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Net charge distribution and electrostatic potential profile through an MOS capacitor in
thermal equilibrium with a fixed interface charge density 0, under two bias conditions:
(a and b) VGB = 0; (c and d) VG = VFB'

discussions. Thus the presence of interface charge will be fully accounted for by
using Eq. (9.33) to calculate the flat-band voltage Vg and by using this value
everywhere Veg appears in our expressions. No other modification is required.

Example

Question. Suppose the interface sheet charge density Q% is 101! em™2, or 1.6 X
1078 C/em?. In the MOS capacitor that we considered in the preceding example,
how much would this interface charge shift the flat-band and threshold voltages?

Discussion. The amount of shift is —Q7¢,/e,, or in this case approximately ~0.12
V. Thus the flat-band voltage would become —0.53 V and the threshold voltage

would be reduced to +0.65 V.
Notice in this example that if the interface charge density were another order

of magnitude higher, the threshold voltage would become negative and the device
would change from enhancement mode (see Sec. 9.6.1) to depletion mode,

9.5.2 Ogxide Charge

If sufficient care is not taken during processing, it is possible for the oxide in.
an MOS structure to be contaminated with ions, usually positively charged ions.
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The effect of these ions is very much like that of the interface charge. The only
new element is that because they are not all in the same plane, their impact on Vi
depends on their distribution within the oxide. Suppose that their charge density
profile is given by po(x), in C/em®. At flat-band conditions, in addition to this
positive oxide charge, there will be a negative charge on the gate electrode equal
to the total amount of charge within the oxide. Integrating this charge distribution
twice, we find that Ve will be modified to

—lo X
o =~ = 8= 2 [ || poirax | x ©.34)

In general, a distributed oxide charge like this cannot be experimentally
distinguished from an interface charge Q7 because both are manifested as a shift
in VFB'

Any oxide charge is bad, but the situation is even worse if the ions in the
oxide are mobile, which is the case under certain conditions for some common
contaminant ions in silicon dioxide (in particular, sodium ions). The problem with
such ions is not only that their presence causes a large flat-band and threshold volt-
age shift, but also that the shift is unstable because the profile po(x) is unstable,
so that Vg and Vy wander with time and operating conditions.

The mobility of such ions as sodium can be used to our advantage to develop
a diagnostic procedure to measure the total amount of such mobile charge in the
following way. Sodium ions, which are the most common oxide contaminant, will
move under the influence of an electric field, particularly if the sample is heated
to several hundred degrees centigrade. A common measurement technique used
to access the quality of an oxide (i.e., to measure the total density of mobile
ions) is a voltage stress test. A positive bias is first applied to the gate of an
MOS test structure held at high temperature, and the ions are drifted to the oxide-
semiconductor interface; the resulting flat-band voltage is measured and labeled
Vep+. Then a negative bias is applied so that the ions are drifted to the metal-oxide
interface, and the flat-band voltage is measured and called Vgp-. ‘

In the first instance, when all of the mobile oxide ions are at the oxide-
silicon interface, their contribution to Vegy is —Qp/Cy,, where QF, is the total
mobile ion sheet concentration in the oxide. In the second case, when all of the
ions are at the metal-oxide interface, they make no contribution to Vgg—. Clearly,
we can then calculate Q7 from the difference between Vg4 and Vip-_:

Qb = (Vr- — VeB+) Coy (9.35)

The goal in processing is to have Qp be zero, but when something goes
wrong and the oxide becomes contaminated, a voltage stress measurement is a
useful way to identify mobile ion contamination and assess the magnitude of the
problem.

9.6 TYPES OF MOS CAPACITORS

We chose to consider an MOS capacitor made on p-type silicon, but we can
construct an MOS capacitor on n-type silicon just as well. Suitable changes in
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sign and polarity have to be made to account for the fact that donors now replace
acceptors and the roles of holes and electrons are reversed. When made on p-type
silicon, MOS structures are referred to as n-channel devices, whereas when the
bulk of the device is n-type, the structures are referred to as p-channel devices.

Before ending this chapter, we will collect here the expressions for the key
parameters identified in this chapter and state them for devices made on both
n-type and p-type silicon. The expressions of interest are those for the flat-band
and threshold voltages, Vg and Vr(vep), respectively, and for the inversion layer
charge density gy(vca).

9.6.1 r-channel, p-type Si

For MOS capacitors fabricated on p-type silicon, the flat-band voltage, threshold
voltage, and inversion layer charge density are given by Egs. (9.33), (9.20), and
(9.19), respectively. Repeating those equations here, we have, after substituting
Eq. (9.18) in Eq. (9.20) and using Eq. (9.20) to simplify Eq. (9.19),

o
Vep = —(¢m — ¢p) = Q7 (9.36)
o
| .
Vr(ves) = Vs + (26| + ves + 2=/ 2851aNa(26 5] + ves) (9.37)
. _ _ —8—0_ .
a5 (veg) = [ (ves — Vr(ves)] ‘. ff ves = Vr 9.38)
ifvgg = Vr

We restrict vcp to be greater than zero. Q7 is typically positive.

If the oxide-semiconductor interface is not inverted when vgp = 0, the
threshold voltage will be positive and the inversion layer, or channel, must be
created by applying a larger positive gate voltage (i.e., vgp > V7). This type of
device is called an enhancement mode device because an applied gate voltage is
required to enhance the channel. If, however, Vr is negative, a channel will exist
when the gate voltage is zero. This type of device is called a depletion mode
device: a gate voltage must be applied to eliminate the channel (i.e., to deplete
it of carriers). This latter gate voltage must, of course, be negative.

9.6.2 p-channel, rn-type Si

For MOS capacitors fabricated on n-type silicon, these expressions change in
several ways. Ny is replaced by Np, ¢ is replaced by ¢,, and vcp must be less
than zero. The interface charge Q7 is still typically positive.

The expressions are now

Ve = _(¢711 - ¢n) - Q;g ‘ (9.39)

t N
Ve(veg) = Vep = 26, + vep — — /285:gNp(2dyn — vep) (9.40)
€o
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Bo N
q;(VCB) = [VGB VT(VCB)] }—0— if Vo = VT (9'41)
0 ifvgp = Vi

Note that now the threshold voltage Vr is smaller than the flat-band voltage Vkg.
Also, the gate voltage vgp must be smaller than the threshold voltage for inver-
sion. The entire sequence of states is, in fact, reversed: accumulation occurs when
VG = Vs, depletion when vgg > vgp > Vi, and inversion when vgp < Vr.
There are depletion and enhancement mode p-channel devices as well. In
a p-channel structure, however, an enhancement mode device has a negative
threshold voltage and a depletion mode device has a positive threshold.

9.7 SUMMARY

In this chapter we have introduced our second basic semiconductor device
structure, the metal-oxide-semiconductor (MOS) capacitor. We have described
three distinct bias conditions of this structure—accumulation, depletion, and
inversion—and we have identified the bias voltages defining the boundaries be-
tween these regions as the flat-band and threshold voltages, respectively. The fact
that we can invert the surface of the semiconductor under the metal electrode in
an MOS capacitor structure, inducing an n-type layer, or “channel,” on a p-type
substrate and a p-type channel on an n-type substrate; and that we can control
the conductivity of this layer by the voltage that we apply to the metal electrode,
is the key to the usefulness of this structure in field effect transistors, as we shall
see in Chap. 10. ‘

To quantify our description of the effects of an applied voltage on an MOS
capacitor, we have developed the MOS-capacitor equivalent of our depletion ap-
proximation model for p-n junctions and have obtained expressions (summarized
in Sec. 9.6) for the flat-band and threshold voltages; the depletion region width,
charge, and electric field; and the inversion layer charge. We have also incorpo-
rated the effects of an interface charge on these parameters and have allowed for
the application of a bias to the channel of an MOS capacitor that is biased into
inversion.

Finally, we have noted that there are both n- and p-channel devices and have
developed models (summarized in Sec. 9.6) for both.

PROBLEMS

9.1 ‘You are given an MOS capacitor made on silicon, and you are told that its flat-band
voltage Vgg is +1 V and that its threshold voltage V- is +3 V. You are also told
that the thickness 7, of the gate insulator is 800 A (8 X 106 cm) with g, = 3.9
(e0 ~ 3.5 x 1013 Frem).

(a)What is the carrier type of the silicon, n-type or p-type?

(b) What is the condition. of the oxidessilicon interface when vgp is 0 V?

(c)For what range of vGp is the silicon surface in what is termed the depletion
condition and is neither accumulated nor inverted?
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(d) This capacitor is biased such that [vgp — Vr| = 3 V and the oxide-silicon surface
is inverted.

(i) What is the sheet charge density in the inversion layer?

(ii) What is the sheet resistance of this layer? Assume that the electron mobility is
1000 cm?/V-s and the hole mobility is 500 cm?/V - 5. Recall that the sheet
resistance is defined as side-to-side resistance of a square piece of material
and that it has units of ohms per square. _

(e) Another MOS capacitor is identical to the first except that its oxide is contaminated
with 1016 ¢m™3 sodium ions, Na¥.

(i) What is the total charge per cm? in the oxide?

(i1) Sketch the net charge distribution p(x) throughout the structure under fiat-
band conditions. Assume that there is no interface charge Q;. :

(iii) How much is the flat-band voltage changed by the presence of this charge?

9.2 Consider an MOS capacitor structure like that in Fig. 9.2 but fabricated on an n-type

Si substrate with n, = 5 X 1016 cm™3 and an oxide thickness of 200 A. Assume

zero interface state density initially and an electrostatic potential difference between

the gate metal and intrinsic silicon of 0.6 V.

(a) What is the flat-band voltage? (Take the gate to be the positive reference for
voltage.)

(b) What is the threshold voltage?

(c) (i) What is the sheet charge density in the inversion layer when the gate voltage

is 5 V in excess of the threshold?

(ii) What is the sheet resistance of this charge layer assuming w;, = 300
cm?/V + §?

(d)If there is a positive interface state charge density of 1.6 X 1079 C/em?, what
will the flat-band and threshold voltages be? '

9.3 Consider the MOS capacitor in Fig. 9.5 and assume that Vspis +2 V. Assume also
that the other dimensions and doping levels in the structure are the same as those in

the example in Sec. 9.2.4.

(a) What is the change in electrostatic potential crossing the depletion region at and
above threshold? How does this differ from the value when Vgp is zero? (See the
example.)

(b) What is the depletion region width at and above threshold?

(c) What is the threshold voltage (i) relative to terminal B and (ii) relative to termin-
al N?

(d)What is the sheet charge density in the inversion layer when the gate voltage is
2 V in excess of threshold?

(e) What is the flat-band voltage?

9.4 Consider using the MOS structure of problem 9.2 in a device like that pictured in

Fig. 9.5, and assume vgg is zero. The gate electrode area is 0.1 cm?.

(a)Find an expression for the total charge on the gate, g, as a function of Vg for
=5V = vgg = +5 V. Sketch and label your result.
(b) Find expressions for the gate-to-source capacitance dqg/dvgs as a function of
Vs over the same range. Sketch and label your result.
9.5 What would flat-band and threshold voltages be if the MOS structure in the example
in Sec. 9.2.4 had been fabricated on an n-type substrate with Np = 2.5x 1017 cm™3
rather than on a p-type substrate?
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9.6 An n-channel MOS capacitor with a 600-A (6 x 1076 cm) thick gate oxide, &, = 4,
becomes contaminated with 1019 ¢cm~2 fixed positive ions at the silicon-oxide inter-
face,

(a) By how much does the threshold voltage Vp change?
(b) Does Vr increase or decrease? Explain your answer physically.

9.7 Assume that there is a uniform density N of positive ions in the oxide of a MOSFET,
ag illustrated in Fig. P9.7.
(a) Show that the expression for the change in threshold voltage caused by this charge
is
_gN t%
2g,

1 to Xo

AVy, = —~[ U p(x) dx} dx =

€0 J0 x

(b) What density N of sodium ions, Na‘t, will cause a AV, = —0.5 V? Assume f, =
1000 A, Use g, = 3.9.

(c)If a 0.5-V threshold shift is enough to ruin a certain MOS circuit, how many
3-in.~-diameter wafers could a crystal of table salt (a cube 0.1 mm on a side)
destroy? Assume that the Na™ ions are uniformly distributed throughout a 1000-
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A-thick oxide layer over the entire surface of the wafers. Note: The density of

NaCl is 2 X 10?% molecules/cm3.

9.8 The capacitance-voltage relationship measured between the gate and source of a
particular MOSFET with vpg and vgg equal to O V is shown in Fig. P9.8. The gate
of this device measures 20 um by 100 wm. ,
Use this data to answer the following questions: -

{a) What is (i) the threshold voltage V77 (ii) the flat-band voltage Vig?
(b) What is the thickness of the oxide, ¢,7

(c) What is the maximum depletion region width Xp7?

(d) (i) What is the carrier type of the substrate, n or p?

(i) What is the net doping level of the substrate? Hint: Use Eqs. (9.12) and
(9.14) (or theit equivalents for an n-type substrate) to write Vr — Vg in
terms of Xp7 and the net doping of the substrate. You know Xpy from part
¢, 50 you can solve for the net doping.

(e) What is the electrostatic potential of the gate metal, ¢, relative to intrinsic
silicon?



CHAPTER

10

FIELD EFFECT
TRANSISTORS

In Chap. 8 we studied the bipolar transistor and saw how the voltage between
the base and emitter controlled the current through the device from emitter to
collector. One way of visualizing this process is by plotting the potential energy
of the majority carriers in the emitter and collector through a bipolar junction
transistor; this is done in Fig. 10.1a for an unbiased structure. In Fig. 10.1b the
same structure is shown biased in its forward active region. From these plots it is
clear that forward-biasing the emitter-base junction in a bipolar junction transistor
lowers the potential energy barrier between the emitter and collector presented by
the hase. When the barrier is reduced, more carriers can surmount it and current
flows between the emitter and collector.

In the bipolar junction transistor, direct electrical contact is made to the
base. The height of the potential barrier posed by the base is modulated directly
by the base-emitter voltage. Another way to control this potential energy barrier is
indirectly by means of a field plate; that is, to induce a change in the barrier via a
sheet of charge on an adjacent electrode. This approach eliminates the annoyance
of having to deal with a control electrode current (i.e., the base current in a
bipolar junction transistor), but this advantage comes at the expense of lower
transconductance; that is, the control electrode voltage in this approach has less
effect on the current than it does when the contact is direct (as it is in a bipolar
junction transistor).

Transistors that use a field plate to control current flow are called field ef-
fect transistors, or FETs. The control electrode is called the gate rather than the
base; the terminal corresponding to the emitter is called the source; and the third
terminal is called the drain. There are several types of field effect transistors
that are important in modern electronics. We will look at three: the metal-oxide-
semiconductor field effect transistor (MOSFET), the junction field effect transistor
(JFET), and the metal-semiconductor field effect transistor (MESFET).

265
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FIGURE 10.1 )
Potential energy of the majority carriers in the emitter of a bipolar
junction transistor plotted as a function of position through the
device: (a) no bias applied; (b) bias in forward active region,

In addition to the differences in how the barrier to current flow is controlled
in BJTs and FETS, there are other important differences that you should watch for
as we study FETs in this chapter. First, and by far most important, in an FET the
carriers flow between the source and drain by means of drift, whereas the carriers
in a BJT flow between the emitter and collector by diffusion. Second, the region
between the emitter and collector in a BJT (i.e., the base) is quasineutral. In an
FET, the region in which the current flows between the source and drain, which
is called the channel, may have a net charge. And finally, an FET will frequently
have four terminals, whereas a BJT always has only three.

10.1 METAL-OXIDE-SEMICONDUCTOR
FIELD EFFECT TRANSISTORS

A metal-oxide-semiconductor field effect transistor, or MOSFET, uses an MOS
capacitor structure as its control, or gate. A typical n-channel MOSFET structure
is illustrated in Fig. 10.2. There are four terminals in this structure; but one, the
back gate B, is biased so that negligible current flows through it. We can focus
initially on the gate G, source S, and drain D. The basic operating principle is that
a voltage is applied between the gate and the source so as to invert the region un-
der the gate electrode to create a conducting channel between the source and drain
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regions. Thus, when a voltage is applied between the drain and the source, there
will be a current from the drain to the source through this channel. The magnitude
of this drain current ip will depend on the drain-to-source voltage vpg and, most
importantly, on the gate-to-source voltage vgs (i.e., on the amount of inversion
charge in the channel). At low values of vpg, the drain current varies linearly
with vpg, so that the MOSFET looks like a resistor whose value is controlled
by vgs. As vps increases, however, the resistive voltage drop along the channel
causes the level of inversion to be less at the drain end of the channel than at the
source end. The resistance of the channel thus increases as vpg increases, and the
drain current increases less rapidly (i.e., sublinearly with vpg). At high enough
drain-to-source voltage the inversion layer disappears completely at the drain end.
This point is called pinchoff. Beyond this point, in what is called saturation, the
current no longer increases with vpg but stays constant at a level determined by
vags (and, of course, the details of the specific device structure in question). This
characteristic is illustrated in Fig. 10.3.

The MOSFET illustrated in Fig. 10.2 is called an n-channel MOSFET be-
cause the majority carriers in the channel inversion layer are electrons. It is also
possible to fabricate p-channel MOSFETs in which the inversion layer is com-
prised of holes. Such a device is made on an n-type substrate and has p-type
source and drain regions.

Our discussion thus far has implied that there is no channel in the absence
of a gate-to-source bias (i.e., when vgg = 0). This is indeed the most common
situation; we call a device in this situation a normally off, or enhancement mode,
MOSFET. In order to turn an enhancement mode MOSFET “on,” a channel must
be created by applying bias to the gate. It is also possible, however, to fabricate
devices in which a channel exists even in the absence of any bias on the gate
(i.e., with vgg = 0). This is typically done, for example, by putting a suitable
amount of interface charge Q] under the gate. Such a device is called a normally

Gate

0
N p-Si (substrate)
K
-Back gate
! | PEY)
Y

0 L

FIGURE 10.2

Typical n-channel MOSFET structure, which will be used in developing a
large-signal model for the terminal characteristic.
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FIGURE 10.3
Drain current through a MOSFET as a function of

vps when vgg and vgs are held fixed.

on, or depletion mode, MOSFET. To turn a depletion mode MOSFET “off,” a
bias must be applied that forces the surface out of inversion and into depletion.

We will now turn to developing a quantitative model describing the MOSFET
operation just outlined. We will then develop a small-signal linear model based
on our quasistatic large-signal model. Finally, we will extend this small-signal
model to high-frequency operation.

10.1.1 Large-Signal Model: The Gradual
Channel Approximation

To quantify the relationships between the gate, drain, and back contact currents
(ig, ip, and ip, respectively) and the gate-to-source, drain-to-source, and back-
to-source voltages (vgs, vps, and vgg, respectively), we will develop a model
called the gradual channel approximation. The MOSFET is intrinsically a two-
dimensional device with the gate field acting approximately vertically, in what
we will take to be the x-direction, to induce the channel; and with the drain-
to-source voltage acting approximately horizontally, in what we will take to be
the y-direction, to cause a drift current ip in the channel. In the gradual channel
approximation we assume that these two aspects of the problem can be treated as
strictly one-dimensional problems. We will first solve the field problem in the x-
direction to model the inversion layer charge, ignoring the fact that the “vertical”
field must have a slight y-component. We will then solve the drift problem in
the y-direction, ignoring the fact that there must be a slight x-component to the
“horizontal” field in the channel. In most devices these are excellent assumptions
and the gradual channel approximation is a very powerful model. The assumptions
are so good, in fact, that if we didn’t point them out beforehand, you may not even
have noticed them, at least on the first time through the model. We will return to
further discussion of these assumptions later, after we complete our discussion of
large-signal FET models.

a) Basic parabolic model. We will treat an n-channel device like that pictured
in Fig. 10.2; we begin by restricting our model to certain useful bias ranges.
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Specifically we want the drain and source n*-regions to always be reverse-biased
with respect to the p-type silicon region, which we call the substrate, so that the
substrate current /5 will be negligible. Thus for the device of Fig. 10.2 we insist
that vgs < 0 and vps = 0. With this restriction we can immediately conclude
that ig = 0. We can also conclude that another of our currents, the gate current
ig, is approximately zero as well because the gate is insulated from the substrate
by the gate oxide.

To proceed with ip we note that unless the gate-to-source voltage vgg is
above threshold there will be no path for conduction between the drain and the
source; the drain current will be essentially zero (i.e., ip = 0if vgs = V7). Thus
we conclude that we need only be concerned with modeling ip when vgg is above
threshold and there is an inversion layer to form the channel.

Assume now that the gate-to-source voltage is sufficient to create a channel,
Based on our introductory discussions we must anticipate that the channel sheet
charge density is a function of position, gy (y). (Notice that we have taken the
y-direction as being parallel to the semiconductor-oxide interface and normal to
the drain and source, with y = 0 at the source and y = L at the drain.) Because
the source and drain will in general be biased with respect to the p-type silicon
substrate, the channel is also at some potential vp(y) relative to the substrate.
Clearly this voltage is a function of position y along the channel if vpg # O,
because at the source end we have vop(0) = vgp and at the drain end we have
vep(L) = vpp. If we reference the voltage in the channel to the source, which is
the usual convention in modeling FETS, we can write

ves(0) = 0 (10.1)
ves(L) = vps (10.2)

Since the voltage in the channel varies with position, it must have a nonzero
gradient, which in turn means that there is an electric field in the channel in the
y-direction. This field is given by ‘

deS

8 = -

(10.3)

If there is an electric field, there must be drift of the inversion layer carriers
(electrons in this case), so there must be an electric current in the channel. This
channel charge is the negative of the drain currént. This current must be given by
the sheet charge density at any point y, gx(y), times the drift velocity of the
charge carriers, s, (which at low and moderate  values of electric field is their
mobility times the electric field at that point y), multiplied by the width of the
device. Defining W as the device width normal to the xy-plane, we thus have

—ip = +Way»)sy(y) = ~Way®)ué, (10.4a)

which, using Eq. (10.3), is
d

ves
10.4b
& ( )

ip = ~Wheqn®)
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where . is the drift mobility of the electrons in the channel. Notice that i itself
is not a function of y; that is, the current in the channel does not change in going
from the drain to the source.
We derived an expression for g} in terms of vgp and vep in Chap 9, Ed.
(9.19). Rewriting that expression here, but with the voltages referred to the source
rather than to the back, we have

gnlves)] = - j—o [vas — ves() — [2¢p| — Ves]

+ J285iaNall29 5| + vesO) - vas] (10.5)

Combining Eqgs. (10.4) and (10 5) gives us a single differential equation for
ves(y):
. v
ip = WueqN[vcs@)J——fi‘;—(y—) (10.6)

We don’t care specifically about vcg(y), however; we are only trying to relate ip
to vps, which makes our task easier. If we multiply both sides of Eq. (10.6) by
dy and integrate from O to L we can get our desired result:

L L .
fo ipdy = —WMJ‘ ves)] Ci(” y (10.7)

The left-hand integral is simply
L .
f- ipdy = ipL (10.8a)
0

The right-hand integral looks complex, but it can easily be changed from
an integral performed with respect to position to one done with respect to voltage
as follows:

CS()’) dy = JVDS
0

L
fo O lves ()1 8resy) a(ves)dves (10.8b)

where we have made use of Egs. (10.1) and (10.2) to get the proper limits on the
integral. This integral is now easily performed after substituting Eq. (10.5) for
-~ gnlves()]. The final result is

W .

+ 5 go— V2es1gNal(12¢ | + vps = vps)>/?
g
~Q¢, - v35>3/21} (10.9)
This result is an expression for the drain current ip in terms of vpg, vgs,

and vgs, to be sure, but it is far too complex to be easily used. To get a more use-
ful expression, we should pause and consider the physics of the situation and the
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relative sizes of the terms before doing the integration in Eq. 10.8. Specifically we
notice that the last term in Eq. (10.5) for gy, which corresponds to the depletion
region charge g7, [vcs(y), vas], is small and varies slowly with ves. If we assume
that it can be approximated by a constant value, usually taken to be Q7,(0, vgs),
the channel charge can then be written as

ailvesO)] ~= Z2[ves = vesO) + 2ol = Veml + @50, ves)  (10.5)

Using this in Eq. (10.8b) we find that our expression for i p is markedly simplified.
Instead of Eq. (10.9), we obtain

to

1%
€o

4 ‘ | |
ip = -L_Me?[vas+|z¢,,|—vm + =050, vas) ~ gs}vus  (10.102)
o

This expression is much easier to work with than Eq. (10.9), and yet it has a
remarkably similar shape because the assumption we made concerning Q7, is a
very good one. In the field, making this assumption is known as “ignoring the
body effect.” :

We will usually write Eq. (10.10a) as

. % ' |
ip(vps, vgs, vs) = K [vcs - Vrs — —gi] VDS (10.10b)

where K is defined as

W g
K=Z-}Lez i (1011)

and Vrg is the threshold voltage relative to the source, defined as
. -
Vs (vps) = Ve — [2¢,| — G—UQD(O, VBs) (10.12a)
o

We write the dependence on vgg explicitly to remind ourselves that Vr is a function
of vps through Q7:

050, v5s) = /26519 Na(26,| = 5s) (10.13)

Combining Eq. (10.13) with (10.12a) yields

t
Ves(vas) = Vin = 2l + =% \[2e5iaNa(25 = vas) (10.12b)
o

which is a common way of writing Vrg(vps). Another common way of writing
the threshold voltage is in terms of its value for vps = 0. A little algebra will
show you that we can write

Vrs(vps) = Vrs(0) +y [1/(12¢pl = Vps) — \/IZde‘q (10.12¢)
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» Vp§

FIGURE 10.4

Equation (10.10b) plotted (solid lines) for four values
of gate-to-source voltage vggs greater than the
threshold voltage Vi for a fixed value of
back-to-source voltage vgg.

where vy, which is called the body effect coefficient, is defined as

{
y = - /2851 N4 (10.14)

o

If we plot Eq. (10.10b) for ip as a function of vpg for fixed values of vgy
and vgg, we find that we get inverted parabolas, as illustrated for four values of
vgs in Fig. 10.4. In & real device, however, we find that the current does not
decrease after reaching its peak; instead, it stays constant at its peak value, as
indicated by the horizontal lines in Fig. 10.5. What is going on? The answer is
that as vpg increases, the inversion layer charge decreases at the drain end of
the channel. It drops all the way to zero when the voltage from the gate to the

. // Saturation
Linear Vasa

VGs3

YGs2

YGs1

» Vpg

_ \,\ Cutoff
FIGURE 10.5

Characteristics for an n-channel MOSFET as described
by Eq. (10.15) drawn for four values of gate-to-source
voltage vgs above threshold and for vgg < 0.



FIELD EFFECT TRANSISTORS 273

drain, vgp, decreases to the threshold voltage V7. This occurs at a drain-to-source
voltage of vgs — Vrr, which is precisely the value of vpg at which ip reaches its
peak value, K (vgs — Vr)?/2. For larger vpg the current does not decrease, because
that would imply less voltage drop in the channel from source to drain. Instead
the current stays constant at its peak value; that is,

. K
ip = ‘Z_(VGS — Vr)? when vps = Vgs — Wt

The excess of vps over vgs — Vr appears as an ohmic voltage drop across the
now very high-resistance short section of channel near the drain.

This completes our large-signal gradual channel approximation model for
the MOSFET. In summary, when vgs = 0 and vpg = 0 the gate and substrate
currents, i and ip, respectively, are zero and the drain current is described by
one of three expressions: '

0 for (vgs — Vr) = 0= vps (10.15a)
K
ip = _2-.(sz - V5)? for 0 = (vgs — W) = vps (10.15b)

K(vos = Vr = Lups for 0= vps = (vgs = V) (10.150)

The output characteristic (i.e., ip versus vpg for various values of vgg)
is presented in Fig. 10.5. The three regions in this characteristic corresponding
~ to the three expressions for ip in Eqs. (10.15) are called the cutoff, saturation,
and linear (or triode) regions, respectively. Notice that the saturation region in
a MOSFET is much different than saturation in a bipolar transistor. Also, the
parameter defining the family of curves is a voltage, vgg, rather than a cur-
rent (as in a BJT), and the curves are not evenly spaced for equal increments
of vgs (as they were for equal increments of iz in a BIT).

Example

Question. Consider an n-channel MOSFET that incorporates in the gate the MOS
capacitor structure in the examples in Chap. 9. The channel length L is 1 pm, and the
channel width W is 20 uwm. The electron mobility in the channel is 750 cm?/V - s,
What is the value of K for this device, and what will the drain current ip be
in saturation when the gate-to-source voltage vgg is 2 V? Recall that V¢ for this
structure is 0.65 V,

Discussion. Using the expression for K, that is, (W/L)u.(e,/t,), we calculate that
K is approximately 1.0 mA/ V2, Thus we find that when vgg is 2 V, (vgs — Vo)
is 1.35 V. From Eq. (10.15b), the drain current in saturation is approximately
0.9 mA. :

The magnitude of the drain current, about 1 mA, is a typical bias level that
we often encounter in bipolar transistors. You will notice, however, that to achieve
this current level with our MOSFET we had to apply substantially more input bias
voltage than is needed with a BIT (i.e., 2 V versus roughly 0.6 V). This is in
spite of the fact that this MOSFET is actually somewhat larger than a typical bipolar
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transistor. This is a common result, and in general FETs tend to be lower-cuirent
devices than BJTs,

You may have noticed that the mobility specified in this question is about half
the value that we have been assuming for electrons in our previous discussions. The
reason is that the electrons in the channel undergo more scattering than those in the
“bulk” because of the strong normal electric field from the gate and because they
are confined so closely to the semiconductor-oxide interface.

The characteristics described by Eqgs. (10.15) and illustrated in Fig. 10.5
correspond to an #-channel MOSFET and hold for both enhancement and depletion
mode devices. The only difference is that the threshold voltage is greater than zero
for an enhancement mode n-channel MOSFET, whereas it is less than zero for
a depletion mode n-channel MOSFET. This is illustrated in Figs. 10.6a and b,
which show the output characteristics of an enhancement and a depletion mode
n-channel MOSFET, respectively.

For p-channel MOSFET:, all of the voltages and currents change sign, but
otherwise the characteristics are identical. The gate current ig is, of course,
zero, and we must now have vgg = 0 and vpg = 0 to ensure that ig = 0, The
expressions for the drain current ip are

0 for vps = 0 = (vgs — V1) (10.162)

K
—‘Z—(VGS - Vr)? for vps = (vgs — Vp) =0 (10.16b)

S
]

~K (vos = Vr = “2%)vps for (vas— V) = vps S 0 (10.16¢)
where K is (W/L)ur(e0/t,). Vr is negative for an enhancement mode p-channel
device and positive for a depletion mode p-channel device. The characteristics
of enhancement mode and depletion mode p-channel MOSFETs are illustrated in
Figs. 10.6¢ and d. For the sake of illustration, the threshold voltage in this figure
has been taken to be either plus or minus two volts. The threshold voltage can,
of course, have any magnitude.

The circuit symbols used for the various types of MOSFETS are also illus-
trated in Fig. 10.6. Notice that the arrow indicates the direction of forward current
flow through the substrate-to-channel diodes and that the heavy solid line symbol-
izes the existence of a channel with zero gate bias in the depletion mode devices.
Alternatively, some people draw the arrow on the source terminal in such a way as
to indicate the normal direction of current flow; others indicate enhancement mode
devices with a broken line between drain and source (solid for depletion mode).

With the bipolar junction transistor and the Ebers-Moll model it was possi-
ble to find a very convenient circuit representation for the terminal characteristics
using ideal exponential diodes and dependent current sources. To do something
similar for the MOSFET, we would have to use a single dependent current source
whose value depends on the voltages on the various terminals according to Egs.
(10.15) or Egs. (10.16), as illustrated for an n-channel device in Fig. 10.7. Such
a model is much less satisfying than the Ebers—Moll circuit, however, because
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Output characteristics for the four types of MOSFETS: (a) n-channel enhancement
mode, Vp = 2 V; (b) n-channel depletion mode, Vr = —2 V; (c) p-channel
enhancement mode, Vp = —~2 V, (d) p-channel depletion mode, Vr = 2 V. The
corresponding circuit symbols are also shown,
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little additional insight is gained by using it and it does not appreciably simplify the
calculation of large-signal voltages and currents. In most solutions, Egs. (10.15)

or Egs. (10.16) are used directly.

b) More advanced modeling. The basic parabolic MOSFET model is extremely
useful and easy to use for hand calculations. However, when it is necessary or
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Circuit representation of the large-signal model for a
MOSFET as described by the gradual channel
approximation, Eq. (10.15). Use of this model is
restricted to vgg = 0 and vpg = 0.

desirable to include effects not treated in the basic model, certain additions are

commonly made to the basic model. We want to look at several common “fixes”

now. The models we will develop should be viewed as more advanced in much
the same way as the Gummel~Poon BJT model is more advanced than the Ebers—

Moll model. We will not use these models in most of what we do, but it is worth .
your while to be aware of their existence and origin.

The first effect we will add to our basic model is channel length mod-
ulation, or the MOSFET equivalent of the Early effect in BJTs. In satura-
tion, the effective length of the channel decreases with increasing vps because
the width of the region near the drain where the channel has disappeared in-
creases slightly as vpg increases above its value at saturation, vgs — Vr. This
means that the K-factor, (w/L)u.(e,/t,), increases with increasing vps and
thus that the drain current does not truly saturate at a fixed value; instead,
it increases slightly with increasing vps. A common way to model this ef-
fect is to assume that in saturation the effective channel length Leg is given by

L
1+ [(VDS - VDSsat)/'V:AI]

where Vj is called the Early voltage, and Vp,,, is the voltage at which the device
goes into saturation. (We will discuss Vps,, at more length below.)* Our earlier
expression for ip is unchanged in the linear region of operation, but in saturation

Less = (10.17)

*1t is very common when modeling channel length modulation is MOSFETS to define a parameter
A as 1/|V4], and to then write the equations in terms of A, rather than |V4]. We choose to use |V4| in
this text because it is already familiar to us from our bipolar transistor models.
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we replace L with L. For example, our model for an n-channel MOSFET would
become

(0 for (vgs — Vr) = 0 < vpg  (10.18a)

Vos = Vs, _ (vas = VT)Z
|VAI 4IVA’2‘
for 0 = (ves — V1), VDS = VDS (10.18b)

K(W;s -Vr - %’i)vns for 0 < (vgs — Vr), vps < vps,, (10.18¢)

K
ip = { E(VGS—VT)Z 1+

with vps,, defined as (vgs — Vr) — (vgs — Vr)?/2|V4|. Only the expression for
the drain current in saturation, Eq. 10.18b, has changed. Looking at it, you will
recognize that it is our earlier expression multiplied by a factor (the term in square
brackets). The bulk of this factor comes directly from substituting Eq. (10.17) in
for L, but a small correction term is needed to make the curves continuous in
going from the linear region into saturation. Egs. (10.18) are plotted as solid
curves in Fig. 10.8a for several values of vgs — Vr, for a device in which K is
1.0 mA/V?, V1 is 0.6 V, and Vj is —20 V. For comparison, the dashed curves show
the characteristics for the same device assuming no channel length modulation,
Le., [Vy| = e.

- At this point it is useful to spend a few lines discussing how vpg,, is de-
termined. When there is no channel length modulation, vps,, is vgs — Vr, which
is the value of vpg that corresponds to the peak of the parabolic expression for
ip in the linear region (see Fig. 10.4). Notice that this is also the value of vpg
at which dip/dvps is zero. Thus it is the value of vpg where the incremental
channel conductance becomes zero, which is its value in saturation when there is
no channel length modulation. We use this observation to extend the concept of
saturation to the case where channel length modulation is an issue. In particular,
we say that saturation occurs when dip/dvps, calculated using the expression for
ip in the linear region, equals the output condunctance in the saturation region.
A bit of algebra shows that this occurs when V,, equals vy, as defined above
following Eq. 10.18.

There are a number of variants of Eqs. (10.18a) through (10.18c¢) that you
may see used to treat channel length modulation in MOSFETs, and it is perhaps
useful to say a few words about some of them now, A common approach is to
approximate L.g as

L

VDS
e [Val
That is, vpg,, is left out of the expression. Then this value is substituted for L in
the expression for the drain current in the saturation region (just as we did before)
and in the expression for the current in the linear region (this must be done so
that ip will be continuous when going from one region to the other). Our origi-
nal definition of the boundary between the linear and saturation regions is retained

Legs =~ (10.17")
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FIGURE 10.8

The output characteristics for an n-channel MOSFET showing the
effect of channel length modulation. The solid curves are calculated
using Bgs. (10.18) assuming a K -factor of 1.0 mA/V?, a threshold °
voltage of 0.6 V, and an Early voltage of ~20 V; the dashed curves
were calculated assuming no channel length modulation, i.e., using
Egs. (10.15) or, equivalently, assuming |V4| = e in Eqgs. (10.18).

{b) The output characteristics for an n-channel MOSFET showing the
impact of a body effect, The solid curves are calculated using Eqgs.
(10.18) assuming a K -factor of 0.7 mA/V2, a threshold voltage of
0.6V, an  of 0.3, and no channel length modulation, The dashed
curves were calculated assuming a K -factor of 1.0 mA/V? and no
body effect, i.e., using Egs. (10.15) or, equivalently, assuming o = 0
in Egs (10.25).
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(i.e., itis defined as when vps = vgs — Vr), and the device characteristics become

[0 (vgs — V)= 0 (10.18d)

. E(VGS VT)2 [1 + VDS} 0= (vgs — Vr) = vpg (10.18e)
Ip = j 2 ,Vl

K(vgs — Vr - )VDS [1 + IV]J 0=vps = (vgs — V1) (10.181)

Looking at these expressions and comparing them to our earlier equations, we
see that we are simply ignoring higher order terms, and that by doing so we end
up with expressions that are much more familiar to us, that look less formidable,
and that are in general easier to work with, It is common to see that these expres-
sions have been further simplified by leaving the term involving V4| out of the
expression for the linear region. (In effect, L.y is substituted for L only in the
expression for the saturation region, just as we did originally.) When this is done,
both the characteristic and its slope are discontinuous in going from the linear
region to the saturation region (as opposed to just the slope being discontinuous,
as is the case when the expression for L. given by Eq. 10.17' is substituted
for L in the expressions for both regions). Nonetheless, the channel length mod-
ulation effect is really important only in saturation, so this makes some sense.
Furthermore, such modest discontinuities are not troublesome when doing hand
calculations; they are much more troublesome to computers, but computers can
handle the more complex expressions, and there is no need to simplify things for
them.

Another effect often dealt with differently when extending the basic model
is the body effect. In deriving the basic parabolic model we said that the depletion
region charge under the gate was approximately constant from one end of the
channel to the other and that the channel charge g, could be approximated using
Eq. (10.5%). The body effect is then felt only in its effect on the threshold voltage,
Vr. Another common approximation is to model gj, differently. Returning to Eq.
(10.5), we do not neglect veg(y) under the square root in the last term; instead,
we expand the square root dependence. First, we write the last term as follows:

\/ZSSinA[‘%)pl +ves(y) — vasl = \/285inA[‘2¢pl - VBS]\/l + EEV;CIE—(?}%ES_

(10.19)

Focusing on the last term on the right-hand side of this equation we make the
following approximation:

ves(y) ves() ‘
v vt (7 vy 20
\/ T R¢pl —ves - 2(2¢,] — vas) (10.20)

This approximation is, strictly speaking, valid only if vcg is much less than
2(12¢,| = vps); this will not always be true, but we make the approximation
anyway.
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With this approximation, we can write g as

gnlves)] = - % {ves = ves) = 2¢,| - Vs
o fous ~ _ves)
5 \/2351‘]NA(|2¢17[ VBs) {1 + TR VBS)H (10.21a)

which becomes, after a bit of algebra,

* 0 to - ,
gnlves()l= - ?—[ ves — 2¢,| — Ves - 6—0\/(28SinA(|2¢p| — Vps)
4] ] .

to |- esigNa ' '
—v [1 IR R LAY: S 10.21b
cs©) | & \/2(|2¢p| - VBS)” ( )
We now define the threshold voltage just as we did earlier:
.
Vas(vas) = Vi + [205] + =2 [ 2e5iqNa(2 5| = vas) (10.22)
o
which is identical to Eq. (10.12b). We also define a factor « as
o= 1ele |G (10.23)
& 2[l2¢p—5il—v85‘]
Using these definitions, we can write
R g,
qN[vCS(y)] ""'t—[vcs -Vr ‘O‘Vcs(y)] (10.24)

4]

Putting this into Eq. (10.7) and doing the integration yields thé following
model:

0 for  (vgs-Vy)/a = 0 s v, (10.258)
K 2 Vps = Vps (VGS ‘VT)2
— (Vg = V) 1+ o
ip = 2a( GS T) ’VA‘ 40‘2WA12

for 0 < (vgs - V), VDS.ml S Vpg (10.25b)

for 0 < (vgs = V¢), vps = Vps,  (10.25¢c)

av
DS
I((vcs -Vr- T)VDS

with Vg, now defined as (vgs — Vil — (vgs — V) ? /(2a*IV,1). These current
expressions are very similar to our earlier results, Eqs. (10.15) and (10.18), but in
this model saturation occurs at a somewhat higher voltage and somewhat higher
current level than in our basic parabolic model. Figure 10.8b compares the predic-
tions of this model with the basic parabolic model, without the Early effect (i.e.,
[V4] = ), assuming a threshold voltage of 0.6 V, an a of 1.3, and. a K-factor of
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0.7 mA/V?2. This & corresponds to a structure similar to the one that we analyzed
earlier (see page 273). For comparison, the dashed curves show the characteristics .
when the body effect is negligible, i.e., when o = 1. In calculating the dashed
curves we take K to be 1.0 mA/V? so that both sets of characteristics saturate at
the same current level. This makes the increase in saturation voltage due to the
body effect more evident. It also corresponds to the situation we typically find in
practice. That is to say, we are often comparing how well several different models
fit measured data on a given device, and in such a case the meaningful thing to
do is to adjust the K-factor in the models we are comparing to give the same
saturation currents, as was done in Fig. 10.8b.

A common situation is one in which we are trying to fit data measured on
a particular device. In such a case the meaningful thing to do is adjust the K-
factor in our models to predict the same saturation currents. This is done in Fig.
10.85. The curves calculated using the basic model, Egs. (10.18), are calculated
assuming that K is 1.0 mA/V? (as before), and the curves calculated using Egs.
(10.25) assume a K-factor of 1.4 mA/V?,

c.approaches one with increasing substrate reverse bias. This is true
because physically o is the ratio of the depletion region capacitance (with vp; = 0)
to the total gate capacitance (oxide and depletion region capacitances in series).

We often approximate o as one for simplicity in hand calculations.

The final additions that we can make to our basic model, which are also
included in SPICE, are to add resistors in series with the gate, source, and drain
(these are typically very small-value resistors); to add exponential diodes between
the source and the substrate and between the drain and the substrate to represent
the source-to-substrate and drain-to-substrate diode junctions, respec-tively; and
to add a high-value resistor in parallel with the channel between the source and
drain to represent any possible source-to-drain leakage path in parallel with the
channel. A circuit schematic including all of these elements is presented in Fig.
10.9.

¢) Velocity Saturation in Silicon MOSFETs. We mentioned in Sec. 3.1.1, and
saw in Fig. 3.2, that the velocity/electric-field relationship for holes and electrons
in silicon is linear at low fields (from which we define the mobility W oas s/%),
but at high fields the velocity no longer increases with increasing electric field.
Thus we say that the velocity saturates.

In modern, short-channel MOSFETS it is possible that the channel electric
field €, can be high enough to result in velocity saturation. In such a case our
replacement of s, with @.%, in Eq. (10.4) is wrong and the current-voltage
expressions we developed are similarly incorrect. Although this is not the case
for most silicon MOSFETS, it may be true for so-called submicron MOSFETs
(i.e., devices with gate lengths less than 1 wum). To model these devices we
should use a different expression to relate s, to €,. A commonly used model,
especially in materials like silicon in which the saturation of sy, is rather gradual, is

= ——-———-———-——Mé%y
R T (10.26)
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FIGURE 10.9

Circuit schematic representation of a model for an n-channel MOSFET
including lead series resistances, the source-to-substrate and
drain-to-substrate diodes, and a resistor representing source-to-drain
leakage. The user must decide whether to represent the dependent
current generator using Eqgs. (10.15), (10.18), or (10.25).

where w. is the traditional low field mobility and € is the field at which s,
is half its saturation value.* For the data in Fig. 3.2, €y is 5 X 103 V/em and
fe is 1300 cm?/V's. In a Si MOSFET channel the mobility is lower because the
carriers are moving near the oxide-silicon interface; typical values are 200 to 300
cm?/V-s for u., and 5 X 10* V/em for Bt

If we use Eq. (10.26) in Eq. (10.4) we find

. X ey
ip = Wgn——7— 10.27

2= WO T Y @, ) (10:27
Since we know that we are going to want to substitute —dv.;/dy for €, and
integrate, it is best to rearrange this equation a bit. Multiplying both sides by
(1 + %, /%) and collecting terms involving €, on the left, we have

ip
rit

ip = (Wq;ue - )%y (10.28)

*You will find this expression plotted in Fig. 10.27.
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If we now make our substitution for %, and use Eq. (10.5") for g5 and Eq.
(10.12a) for Vr, we have

. € 4
ipdy = {W/.Let_o(VGs - ves — V) — %D' }a’vcs (10.29)
[ crit
Integrating from one end of the channel to the other we have
V2 ipv ‘
ipL = Wp.C {(VGS ~ Vr)vps - gs}— T (10.30)
crit
where we have also written g,/1, as C;,. Solving for ip yields
‘ w VDs
Vp — — 10.31
o= L+ (VDS/%crlt) ox <VGS d 2 )VDS ( a)
which can also be written as
/ . 1 VDs
ip = Klvgs —Vr — —==v 10.31b
? T+ Ops/LEa) (vos = Vi = 3% )ems (19-310)

where K is u.Cy W/ L as before [see Eq. (10.11)]. This is the same as our earlier
result except for the leading term. Again it is valid until ip reaches its peak at
some value of vpg that we call vpg s, at which point ip saturates (i.e., stays
constant as vpg is increased further). We find this value of vpg by determining
when dip/Jdvps is zero. Doing this yields

VDS sat = LBcrit l\/l + M - 1} (10.32)

LéE crit

The behavior predicted by this model is illustrated in Fig. 10.10, where we
plot Eq. (10.31b) for a device for which K is 0.1 mA/V?, L8 is 2 V, and Vg
is 0.5 V. A family of curves is plotted for vgs equal to 1, 2, 3, 4, and 5 V.

At first glance the characteristics in Fig. 10.10 look very similar to other
MOSFET characteristics we have seen, but closer examination shows that there
are important differences. First, the saturation voltage is less than (vgg — Vr),
especially when (vgs — Vr) is large, as in the curves for vgg = 3, 4, and 5 V.
For example, when (vgs — V7) is 0.5V, vpg 54 18 0.45 V (i.e., they are similar).
However when (vgs — V) is 1.5V, vpg s 1s only 1.16 V, and the difference
increases as (vgs — Vr) increases. We find that vpg 5 1S approximately 1.75, 2.25,
and 2.7 V when (vgs — V) is 2.5, 3.5, and 4.5 V, respectively.

Second, the saturation current is lower. In our model without velocity satu-
ration, ip s 18 K(vgs — V7)?/2. Thus when (vgs — V¢) is 4.5 V we would expect
the saturation current to be 2 mA. In Fig. 10.10 it is less than 0.4 mA!

To explore these characteristics more, it is most instructive to consider two
situations. The first is when L and/or €y is relatively large and the product L& -
is appreciably larger (by a factor of 2 or more) than (vgs — V7). In this case we
have our earlier result; that is,

vps,sat = (Vgs — Vr) (10.33)
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FIGURE 10.10

Output characteristic family for a MOSFET in which
velocity saturation is a factor. Velocity saturation is not
important for the vgg = 1 V curve, it plays a modest role
in the vgg = 2 V curve, and it is a major factor in the
vgs = 3, 4, and 5V curves.

and ip saturates at

. 1 K 2
IDsat = T+ as — Vo) Leun 2 (ves = V1) (10.342)
From Eq. (10.34a), we see that the first impact of velocity saturation is to lower
the current of a MOSFET in saturation. How much it is lowered depends on how
large the factor (vgs — Vr)/L%cr: is.

Another way of looking at this ip g result is obtained by substituting our
expression for K into Eq. (10.34a). Doing this and writing m,@crie as sgat, the
velocity at which the electrons in the channel saturate when €, is much greater

than %, we obtain

i - W’Ssatch
Dt ™ Aves = Vr) + LEcri)

Written this way, the reduced sensitivity of ip gt to (vgs — Vr) is a bit clearer and
the virtue of a large sq,¢ i certainly apparent.

When the channel length L is very short, and/or 6 is small so that the
product LE is smaller than (vgs — V1), then Vpg q takes a much different value.
Returning to Eq. (10.32), we find now that

vps,sat = +2(vGs = Vr)LBerit — Lerit (10.35)

(vgs — Vr)? (10.34b)

and {p saturates at

: vas — V)L
ip sat = KL%t [VGS - Vr - \/( Gs ZT) cnt:’ (10.36)
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This characteristic is much different than one that we find in a device in which
velocity saturation is not significant. The family of curves of ip versus vpg
for different values of vgg saturate at a voltage that increases more nearly as
v (vgs — Vr), rather than linearly with (vgs — Vr). The saturation current ip gq
increases at best linearly with (vgg — V), rather than as (vgs — Vr)?. These features
are evident in Fig. 10.10, which corresponds to the present limit when vgg is 4
and 5 V.

In summary, we have shown that both the saturation voltage and saturation
current are lower than when velocity saturation is not considered. This is actually
a good result as far as the saturation voltage is concerned; a low saturation voltage
is desirable. The fact that the saturation current is lower is not so good, however,
because we like to get as much current as we can from a device at a given voltage.
Another important factor to note in Fig. 10.10 is that the weaker dependence of
ipsat On (vgs — Vr) means that the family of (ip g — vps) curves for equal
(vgs — Vr) increments are more closely and evenly spaced. This is equivalent to
saying that the small-signal transconductance g,, is reduced and is less sensitive
to bias points in the extreme of severe velocity saturation (i.e., when Eq. (10.36)
holds). .
Finally, before leaving this issue it makes sense to look at a few more num-
bers. For example, we said above that €. in the channel of a silicon MOSFET
is on the order of 5 X 104 V/cm. If the channel length L is 2 um, then the product
L& is 10 V and velocity saturation is not an issue, certainly not in most digital
circuits where supply voltages are between 3 and 5 V (5 V in older circuits with
longer gate lengths; down to 3 V or even 2 V in newer circuits with submicron
gate lengths). If, however, L is reduced to 0.5 um, the L8 product is 2.5 V
and velocity saturation begins to be a factor. As L gets even smaller, velocity
“saturation can be a dominant factor.

d) Dynamic models with charge stores. To make our MOSFET model suitable
for dynamic analyses we must examine the device structure and identify the energy
storage elements (primarily capacitances) that we must add to our model. Two
representative MOSFET device structures are shown in cross section in Fig. 10.11.
The first structure, Fig. 10.11a, is a device built using what is called a metal-gate
technology. This technology necessitates a considerable overlap of the gate metal
and the diffused source and drain n*-regions. The second structure, shown in
Fig. 10.11b, is a self-aligned, silicon-gate structure, which uses heavily doped,
polycrystalline silicon as the gate “metal” to eliminate this overlap. The use of
silicon for the gate permits the source and drain region edges to be aligned with
the edges of the gate during fabrication of the device.

Looking at the device structures of Fig. 10.11 to identify capacitances, we
see that there are several. Clearly the gate electrode is a large capacitor plate, so
there should be a capacitance between the gate and the channel and there should
be additional capacitance because of the overlap of the gate metal and the n*
source and drain diffusions. Finally, there must be capacitance associated with the
source and drain n*-regions.
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FIGURE 10.11
Cross-sectional drawings of two MOSFET structures: (a) metal-gate; and (b) self-aligned

silicon-gate.

The gate-to-channel capacitance actually deserves very careful attention.
Although it is clear that the charge on the gate enters through the gate electrode,
it is less clear whether the charge in the inversion layer enters through the source or
the drain electrode. In saturation the drain electrode is decoupled from the source
and gate as far as the intrinsic device operation is concerned, so any change in
the inversion layer charge can be supplied only by the source. Any gate-to-drain
capacitance in saturation must therefore be only that due to any physical overlap of
the gate metal and the drain n*-region. In the linear, or triode, region, however,
a significant fraction of the channel charge can come through the drain and a
correspondingly larger fraction of the gate capacitance must appear between the
gate and drain.

These arguments can be quantified by writing an expression for the total
gate charge and examining its dependence on the gate-to-source and gate-to-
drain voltages. Rather than take the time to do this now, however, we will defer
the calculation of gg(vgs, vop) to Sec. 14.3.2* and simply note here that these

*You will find that you can easily follow the discussion in Sec. 14.3.2, beginning with the paragraph
containing Eq. (14.31), and are encouraged to look ahead to that section if you are interested.
However, it makes the most sense to wait until after you finish reading Sec. 10.1.
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intrinsic contributions to the gate charge are, in general, nonlinear functions of
the voltages involved; in addition, they are, in general, proportional to the gate
area WL and the oxide capacitance per unit area, Cy,, (= &,/t,).

Returning now to our dynamic large-signal model, we can add nonlinear ca-
pacitors representing the four charge stores we have identified —one each between
the gate and source and between the gate and drain, and one each associated
with the source-to-substrate and the drain-to-substrate n*- p junctions. With these
additions our model becomes as illustrated in Fig. 10.12. For completeness, we
used our most complex MOSFET model for this figure; you should be able to add
these nonlinear capacitors to the simpler model of Fig. 10.7 yourself.

10.1.2 Static Small-Signal Linear Model

The development of a small-signal linear model for MOSFETs follows the same
reasoning that we used for diodes and bipolar junction transistors. The only change
is that now we have four terminals, so we must model three independent terminal
currents in terms of three independent terminal voltages. We will look at two
connections, common-source and common-gate.

a) Common-source. In the common-source connection, we want to find linear
relationships for the small-signal gate, back gate, and drain currents (i 4, iy,
and [ 4, respectively) in terms- of the small-signal gate-to-source, back-to-source,
and drain-to-source voltages (vgs, Vps, and vy, respectively). Since the gate and
back currents are zero in our large-signal model, they remain zero for small-signal
voltages:

ig =0 (10.37a)
i, =0 (10.37b)

assuming a bias point such that Vpg = 0 and Vps < 0. The drain current, on the
other hand, is in general not zero and may depend on all three terminal voltages.
We can write .

ig = 8mVgs + 8mbVhs + EoVds (10.37¢)

where we define the various conductances as follows:

i
Forward transconductance, g,, = ‘D (10.38)
i
Substrate transconductance, g,,p = ‘D (10.39)
9ves lp
Output conductance, g, = Jip (10.40)
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FIGURE 10.12

MOFSET circuit model from Fig, 10.9 with the addition of nonlinear
charge stores to account for the gate charge and for the junctions
between the source and drain n*-regions and the substrate.

The corresponding small-signal model is illustrated in Fig. 10.13. This model is
the same for both n- and p-channel MOSFETs.

We next use our large-signal model to evaluate the three parameters in
the small-signal model. We will assume an n-channel device for purposes of
discussion, but the results can be used for either type of device. The parameter
values will depend on the bias point, and the expressions for them will depend
upon the region in which the device is biased. In cutoff, Vg5 < Vr, we find that all
currents are zeto, 80 g, = &mp = &o = 0. In saturation, 0 = (Vgg — V) = Vpg,
we see from Eq. (10.15b) that

&0 =0 (10.41)
gm = K(Vos — Vr|)  (10.422)

or, equivalently,
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FIGURE 10,13
Small-signal equivalent circuit for the MOSFET, This model is restricted
to operation about a bias point for which Vzg = 0 and Vps = 0.

gm = 2K|Ip)HY? (10.42b)
and
Emb = NEm (10.43)
where we have defined 7 as
aVr
= - — 10.44
n aVBS 0 ( )

In practice we find that 7 is a positive number whose magnitude is typlcally on
the order of 0.03 to 0.1.

The conclusion that the output conductance g, is zero in saturation is a
consequence of our assumption that the current truly saturates above a drain-to-
source voltage of (vgs — V7). Often, however, the width of the region near the
drain over which the channel has disappeared increases slightly as vpy is increased
above (vggs — Vr). This reduces the effective length of the channel slightly, leading
to a small increase of drain current in saturation and thus to a very small, but finite,
output conductance for bias points in the saturation region. This is illustrated in
Fig. 10.14. The analogous effect with bipolar transistors was the Early effect, or
base width modulation. For MOSFETS, too, we define an Early voltage and use
it to calculate the output conductance at any bias point, as is also illustrated in
Fig. 10.14. We have, assuming that |V4| >> Vpg,

o (10.45)

An important observation is that in. MOSFETS, as a general rule, the Early
voltage scales with the gate length L. That is, the Early voltages V4, and Vj,
of two otherwise identical devices with different gate lengths L; and L, will be
related approximately as

Var _ Ly

al = 10.46
Vaz L2 ( )
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FIGURE 10.14
Output characteristics of a MOSFET in the forward active region
extrapolated back to intersect the horizontal axis at the Early voltage V.

The Early voltage of a device does not scale with the device width; that is, two
otherwise identical devices with different gate widths will have the same Early

voltage.

Finally, in the linear region, 0 = Vpg = (Vgs — Vr), we find
go = K(Vos — Vr — Vps (10.47)
gm = |KVps| (10.48)
Emb = MEm . (10.49)

We can notice immediately that in the linear region the output conductance g,
is nonzero, even in the ideal device. Notice also that the transconductance g,, is
lower than it was in the saturation region.

Example
Question. Find the small-signal equivalent circuit for the MOSFET in the preceding
example for operation about the gate-to-source bias voltage specified there (i.e.,
Vos = 2 V) and assuming (a) Vpg is 0.5V, and (b) Vpg is 4 V.

Discussion. We first note that since (Vgg — Vp) is 1.35 V, the transistor is biased
in the linear, or triode, region in (a) and is saturated in (b).

With the MOSFET biased in the linear region with Vpg = 0.5 V, we find by
using Eqgs. (10.48) and (10.47) that g, is 0.60 mS and that g, is 0.55 mS. This
latter value corresponds to an output resistance r,(= 1/g,) of 1.8 k{}.

With the MOSFET biased in saturation, g, is identically zero according to
our model and we find from either Eqs. (10.42a) or (10.42b) that g,, is 1.35 mS.

The transconductance gy, of the MOSFET is considerably smaller than that
of a bipolar junction transistor (BJT) biased at the same output current level; that
is, gm(BJT), which equals g /kT, is 36 mS if I~ is 0.9 mA. This is again a fairly
typical result, and a large transconductance is not the reason circuit designers are
attracted to MOSFETs. Often a far more significant feature is MOSFETS’ extremely
high input resistance. »

Thus far we have ignored g,,,, which is related to g,, through the factor
n. To calculate n we return to Eq. (10.12c¢) for Vr(vps) and calculate —dVr/dvpslp.
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_lo | __esiqNg
T o\ 2026,1 - vas) (10.50)

which, for the particular MOSFET we are considering, turns out to be a relatively
large 0.34. Notice that 7 is related to the body effect coefficient v as

Y
N = T
2 /Répl=vis

Notice also that 7 is equivalent to the parameter & we introduced in Eq. (10.23).

Doing this we find

(10.51)

Before leaving the quasistatic common-source small signal model, it is ap-
propriate to make a few comments about the impact on circuit analysis problems of
having to deal with the back-gate, or substrate, transconductance current source,
&mbVps. Having this additional dependent source at first appears to complicate our
model and analysis enormously compared to what we had with a bipolar junction
transistor. In practice, however, the situation is usually quite different. In many
circuits the substrate is either connected directly to the source or is at a fixed bias
relative to the source, so that vy, is zero and the g,,, vy, generator does not enter
the picture. The small-signal equivalent circuit is then as shown in Fig. 10.15a.

In many other circuits, the substrate is incrementally connected to the drain, so
Vpsisequaltovy,. Inthiscasethe g,,, v, generatorisequivalent toa transconductance
in parallel with g, and the equivalent circuit becomes that illustrated in Fig. 10.155.
Again the resulting circuit is no more complicated than that of a BJT.

b) Common-gate, Sometimes it is desirable to have a linear incremental circuit
model for the MOSFET that has a common-gate topology, rather than a common-
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FIGURE 10.15

*»

Small-signal linear equivalent circuit models for MOSFETs in
two special common-source situations: (a) when v,, = 0,

(&) when vy, = v,
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source topology like the model we just discussed (see Fig. 10.15). In this case
we want a model in which i, and i, are viewed as the input and output currents,
respectively, and are written as functions of vg, v4g, and vs,. One way to get
this model is to begin with our low-frequency common-source model, Fig. 10.13,
and write the current expressions

ig =0 (10.52)
ip =0 (10.53)
ld = EmVgs + &mbVbs (10.54)

Note that we have assumed a bias point in saturation and that g, = 0 (we will
consider later what happens when g, cannot be neglected). We then solve for
Is, using the fact that iz, i4, i}, and 7, must sum to zero. Since ig and i} are
themselves zero, the result is very simple and powerful. We have simply

is = —ig4 - (10.55a)
That is, what goes in the input comes out the output (while at the same time, as
we shall see, what happens at the output does not affect the input). In terms of

terminal voltages this is
is = —EmVgs ~ EmbVhs | (10.55b)

Our next step is to write this equation in terms of the terminal voltages refer-
enced to the gate (i.e., vsg, Vpg, and vg,). Recognizing that ves is —vg,, v, is
(Vog — vsg), and vy is (vgg — vsg), and substituting these in Eq. (10.55b) we find

is = (&m + gmb)vsg — 8mbVbs (10.55¢)
ig = —is = —(8&m *+ &mb)Vsg T &mbVog (10.56)

A circuit model representing these expressions is illustrated in Fig. 10.16. Note
that we have made use of the fact that (g,, +g5) can be written more conveniently
as gm(1+ m).

You will notice that in Fig. 10.16a we have chosen to write i; in terms of its
dependence on the terminal voltages rather than simply saying that it is —i. This
deserves a bit of discussion. First, it is very powerful to observe that i, is —i,
and thus that the common-gate topology operates with a unity current gain and
as what could be termed a current-follower (analogous to the voltage-follower
operation of the source-follower circuit discussed in Sec. 11.4.4). This is how
you should view the common-gate circuit when you consider applications of this
topology.

On the other hand, when we start adding parasitics to our model to extend
the model to high frequencies, or g, to account for a finite output conductance,
the identity of i; tends to get lost, just as the identity of i, got lost in the high
frequency hybrid-7 model (see Sec. 8.2.3). In this case it becomes desirable to
have a model dependent on quantities—the terminal voltages, in this case—whose
identities remain unambiguous.
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FIGURE 10.16

Linear incremental equivalent circuit models for the MOSFET in a
common-gate configuration: (a) the full mode! with an arbitrary voltage
signal on the substrate lead b; (b) the model relevant when, as is often the
case, v, is zero. The latter model is much simpler than the first and is the
one most commonly used in initial designs with the common-gate stage.

Having said all this, let us now return to the model of Fig. 10.16a and
discuss it a bit more. First we note that in many common-gate applications both
the gate and substrate are incrementally grounded so that v,, is zero. In such
cases the model of Fig. 10.16J results. For many applications, and certainly for
a “first cut,” this model is ideal for visualizing what the common-gate topology
will do, which may be described as follows: First, as we said earlier, it has unity
current gain. Second, it has very low input impedance. Conceptually, then, it can
be used to sense a current in a lead without disturbing the circuit (i.e., it adds
very little resistance), and it can transmit an identical current to an “arbitrary”
load.* We will discuss the common-gate amplifier circuit at some length in Sec.
11.4.3.

Looking next at the issue of output conductance, we find that g, appears
between the drain and source, as shown in Fig. 10.17a. In this position, if we

*We put arbitrary in quotation marks because the load is not entirely arbitrary, of course. In particular,
its conductance must at least be large relative to the output conductance g, of the MOSFET.
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look into the input terminals (the source and gate), the output conductance looks
like an effective conductance of value g,[1 ~ gn(1 + m)/GL], where Gy is the
conductance of the load, in parallel with the physical conductance g,,(1 + 7).
The effective conductance depends on the load on the transistors; thus, unlike the
other equivalent circuits we have developed so far, this model depends very much
on the circuit in which it is being used. You can see this by calculating the input
resistance at the input terminals. At the output it looks like a conductance of value
g, in parallel with the load.* These equivalences are illustrated in Fig. 10.175.
An important feature of this model, and the main reason for deriving it, is that
there are now no elements coupling the output back to the input. This makes our
analysis easier and lets us see what the effective coupling really is.

The factor go[1 — gm(1 + 1)/ G.] in the input conductance term is worth a
few words. We shall see in Chap. 11 that g, (1 + 1)/ G, is the mid-band voltage
gain of this common-gate stage and that this factor is thus undoubtedly much
greater than 1. If this is the case, the entire term, g,[1 — g (1 + 1)/ G.], will
be negative. This means that the total input conductance is now smaller, and the
input resistance larger, than if g, were zero. Usually, making the input resistance
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FIGURE 10.17

Effects of accounting for a nonzero output conductance on the common-gate
linear incremental equivalent circuit: (@) a model for which the output
conductance g, is simply added between the drain and source, which is where it
appears physically; (b) the equivalent conductances that bridge the input and
output terminals incorporated in a model in which there is no longer an element
that couples the output back to the input.

*The exact value is go(gm — Gr)/(8m + &o), Which is essentially go.
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larger is a very desirable result, but in this case it is not because a major reason for
using the common-gate topology is to get a low input resistance. It is somehow
reassuring to find that a parasitic element (i.e., g,) can do no good; if it had
turned out differently we would have had to be very suspicious that we had made
a mistake.

The observation that the effective input conductance is related to the voltage
gain of the stage is a general consequence of the fact that the element g, is
coupling, or feeding back, output signal to the input. This is termed the Miller
effect. We will study this effect at length in Chap. 14 when we discuss the high-
frequency performance of our circuits.

¢) High-Frequency Small-Signal Model. To extend our small-signal MOSFET
model to high frequencies we must examine the device structure shown in Fig:
10.11 and identify the energy storage elements (primarily capacitances) that we
must add to our model, just as we did in Sec. 10.1.1d when we developed our
dynamic large-signal model. Equivalently, we can look directly at the dynamic
model in Fig. 10.12 and replace the nonlinear charge stores with their linear
equivalent capacitors valid for the particular bias point in question. For either
approach, we see immediately that there is significant capacitance between the
gate and the source due primarily to the MOS gate electrode structure; we call
this capacitor Cgz. There is also capacitance between the gate and the drain; that
is, the gate charge depends on vgp as well as on vgg, at least when the device
is not saturated. In saturation the channel is ideally decoupled from the drain,
and the gate-to-drain capacitance, which we call C,4, is ideally zero. In a real
transistor, however, C,4 is not zero (although it can be very small) because of the
inevitable physical coupling between the gate electrode and the drain n*-region
and contact,

This discussion can be quantified and C,,; and Cz; can be modeled by
writing an expression for the gate charge g¢ as a function of the terminal voltages
and taking the appropriate derivatives. That is,

Cge = ;‘i’i (10.57a)
YGs g
and
- 94¢
Ca = 512 . (10.57b)

We will not do this here; rather, we defer the calculation of C,s and Cpq
until we need expressions for them in Chap. 14.*

There must also be capacitances between the source and substrate, between
the gate and substrate, and between the drain and substrate, due in part to the

*See footnote in Sec. 10.1.1d.
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FIGURE 10.18

(a) Small-signal common-source equivalent circuit MOSFET model of Fig.
10.8 modified for high-frequency applications by the addition of small-signal
parasitic capacitances; (b) the common-gate incremental circuit (vpg = 0) with
the parasitic gate-to-drain, gate-to-source, substrate-to-drain, and
substrate-to-source capacitances added.

respective n*-p junctions and in part to the depletion region charge under the
channel. We denote these capacitors as Cyp, Cgp, and Cgp, respectively. All of
these capacitances are shown added to our small-signal common-source model
in Fig. 10.18a. Similarly, the common-gate incremental circuit model with the
parasitic capacitances added is shown in Fig. 10.185 (in drawing this circuit we
have taken vy, to be zero). Notice that in the common-gate circuit there are no
capacitors connecting the input and output as there are in the common-source
circuit; this is an important feature of this circuit, as we shall see in Chap. 14,

10.2 JUNCTION FIELD EFFECT
TRANSISTORS

Another important field effect transistor is the junction field effect transistor, or
JFET. A typical JFET device structure is illustrated in Fig. 10.19. This device
uses the fact that by changing the bias voltage on the gate junction diode, one can
change its depletion region width and thereby change the width of the conducting
channel between the source and the drain. This in turn controls the amount of
current flowing through the device. This is a very simple concept but an extremely
powerful one.
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FIGURE 10.19 :

Cross-sectional drawing of a typical n-channel junction field effect transistor.
This structure is used in the derivation of the large-signal JFET model in the
text.

When the voltage difference between the drain and source is small and
the drain-to-source current is small, the widths of the depletion region and of
the conducting channel are essentially uniform, as illustrated in Fig. 10.20a, and
the drain current i p increases approximately linearly with vpg. This is illustrated in
Fig. 10.20e. As the drain-to-source voltage and current increase further, however,
the reverse bias on the gate junction and the depletion region width increase
appreciably moving from the source to drain, as illustrated in Fig. 10.204, and
the increase of ip is sublinear with vpg, as shown in Fig. 10.20e. Eventually
the depletion region at the drain end of the channel will completely pinch off the
conducting channel, as illustrated in Fig. 10.20c, and the current will saturate
just as it does in a MOSFET, as shown in Fig. 10.20e. If the gate-to-source bias
is too negative, the depletion region, even with no drain-to-source voltage, will
extend throughout the channel and completely block conduction between the drain
and source, as shown in Fig. 10.20d. In this condition, no current will flow for
any drain bias, as illustrated in Fig. 10.20e. The terminal behavior and modes of
operation are very much similar to those of a MOSFET.

We will begin our analysis of JFETs by developing a large-signal description
for the terminal behavior of these devices. Then we will develop small-signal
models based on this large-signal model.

10.2.1 Large-Signal Model

We now turn to the problem of modeling the drain, gate, and substrate (or back)
currents (ip, ig, and ip, respectively) for the JFET illustrated in Fig. 10.19
as functions of the drain-to-source, gate-to-source, and back-to-source voltages
(vps, vgs, and vpg, respectively). As we did with the MOSFET, we will limit
the terminal voltages to certain useful bias ranges rather than attempting to model
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FIGURE 10.20

Tlustrations of the depletion region shape in the channel region of a JFET under
different bias conditions: (a) near the origin: Vp <vgs <0, vps very small, vgs = 0;
(b) in the linear region: V, < vgg <0, vps appreciable; (c) saturation: Vp < vgs <0,
vps > (vgs — Vp); (d) cutoff: vgs < Vp; (e) current-voltage characteristics
corresponding to the bias and depletion region conditions illusrated in (@) through (d).

the terminal currents for arbitrary terminal voltages. This makes our modeling
task much easier, to be sure, but it is also all we really care about since the device
is only useful when biased properly.

We first restrict ourselves to biases such that the lower p-n junction, the
substrate-to-channel junction, is never forward-biased. Just as we did when mod-
eling the n-channel MOSFET, we restrict our model to vgs = 0 and vpg = 0.
With this restriction the substrate current is negligible (i.e., ip = 0).
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Next we restrict ourselves to operation where the gate current is negligible

(i.e., ig = 0) by requiring that vgs = Von, where Voy is the forward-bias voltage

—above which this junction conducts appreciably. We use the bound Vpy rather than
zero in anticipation of the fact that it will in some instances be useful to slightly
forward-bias the upper p-n junction, the gate-to-channel junction. As long as the
forward bias is small, the junction current will still be negligible.

When i and is are negligible, we have only one current, the drain current
ip, to deal with. Our approach to relating ip to vps, vgs, and vpg will be similar
to the one we used with the MOSFET. We relate the current density at any point
in the channel to the electric field at that point, €,; and to the number of charge
carriers in the channel, their charge, and their mobility. Doing this we will obtain
an expression that can be integrated from one end of the channe] to the other to
yield ip(vps, vgs, V)

To proceed we first assume that the electric field and current flow in the
channel are entirely horizontal (i.e., in the y-direction only). Clearly this is an
approximation because if the channel becomes wider moving from the drain to the
source (see Figs. 10.20b and ¢) there must be some component of the current (and
field) in the x-direction. But if the rate at which the width of the channel increases is
sufficiently small (i.e., if the channel is sufficiently gradual), the x-component will
be negligible. This is the gradual channel approximation in the context of the JFET.

Using the gradual channel approximation, the voltage in the channel, vcg,
is a function only of y. At any position y along the channel, the voltage relative
to the source is vcs(y) and the electric field €,(y) is —dves/dyl,. We will further
assume that there are negligible voltage drops between the source and the drain
contacts and the ends of the channel at y = 0 and y = L. We thus have

ves(L) =vpg (10.58a)
ves(0) =0 (10.58b)

The current in the channel, ip, is the drift current density in the channel,
—q mNp%,, multiplied by the cross-sectional area of the channel, [a — xp(»)]1Z,
where a is the distance between the upper and lower p-n junctions and xp(y) is
the sum at y of the depletion region widths on the n-sides (i.e., channel sides) of
the upper and lower p-n junctions. Z is the extent of the device in the z-direction
(i.e., normal to the cross section in Fig. 10.19). Thus

"
io = Zpeqola — xp(N S (10.59)

You may want to compare this equation to Eq. (10.4) for the MOSFET; these
results are analogous.

The next step is to relate the total depletion region width x p(y) to the voltage
in the channel, v¢s(y). Again we make use of the gradual channel approximation
and say that at any point y we can assume that the electric field in the depletion
region is entirely vertical (i.e., solely in the x-direction). We then use the depletion
approximation to solve for the depletion region widths at each junction.
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We will assume that the device we are modeling is built with the n-type
channel region much more heavily doped than the substrate. Thus the width of
the depletion region on the channel side (i.e., the n-side) of this junction is
negligible. As a result, xp(y) is essentially just the n-side depletion region width
of the upper p-n junction. At any point y, the bias applied to the junction, vge(y),
is vgs — ves(y). Using this we have

[ 2esiNapldy — vos + ves ()]
xp(y) \/ N +NAp) (10.60a)

In a well-designed JFET, the p* gate region is more heavily doped than
the channel region (i.e., N4, >> Np,), so that the depletion region at the upper
junction extends primarily into the channel. In this case we can use the approxi-
mation

() ~ \/283i[¢b "q\;g; +ves()] (10.60b)

We are now ready to complete our derivatioﬁ. We insert Eq. (10.60b) into
Eq. (10.59) and integrate from y = 0 to y = L, or equivalently from v¢cg = 0
to ves = vps, just as we did for the MOSFET. The result is

., Z 2 2es; _ 3/2 _ _ 3/2
ip = asqMeNpn {VDS 3V g, a2 [(¢b vgs + Vps) (b — vgs)
(10.61)

L

This expression is plotted in Fig. 10.21 for a representative JFET.

Equation (10.61) is valid as long as the depletion region width xp(y) is less
than a. If xp(y) is equal to or greater than a at some position between 0 and L,
we must modify our expression. There are two circumstances where this occurs.
The first is when the gate junction is sufficiently reverse-biased that the channel
is fully depleted over all its length, as was illustrated in Fig. 10.20d. The gate
voltage at which xp = a is called the pinchoff voltage Vp. Thus

2
Vp=—"—""—+¢, (10.62)
If vgs =< Vp, then the JFET channel is fully pinched off and the drain current is
Zero:

ip =0 for vgs = Vp (1063)

The second circumstance in which the channel disappears occurs when the
drain-to-source- voltage is sufficiently large that the depletion region at the drain
end of the channel is a or larger, as was illustrated in Fig. 10.20c. This occurs
whenever vgp is less than Vp, which in terms of vpy is

Vps = Vgs — Wp (10.64)
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FIGURE 10.21

Drain current expression, Eq. (10.61), plotted for a Si device in which
¢, =06V, a=0.8 um, Z/L =50, p, = 1500 cm?/V-s, and
Np, = 5% 101% cm™3,

This condition is called saturation. In this region the drain current remains fixed
(i.e., saturated) at its value just prior to pinchoff of the channel. We call this
current the saturation value ip ¢ Putting vps = vgs — Vp into Eq. (10.61) for

ip, we obtain
. Z ' 2 2es;
IDsat = azqiueNDn {(VGS - Vp) — 34/ ZZJ—V;%
n

X [(dw — Vp)¥2 — (¢p — mf”]} (10.65)

This equation is plotted along with Eq. (10.61) in Fig. 10.22 for the same device
as in Fig. 10.21.

This completes the gradual channel model for the JFET. To summarize our
model, when vps = 0, vps = 0, and vgs = Von; the substrate and gate currents,
ig and ig, are zero. The drain current ip is also zero if vgg =< Vp. In this case,
which we can also write as (vgs — Vp) =< 0, the device is said to be in pinchoff.
If 0 = (vgs — V), then ip is given by Eq. (10.61) when 0 =< vpg < (vgs — Vp)
and by Eq. (10.65) when O = (vgs — Vp) = vps. The latter range of vpy is called
the saturation region, and the former is termed the linear region.

The drain current expressions are complicated in appearance, and it is diffi-
cult to do much about simplifying them in a meaningful way. One modification of
their presentation is to use the definition for Vp [Eq. (10.62)] to simplify the factor
(2esi/ gNpra?)}/? and to replace the factor g w.Np, with the channel conductiv-
ity o,. Going further, we can define G, as the conductance of the undepleted
channel,
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Plot from Fig. 10.21 extended into the saturation and pinchoff regions.
Using the same device parameters as in Fig. 10.21, we obtain V, = -2
Vand G, = 4.8 mS.

zZ Z
G, = azqueND.n == croaz (10.66)

and then write

_ 3/2 _' _ 3/2
ip = GO{VD; - %[(d)b ~as _'_(;fs_) VP)1/§¢b Vos) :I} (10.67)

when 0 = vps =< (vgs — Vp), and

(P — Vp)/2 — (¢p — vGs)/?
(¢p — Vp)1/2

2
ip = IDsat = Go{(VGS —Vp) - 5[ H (10.68)

when 0 = (vgs — Vp) = vps.

Example

The characteristics in Figs. 10.21 and 10.22 have been plotted for a device with
typical dimensions and doping levels. As stated in the captions for these figures,
the characteristics correspond to a silicon device with ¢, = 0.6 V, a = 0.8 um,
Z/L = 50, pe = 1500 cm?/V-s, and Np, = 5 X 1015 cm™3; and thus for which
Vp = =2V and G, = 4.8 mS.

As was the case with MOSFETs, there are also several types of JFETs.
We have just developed a model for an n-channel JFET; there are also p-channel
JFETs, which are modeled in the same way with identical results except, as
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you might expect, that all of the voltages and currents change sign. Also, the
implication in our modeling discussion was that the channel was not pinched off
when no voltage was applied to the gate. In terms of Vp, the implication was
that the pinchoff voltage for an n-channel device was negative (i.e., Vp < 0).
When this is the case, the device is said to be a depletion mode JFET. If Vp for
an n-channel device is positive (i.e., Vp = 0), there will be no channel until the
gate junction is forward-biased. Such a device is called an enhancement mode
JFET. Clearly there is a limit to how far forward the gate junction of a JFET
can be biased before it conducts heavily, so there is a limit to how strongly an
enhancement mode JFET can be turned on. For this reason, enhancement mode
JFETs are much less common than depletion mode JFETs. The circuit schematic
symbols used for n--and p-channel JFETS are illustrated in Fig. 10.23.

10.2.2 Static Small-Signal Linear Model

The static small-signal linear model for the JFET is topologically the same as
that for the MOSFET, which was illustrated in Fig. 10.13. The definitions for
all of the parameters, g,,, &mp, and g,, are also identical and are given by Eqgs.
(10.38), (10.39), and (10.40). ‘What is different is that we must use the JFET
equations to evaluate these definitions. We will examine each in turn.

The forward transconductance g,, is found to have the following forms in
the various operating regions:

(0 for Ves = Vp)=0= VDS (1069)
— V- Jbr — Vi
Go Vo = Vo — Véy ~ Vos for 0 < (Vgs — Vo) = Vpg (10.70)
_ by — Vp :
ngl -
G Vb = Vos + Vos — Jbs — Vos
[}
¢, — Vp-
i for 0 < Vpg = (Vgs — Vo) (10.71)
D D
6 o s @,_i
S s
(a) ()]
FIGURE 10.23

Symbols used for #n- and p-channel JFETS in
circuit schematic drawings: (a) n-channel
JFET; (b) p-channe] JFET.
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Notice that g, has its maximum values in saturation. Looking a bit more closely
at g, in saturation, Eq. (10.70), we see that we can also write this equation as

gm = G, {1 - /%‘;”b—__v%s)—)} (10.70")

Written this way it is easy to see that g, is a maximum when the gate junction is
as forward-biased as possible, usually on the order of 0.3 or 0.4 V, and that G,
is a firm upper bound on g, . It might seem desirable to make V, as negative as
possible to make the denominator of the fraction small, but.this is usually not a
wise design choice. A large V), requires a large Vpg to put the device in saturation,
and this leads to large power dissipation. We usually want to keep V,, on the order
of a volt or two.

The substrate transconductance g,,, is zero in our model because we have
said that the depletion region on the n-side of the lower p-n junction is negligible.
We can thus eliminate the g,,, Vs current source from the small-signal incremental
model and simplify it to that shown in Fig. 10.24.

Finally, the output conductance g, is given by the following expressions in
the various regions of operation:

(0 | for (Vgs — Vp) = 0 < Vpg
(10.72)
0 for 0 < (Vgs — Vo) = Vps
go = 3 (10.73)
Goll— \/(d’b ~Vos = Vos) | 40 < Vos < (Vgs — Vp)
(p — Vp) (10.74)
Example

Question. Consider a device with the output characteristics shown in Fig. 10.22.
What is the small-signal transconductance g, of this device if it is biased in satu-
ration with vgg = 0 V?

Discussion. Using the fact that for this structure ¢, = 0.6 V, Vp = =2 V, and
G, = 4.8 mS, we find using Eq. (10.70') that g,, is 2.5 mS, or about half the value
of G,. By forward-biasing the gate 0.4 V, g, can be increased to 3.5 mS. Looking
at Fig. 10.22, we see that the drain current values would be approximately 2.4 mA
and 3.7 mA, respectively, at these two bias points. Clearly, JFETs, like MOSFET;,
have relatively low transconductances in comparison to bipolar transistors.

The model of Fig. 10.24 is valid for both n- and p-channel JFETs, but
the expressions in Eqgs. (10.69) through (10.74) were derived for an n-channel
device. To modify them for a p-channel device we must write absolute value
signs around all of the factors under the square root signs [e.g., (¢» — Vp)1/?] and
the various bias ranges must be defined properly. That is, for a p-channel device,
cutoff corresponds to Vpg = 0 = (Vs — Vp); the saturation region corresponds to
Vbs = (Vgs—Vp) = 0; and the linear region corresponds to (Vgs—Vp) = Vpg = 0.
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Linear small-signal equivalent circuit of a JFET
biased in its forward operating region.

10.2.3 High-Frequency Small-Signal Model

The common-source small-signal high-frequency equivalent circuit for a JFET
is the same as that of a MOSFET shown in Fig. 10.18 with g,;, = 0. We
must retain the substrate terminal in this model because v,, is not necessar-
ily zero, although it often is, and current may flow through the capacitors Cy,
and C db-

10.3 METAL-SEMICONDUCTOR FIELD
EFFECT TRANSISTORS

The final field effect transistor that we will study in this text is the metal-
semiconductor field effect transistor, or MESFET. This device is very similar
to a JFET, as we shall see in the next subsection, and we have already done much
of its basic analysis. However, because MESFETs can be made with extremely
short gate lengths and because they are typically fabricated of very high-mobility
semiconductors, we must be very careful to include velocity saturation. We will
do this in the final subsection after first introducing the basic MESFET structure
and model.

10.3.1 Basic Concept and Modeling

In Chap. 6, when we first discussed making electrical contact to a semiconductor,
we pointed out that there is a difference in electrostatic potential between a metal
and a semiconductor. We also said that there in general will be a depletion region in
the semiconductor adjacent to the metal-semiconductor interface. When forming
electrical contacts, our objective is to make the depletion region at this interface
as thin as possible and the barrier as low as possible (by heavily doping the
semiconductor and by choosing a metal that yields a low barrier) so that this
barrier does not form an impediment to current flow. In other situations, however,
we can go the other way. If the semiconductor is lightly doped and the barrier is
high, there will be a wide depletion region and an appreciable barrier for current
flow. The metal-semiconductor interface will then behave very much like a p*-
n or p-n* junction diode, where the metal plays the role of the heavily doped
semiconductor. Such structures are called metal-semiconductor diodes or Schottky
diodes.
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Schottky diodes have a number of important features and applications, many
of which are discussed in App. E. For our present discussion, we want to exploit
the fact that the semiconductor is depleted adjacent to the metal and that, as in a
p-n diode, the width of this depletion region increases with increasing reverse bias
on the diode. This situation is illustrated in Fig. 10.25 for a Schottky diode on
n-type silicon. The device and the electrostatic potential and net charge profiles
through it are shown for zero and reverse bias. As in an abrupt p*-n junction,
the change in electrostatic potential occurs entirely across the depletion region of

M ' n-type semiconductor S
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FIGURE 10.25
(a) Structure of a metal-semiconductor diode; (b) the corresponding electrostatic

potential distribution; (c) the net charge distribution, (The solid line represents
zero bias, and the dashed line represents an applied reverse bias Vi <0.)
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the n-type material. It is given by

2eg5i(bp — vums)
Xp =~ 10.75
P \/ aNp» (10.75)

where Np, is the doping level in the semiconductor and ¢, is the built-in potential
of the Schottky diode.

A Schottky diode like this can be used in place of the p-n junction in the -
gate of a JFET, as shown in Fig. 10.26. The resulting device is called either a
Schottky-gate field effect transistor or, more commonly, a metal-semiconductor
field effect transistor (MESFET). Except for the difference in the barrier height,
this device is electrically identical to the JFET, certainly for purposes of the large-
and small-signal modeling we have done; as such, we already have models for it.

As a practical matter, the MESFET has certain important advantages over
the JFET and is a much more widely used device. It is very easy to fabricate
and is particularly attractive for use on semiconductors other than silicon (e.g.,
gallium arsenide) in which it is technologically more difficult, inconvenient, or
even impossible to make good p-n junctions. It can also be made very small, so
devices with very short channels (i.e., small L) can easily be made in order to
get very fast devices. The major disadvantage of the MESFET in some material
systems is that it is difficult to find metals that yield sufficiently high barriers;
thus in these situations the gate junction is too conductive when reverse-biased
(and so is termed “leaky”). In general, however, MESFETs have been very suc-
cessfully used with many semiconductors, and they are widely used in high-speed
applications.

10.3.2° Velocity Saturation in MESFETs

In developing our large-signal FET models we have assumed that the veloc-
ity of the carriers in the channel can be written as the product of their mobility
and the electric field. At the same time, however, we know from our discussion in

Schottky Depletion region
S G metal
T Ohmic
W/ ///// % ™ el
0 V22772
a bt ———ptro ]
- L_____
x
L Semi-insulating GaAs L
T’ Channel T
! Ly
0 L

FIGURE 10.26
Cross-sectional drawing of a typical n-channel metal-semiconductor field
effect transistor.
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Chap. 3 that the assumption of a linear relationship between velocity and field
is not valid at high fields. This is traditionally not a problem in silicon devices
because velocity saturation does not occur in silicon until the electric field is well
in excess of 10 kV/cm; if the gate length is 1 to 2 um, this field is only reached for
drain-to-source voltages of several volts, where the MOSFET is typically entering
‘saturation anyway. In such a situation, accounting for velocity saturation has little
impact on the characteristics.* For the semiconductors commonly used to make
MESFETs, however, velocity saturation can occur at 3 kV/cm or less. This fact,
coupled with the fact that gate lengths L in MESFETs can be as small as 0.25 um
or less, means that the critical field strength for velocity saturation in these devices
can be exceeded at drain-to-source voltages of less than 0.1 V. Consequently, our
assumption of a constant mobility is not valid over much of the normal operating
range of these devices, so our model must be modified.

The starting point for our new model is the same as it was before, that is,
Eq. (10.59), which relates the current in the channel to the product of the carrier
concentration and the carriers’ velocity, except that now instead of writing the
velocity as w.%€,, we write it as sy(%y):

ip = ZgNppla = xp(y)]sy[6,(y)] (10.76a)

where x p(y) is now given by Eq. (10.75) with vy5 replaced with [vgs —ves(y)].
The velocity sy is a function of y because the electric field 8, is a function of y;
the electric field is, as before, —dvcs/dyly. Thus

. 2eg; - + .
ip = ZqNo, a—/ it —tos sl Loy l8,00  (10.760)

or

ip = ZqNpna|1- ﬁ” ~vos ¥ YesO) | 1gy(y)) (10.76¢)
‘ by — Vp

with Vp defined in Eq. (10.62).

The key issue now is how to model the velocity-field relationship, which was
shown in Fig. 3.2. We will consider two models that have been widely applied;
both are illustrated in Fig. 10.27. The simplest way to model the velocity-field
curve is to use a two-segment piecewise linear approximation:

_ ) ey
Sy[%y(y)] B { MeBerit = Ssat  for Bepe = %y (10.77)

where w. is the low-field mobility and €.y is the field at which the velocity
saturates. A function like this is convenient for hand calculations but is more

*In MOSFETS with submicron gate lengths, however, velocity saturation can be more of an issue and
should be taken into account. See Sec. 10.1.1c¢ for a discussion of velocity saturation in MOSFETs.
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FIGURE 10.27

Plot of the two models given in Egs. (10.77) and (10,78) for the
velocity-field relationship of a typical semiconductor.

difficult to use with computer simulation, so a second commonly used model is
one that fits a single analytical expression to the entire curve:

- Keby
SO = 03% /20 (1078
We used this model for velocity saturation in MOSFETs (Sec. 10.1.1c).

In both models sy is w.é, when €, is much less than €. and is w, et
(which we define as ss5) for €, much greater than .. In between, the models
are clearly quite different, yet both retain the essentials of velocity saturation. In
treating the MESFET, we will use the piecewise linear model because it better
matches the sharp saturation characteristics of high-mobility compound semicon-
ductors. This model is also convenient to use because as long as the field in the
channel is less than €.y, it is the same as our original model. Once the field ex-
ceeds €crit, the carrier velocity (and therefore the current) saturates, just as it does
above pinchoff in the gradual channel approximation. However, now the critical
drain-to-source voltage for the onset of saturation occurs not when the channel at
the drain end becomes pinched off, but rather when the carriers at the drain end
of the channel reach their saturation velocity. Referring to Eq. (10.76b), we can
see that the saturation current ip ¢, and drain-to-source voltage vpg st must be
related as '

2esi(¢y — vos +
esi(¢s = vGs + VD5, sar) St (10.79a)
qNDn

ipsat = ZqNpy|a — \/

Using our earlier definitions of Go [Eq. (10.66)] and Vp [Eq. (10.62)], this can
be written as

(bp — vgs + VDS,sat)l/2 SsatL (10.79b)

‘st = Go [1 - (Pp — Vp)1/2 Me
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The values of ip g and vpg o must also satisfy the ip(vgs, vps) expression
in the linear region, Eq. (10.67):

2 - + . 3/2 _ — 3/2
iD,sat = Go{"DS,sat - § <[(¢b < 121;2, _t)VP)I/z(d)b VGS) ]>} (10'80)

The values of ip s and vpg sar that we seek must be the common solution
of these two equations. A convenient way to find this solution is graphically,
which we illustrate in Fig. 10.28 for a-GaAs MESFET, with the dimensions and
parameters indicated in the caption. For comparison the dashed curve shows:what
the characteristics would be without velocity saturation. Several interesting dif-
ferences are apparent. First, the saturation current is reduced substantially, which
is not good. At the same time, however, the saturation occurs at a lower voltage
and the curves are crisper, which is good. Since we cannot do much about the
former difference, we might as well appreciate the latter.

It is difficult with only a graphical solution to get much design insight from
this model and to see, for example, what we can do to modify ip g5 and vpg sac. T
get a more analytical model, we next notice in Fig. 10.28 that velocity saturation
occurs while the device is still well within the classical linear region (i.e., where
the depletion region width changes very little along the length of the channel).

0.15 7
0.14 |- s /
0'13 » / I vGS =05V

0.12 |- / j
011 F / [ vos =Ves=Vp

0.10 |- / [N
0.09
0.08
0.07
0.06
0.05
0.04 [ gy gy gl
0.03
0.02 - vag ==0.1V

0.01 4o oo YN
L d 111 IXVVGS_VP__O'SV

06 08 1.0 12
Drain-to-source voltage vpg (V)

FIGURE 10.28

Output characteristics of a GaAs MESFET with ¢, = 0.9V,
a=0.15um, Z/L =50, L = 0.5 um, g, = 2500 cm?/V's, Ssa =

107 cm/s, and Np,, = 6.7 X 1016 cm™3. The piecewise linear model of

Eq. (10.77) is used for the velocity-field curve, and saturation is determined
from the graphical solution of Egs. (10.79) and (10.80).

Relative drain current ip/G, (V)
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Here the current is given approximately by the resistance of the channel times the
drain-to-source voltage, that is,

. Z
ip = queNpy Z[a — xp,lvDs (10.81)
where
2e5i(s — Vi)
xp = |28~ ves) 10.82
Do \/ qNDn ( )

This will be valid until vpg/L = €, at which point the velocity saturates at s
and i p saturates at

ipsat = gNpnZ(a — Xp,)Ssa (10.83)

This last result shows us the importance of choosing a material with a large sg,
along with a large u. and small €.

To compare the results of this model with our earlier models, it is convenient
to write Eqs. (10.81) and (10.83) in terms of a and Vp using Egs. (10.62) and
(10.66). We find that we can then summarize our results as follows:

[ ‘ _ 1/2
G, [1 - %Tv‘%_)f/_z—:l VDS for vps = el and vgg = Vp
in = < _ 1/2
P G, [1 - (Zfb _v‘ZS))l/z ] s:th for €aitl = vps and vgs = Vp
. .
L0 for vgs = Vp

(10.84)

.~ These expressions are plotted in Fig. 10.29 for the same device used in Fig.
110.28. In Fig. 10.29a, ip/G, is plotted, just as in Fig. 10.28. In Fig. 10.29b,
ip is plotted and G, has been adjusted to yield the same peak current as when
vas 15 0.5 V. We adjust G, [see Eq. (10.66)] by, for example, changing the value
used for w, or the product aNp, to get a proper fit. If we do the latter, the values
of a and Np, must then also be adjusted so that the product a?Np,, is unchanged
in order to ensure that Vp will remain the same. In the present case, this means
that to obtain the solid curves in Fig. 10.29b we had to assume that a is 0.2 mm
and Np, is 5 x 1016 ¢m~3. ‘

This relatively simple model is seen to give very similar results to our
earlier model, but we can now see several additional features. First, we see that
the saturation voltage vpg s is independent of vgs and ip g, Whereas when
velocity saturation is not an issue it increases parabolically with ip g, Second,
since in this approximation vpg e 1S €critL, to make vpg s small we need a short
channel and low critical field. Third, we see that ip g is K 5sat, SO to make vpg s
large we want sg, and K large. The latter is made large by using a wide device,
by making the product Np,a as large as possible while still obtaining the de-
sired Vp, and by keeping the gate leakage within acceptable bounds (which means
that Np,, cannot be too large). Finally, we note that the spacing of the constant vgg
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FIGURE 10.29

Output characteristics for the same MESFET as in Fig. 10.28, calculated
using the approximation summarized in Eqgs. 10.84: (a) plot of (ip/G,)

versus vpg (the dashed curves represent the solid curves in Fig. 10.28);

(b) plot of ip versus vpg for G, adjusted to yield the same peak current
as when vgg is 0.5 V. .

curves is, in general, more uniform when velocity saturation is a factor. (Compare
the solid and dashed curves in Fig. 10.28, for example.) Even after adjusting G,
to match the curves for vgs = 0.5V, the values of ip g, still differ in the two
models, but this difference is larger as vgs approaches Vp. If we were to add
curves for vgs equal to 0.7 V and/or 0.8 V, for example, we would find closer
agreement in those curves.

Before leaving velocity saturation, we should point out that we can also
find an analytical expression for i p(vgs, vps) by using the second velocity-field

~
I3
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model we introduced, Eq. (10.78). To do this, we substitute Eq. (10.78) for s,
into Eq. (10.76b) for ip, solve for %,, replace ¢, with —dvcg/dy, and integrate
from source to drain. We have chosen not to go through this exercise because the
algebra is tedious and teaches us little, but you should realize that it is possible.

10.4 SUMMARY

In this chapter we have considered a second class of transistors, field effect tran-
sistors (FETS). These devices differ from bipolar junction transistors (BJTS) in that
the potential barrier to current flow through the device is controlled indirectly by
a field plate called the gate, rather than by direct contact to the barrier region.
They also differ in that the output current is due to majority carrier drift in the
channel, rather than due to minority carrier diffusion across the base. There are
both n- and p-channel FETs, differing in the majority carrier type in the channel.

We have introduced three types of field effect transistors: the metal-oxide-
semiconductor FET (MOSFET), the junction-gate FET (JFET), and the metal-
semiconductor FET (MESFET). All have a characteristic gate voltage below which
the channel does not conduct and the device is cut off; but with sufficient gate
voltage the channel conducts and the device is either in the linear, or triode,
region, which occurs at low output voltages, or is saturated, which occurs at
larger output voltages and corresponds to a constant output, or drain, current
independent of the drain-to-source voltage. If the channel is conducting when the
gate voltage is zero, the device is said to be a depletion mode device; if it is
not, the device is termed an enhancement mode device. We have used the gradual
channel approximation model to describe the large-signal terminal characteristics
of FETS. From the results of that modeling we have also obtained linear small-
signal models. We have seen that an important characteristic of FETS is their very
high input impedance.

PROBLEMS

10.1 Consider an n-channel MOSFET with ¢, =50 nm, &, = 3 X 10713 flem?, L =
1 um, and p, = 1200 cm?/V -s. Assune a bias level (Vgg — V) = 2 V and
Vps = 2V
(a) If we want Ip to be 1 mA for this bias condition, what must K be for this

device? Recall that ip = K(vgg — Vp)?/2 when vpg > (vgs — V).
(b) What must W be for the device with the value of K you found in part a?

(¢) What is the incremental transconductance g, of this device at this bias point?
Compare this to g, of a bipolar transistor with I~ = 1 mA. :
(d) Consider designing a MOSFET with g, = 40 mS at a bias level Ip = 1 mA.

(i) What K value is required? ’
(i1) To achieve this K in the MOSFET structure described above, what W is
required? '
(iii) With this XK', what is (Vgg — V¢) when Ip = 1 mA? Compare this result
to kT and discuss.
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10.2

10.3

10.4

10.5

Consider an n-channel silicon MOSFET like that pictured in Fig. 10.2 that has the
following dimensions and properties:
to =750 A
N4 = 1x 1016 cm3
Vig = ~0.2V
pe = 800 cm?/V + s
L=2pum
W = 30 um

(a) What is the threshold voltage Vp of this device when vgg = 07

(b) What is the value of the factor X in the large-signal model for i p(vgs, vps, vas)
[see Egs. (10.15)1?

(c) Whatis ip when vgg = +2V, vpg = +5 V, and vgg = 0?

Consider a p-channel enhancement mode  MOSFET with Vp = -1 V and K =

2 mA/V? connected as a diode as illustrated in Fig. P10.3.

(a) Calculate and graph ip as a function of vpg for =5V = vpg =5 V.

(b) Based on your results in part a, suggest a method of plotting i versus vpg
for such a connection that will yield (theoretically, at least) two straight lines
intersecting at Vr.

(¢) Suppose that the base and source terminals are now disconnected and that a pos-
itive supply Vpg is inserted. How would your plot in part a change qualitatively
as |Vgg| is increased?

Using the same design rules as in problem 8.9, lay out minimum-gate-length MOS-
FETs like those pictured in Figs. 10.11a and b. Assume that W is 10 wm. Compare
the sizes of these two devices, especially the gate lengths L. Discuss the relative
sizes of the gate-to-drain capacitance Cgy due to the overlap of the gate electrode
and the drain diffusion in your two designs. Do the same comparison of your two
designs with respect to the drain-to-substrate capacitance C;;, which arises from
the depletion capacitance of the drain diffusion.

Suppose that you are an engineer with a company that has a MOSFET proces-

sing facility that can reliably produce features with dimensions as small as 1.5 pum

and can reliably produce gate oxides as thin as 20 nm (200 A). The process uses

SO._

FIGURE P10.3
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polycrystalline silicon doped with the same carrier type as the source and drain for
the gate “metal”; the doping level of this gate material is typically 101° c¢cm-3. The
electron mobility in the channel is 500 cm?/V - s; the hole mobility is 150 cm2/V - s.

Using these capabilities, specify W, L, 1, and Ny, for an n-channel en-
hancement mode MOSFET to obtain the following characteristics:

Threshold voltage : Vy = 0.5

K -factor : —W-uee—" = 2 mA/V?
L to

Find the minimum gate capacitance possible given the above constraints.

10.6 You should have found that V¢ for the device in problem 10.2 was such that the
device is an enhancement mode FET. Often we want to selectively convert some of
the FETs in an integrated circuit from enhancement mode to depletion mode. This
is done by using a process called ion implantation to put positive or negative ions
at the semiconductor oxide interface, which effectively changes Q; and thereby
Vrg. [See Sec. 9.5 and Eq. (9.33).] Suppose that you want to make the threshold
of devices like this —2 V.

(a) How much does the flat-band voltage have to be changed, and what must its
new value be?

(b) Does the charge introduced need to be positive or negative?

(c) What sheet density of ions (number of ions/cm?) has to be introduced? (Assume
that the ions are singly ionized.)

10.7 Calculate the body effect coefficient i [see Eq. (10.50)] for

(a) The MOSFET in problem 10.2
(b) The MOSFET you designed in problem 10.5
10.8 This problem concerns velocity saturation in MOSFETs.

(@) Assume a piecewise linear velocity field model as in Eq. (10.77). Using this
model along with Eq.(10.4a)and the approximation for the channel charge
in Eq. (10.5'), find a relationship for ip s and vpg gq¢ that is the MOSFET
analog of Eq. (10.79) for a MESFET. Equation (10.10) is a second relationship
satisfied by ip so¢ and vpg sar, SO with these two relationships unique values
may be found for ip o4 and vpg g for.each value of vgg. .

(b) The critical field for velocity saturation in silicon is 2 X 10* V/cm. Assuming
for purposes of estimation that the field in the channel is uniform (i.e., that
€ = vps/L), at what vpg will the field be 2 x 10* V/cm in devices with the
following channel lengths?

@3 1.0 um
(i1) 0.25 pm
(iii) 0.1 um ‘
10.9 Redesign the channel height a and doping level Np, of the device in the example
in Sec. 10.2.1 to achieve the same G, but a pinchoff voltage V}, of —1.2 V. The
same mask set is to be used to fabricate the device, so Z/L is unchanged.

10.10 (a) Calculate the small-signal transconductance g, in saturation for the MESFET
model incorporating velocity saturation summarized by Eq. (10.84) and com-
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pare your expression to that found when velocity saturation is not a factor, Eq.
(10.70).
(b) Bvaluate g, using each of your expressions in part a for the device used in
Fig. 10.28 and at the same vgg values used in that figure (i.e., —0.3, —0.1,
0.1, 0.3, and 0.5 V).
10.11 Plot ip versus vpg curves for a gate-to-source voltage vgg of 0.7 V like those in
Figs. 10.28 and 10.29b. Note that you should plot ip, not ip/Go.



" CHAPTER

11

SINGLE-
TRANSISTOR
LINEAR AMPLIFIER
STAGES

We now have models for bipolar and field effect transistors, and we understand
how those models are based upon and related to the physical processes active
~within their respective devices. Next we will turn to applying transistors in useful
circuits and to using our models to analyze, understand, and eventually design
transistor circuits. : :

Transistor circuits can be divided into several groups; for each group a dif-
ferent type of analysis is appropriate. In Chaps. 11 through 14 we will consider
transistor circuits designed to linearly multiply time-varying input signals by a con-
stant factor, usually of magnitude much greater than 1. Such circuits are called
linear amplifiers. The circuits we will discuss are designed so that the transistors
in them are always biased in their forward active regions and can always be mod-
eled using small-signal linear equivalent circuit models. These circuits are called
Class A amplifiers and are what we will mean when we speak of “small-signal
linear amplifiers.”

Linear amplifier circuits can also be designed in which some of the transistors
operate outside of their forward active regions and for which large-signal models
must be used for some of the devices. We will not discuss these amplifiers, called
Class B and Class C amplifiers, in any detail in this text.

Finally, there is a third group of transistor circuits that are highly nonlin-
ear and for which large-signal models are used exclusively. These are switching -
circuits for use in digital logic, semiconductor memories, and various signal pro-
cessing applications. We will discuss this group of circuits more in Chap. 15.

In this chapter we will begin with the all-important issue of establishing a
stable bias point for a transistor. Then we will study simple circuits, each with a

317
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single transistor, that can be used as building blocks to assemble more complicated
linear amplifier circuits. In Chap. 12, we will discuss additional linear amplifier
building block circuits that use transistor pairs, and in Chap. 13 we will discuss
assembling these building block circuits into complex multistage linear amplifiers.

11.1 BIASING TRANSISTORS

- Our small-signal linear equivalent circuit models depend critically on the transistor
bias point, so a major issue in designing a transistor amplifier is establishing a
bias point in the forward active region for each of the transistors. Furthermore,
because the transconductance g,, is in general the most important of the equivalent
circuit parameters, we will generally give first priority to establishing a bias to
also achieve a particular g,. For a bipolar transistor this means that we bias
to obtain a specific quiescent collector current because g, is directly proportional
to 1., as we know from Eq. (8.53b), which is rewritten here:

_ Q|] c|
§m = 1 (11.1)
For a field effect transistor in its forward active region (i.e., in saturation),
the transconductance g,, can be viewed as being proportional to either the gate-
to-source voltage Vgs or the drain current I, as we can see from Eqs. (10.42a)
and (10.42b), which we rewrite here:

gm = K|Vgs — V| ~ ‘ (11.2)

gm = ~2K|Ip| - (@1L3)

The latter expression involves only one device variable, K, so it is preferred
to the first, which involves both V¢ and K. Thus we typically bias field effect
transistors to achieve a specific value of Ip.

To summarize, the primary objectives of biasing are (1) to place the transistor
in its forward active region and (2) to set g,, by establishing the quiescent value of
the output current (i.e., /¢ or Ip). We will look at biasing each type of transistor
. in turn below. ' .

11.1.1 Bipolar Transistor Biasing

Our objective in biasing a bipolar transistor for small-signal linear circuit ap-
plications is to establish a specific value of quiescent collector current. Perhaps
the simplest way to do this, conceptually at least, is to connect a current source
to the collector terminal, as illustrated in Fig. 11.1a for an npn bipolar transistor. *

*We will tend to use npn transistors in all of our bipolar transistor circuits in this chapter because
npn’s in general have higher gain and are faster than pnp’s; the modification of the circuits for pnp
application is in most cases straightforward.
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Ip1as E

(@) (R ()

FIGURE 11.1

Use of a current source to establish a specific quiescent collector current.
The current source is shown connected: (a) to the collector terminal;

(b) to the emitter terminal (the only viable option of these three); (c) to
the base terminal.

Unfortunately, the circuit in Fig. 11.1a turns out to be impossible to implement
because it places too many constraints on the transistor. Specifically, there is no
easy way to provide the base current without rendering the circuit useless. Thus,
the circuit of Fig. 11.1a is not a viable bias scheme.*

Although we cannot set I, directly with a current source, it is possible to put
the current source in the emitter circuit, as illustrated in Fig. 11.15. The emitter
and collector currents are related as

_ Br
e = I gt s (11.4)

so setting the value of /g sets I¢. In fact, in a high-gain transistor (i.e., Br > 1),
the collector and emitter currents are essentially equal; that is,

Ic ~Ig (11.5)

~ Yet another biasing option is to apply the current source to the base terminal,
as shown in Fig. 11.1c, and to use the relationship

Ic = Brlp (11.6)

Doing this is theoretically possible, but it is not a wise choice as a prac-
tical matter. As a general rule of thumb, the current gain S of a bipolar transistor

*This does not mean that we will never put a current source in the collector circuit, because we can
use a current source as a load, as we shall see in Sec. 11.2.
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is not a very reliable design parameter. Br is fixed for a given transistor, to be
sure, but it can vary widely from device to device depending on the specific
production run or lot the device comes from. Transistors from a particular process
may have a mean Br of 100 but a standard deviation of 25 to 50, for example.
Thus experience teaches us that it is best to develop circuit designs that rely not
on specific values of Br but simply on the fact that B is large. Thus using a -.
current source to establish /¢ through setting /g is good design, whereas trying
to establish a value of I¢ by specifying I is risky at beést.

Another important reality of circuit design is that we tend to have voltage
sources available for our primary external bias supplies and that we must build
current sources in our circuit where we need them. This typically requires the use
of active devices (i.e., transistors), which is not a big problem in an integrated
circuit where transistors are small and cheap, but is a costly approach for circuits
assembled from discrete devices where resistors are inexpensive and transistors
are costly. Thus most nonintegrated circuits, as well as circuits used to make the
current sources in integrated circuits, use resistor biasing, which we will discuss
next.

A logical place to start when thinking about resistor biasing of a bipolar
transistor is with the Ebers—Moll model (see Fig. 8.7). Looking at this model,
you could reasonably assume that you want to establish a quiescent value of the
base-emitter voltage Vzg, which would then fix g and thereby I (assuming that
Br is large). A way to do this using a voltage divider is illustrated in Fig. 11.2a.
Again, however, practical considerations make this an unwise approach. The pa-
rameters involved, namely Igg and ap, are difficult to control from transistor to
transistor, just as B is. Furthermore, because of the exponential nature of diode
characteristics, Ig is too sensitive to Vzr even in an ideal transistor to make this
a viable approach. A much better approach to biasing is to find schemes that are
relatively insensitive to the precise value of Vpg.

Consider next the circuit of Fig. 11.2b, in which one of the bias resistors
in the circuit of Fig. 11.2a has been eliminated. We know from our discussion
of large-signal bipolar transistor equivalent circuit models that the base-emitter
voltage is inevitably about 0.6 V. If the supply voltage is much larger than this,
.the base current will not vary much even if Vzg varies by £0.05 Voreven £0.1 V.
To examine this further we use the large-signal equivalent circuit model of Fig.
8.19a, to proceed with our bias point analyses. Since Vzg is essentially 0.6 V,
we know that the base current is essentially ‘

Iy ~ Yec 20-9 (11.7)
Rp
and thus
Vee — 0.6
Ic = Bp(—C—CR——) (11.8)
: B

These results are not particularly sensitive to the base-emitter voltage, as
we anticipated, and in this sense this design is an improvement. However, we
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FIGURE 11.2

Three possible circuits for resistively blasmg a bipolar transistor: (a) the
base-emitter voltage is set by a voltage divider; (b) the base current is set;
(¢) the emitter current is set (the preferred option).

have already said that Br is an unreliable design parameter and that we should
not design circuits based on its spec1ﬁc value. Thus thlS is still not a good bias
scheme.

A better approach is to return to the voltage divider of Fig. 11.24 and to add
a resistor to the emitter terminal, as illustrated in Fig. 11.2¢. Now the important
voltage drop is that due to the emitter current and the value of the base current
is unimportant, as long as it is small. To see this, notice first that the resistors
Rp; and Rp, form a voltage divider that sets the voltage on the base terminal
relative to ground. The idea is to make this voltage drop, which is approximately
IeRg + Ve, much greater than Vzg (= 0.6 V), so that any variation in Vzg will
be reflected as only a small variation in /g.

To proceed with our analysis we make several assumptions that are consistent
with the governing assumption, namely that we are analyzing a well-designed
circuit. First, we assume that the transistor is properly biased in its forward active
region and thus that Vg is approximately 0.6 V. Second, we assume that the
transistor is a high-gain device and that the base current I is small compared to
Ig and I¢. Finally, we assume that Rg; and Rp, have been chosen so that the
current through them is much larger than the base current /5. In this case, then,
the bias current can be neglected and the voltage between the base and ground
(i.e., the voltage drop across Rp,) is approximately R, Veoc/(Rp1 + Rp2). We can
thus write

RpaVec
—==——— =~ [gRg + 0.6 11.9
(Rp1 +Rp) = ¢ (119
By using a bit of algebra and setting /- equal to Ig, we get
To ~ RpVec/(Rpi + Rp2) —0.6 (11.10)

Rg
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As a practical matter we typically choose /gRg to be 2 or 3 V, and Rg; and
Rpy so that Voc/(Rp1 + Rpp) is at least 10 times /p. The final point we must
check is that the transistor is not saturated; that is, that the base-collector junction
is not forward biased, at least not by more than 0.4 V. Since we now know I,
we can easily calculate the voltage drop across the resistor R¢, and thus calculate
the base-collector and/or collector-emitter voltage to confirm a proper bias.

Example

Question. Consider an npn bipolar transistor biased using the circuit illustrated in
Fig. 11.2¢. Assume for the transistor that B is 75 and Vzg o is 0.6 V. Assume
also that Voc is 9.V and R is 3 k{). Choose Ry, Rpy, and Rpy so that I is
1 mA.

Discussion. Since R is specified, the first step is to calculate the quiescent voltage
on the collector, which then tells us the maximum voltage we can have at the emitter..
The issue is not simply biasing the transistor in its forward active region, but also
ensuring that the transistor will not saturate when it is amplifying an input signal,
The quiescent voltage drop across R is 3 V, so the collector is at 6 V relative to
ground; this restricts the positive output swing to 3 V. To achieve the same bound
on the negative swing, the bias should be consistent with a collector voltage as low
as 3 V. The upper limit on the emitter voltage is thus 2.8 V. If we conservatively
choose the emitter bias to be 2.5 V, Rg must be 2.5 k().

The quiescent voltage on the base terminal is 3.1 V (i.e., 2.5 + 0.6); this
gives us one constraint on Rpy and Rp,, that is, Rg{/(Rgy + Rpy) = 3.1/9. The
other constraint is set by requiring a quiescent current through Rp, and Rp, at least
an order of magnitude larger than the base current of roughly 15 wA. Doing this
we find that (Rp; + Rpg,) must be less than 60 k). We find that an Rp; of 21 k)
and an Rp, of 39 k) are acceptable.

It is interesting to consider the sensitivity of this bias scheme to Vg op. If
VBE,on varies from 0.5 to 0.7 V, which for this factor is a very large variation,
I¢ varies from 1.04 mA to 0.96 mA, or only 4%. As predicted, the bias point
established by this circuit is relatively insensitive to the value of Vg op.

In this chapter we will tend to use the resistor-biasing scheme of Fig. 11.2¢
whenever we need a specific bipolar transistor circuit for purposes of illustration
“or discussion. This is a very common circuit, one you will see often. In Chap.

12, we will use current source biasing and will use the circuit of Fig. 11.15. This
is a very common circuit for use with integrated differential amplifiers.

11.1.2 Field-Effect Transistor Biasing

Current sources can be used to bias field effect transistors as well as bipolar
transistors, and the FET equivalents to Figs. 11.1a and b should be obvious to
you. Getting the necessary current sources, however, still requires active devices,
and thus resistor biasing is also widely used.

Field effect transistors differ from bipolar transistors in several important
ways that lead to additional techniques for resistor biasing. On the one hand,
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there is no gate current to be concerned with, so the gate potential can be set
quite precisely using a voltage divider like we used to bias bipolar transistors. On
the other hand, the gate-to-source voltage drop is not a simple 0.6 V but instead
varies with bias point. Furthermore, the use of a voltage divider can significantly
reduce the input resistance of a MOSFET amplifier stage.

Three possible ways of resistively biasing MOSFETS are illustrated in Figs.
11.3a, b, and c.* The circuit in Fig. 11.3a uses a voltage divider to set the
voltage on the gate relative to ground in a fashion analogous to that used to bias
the bipolar transistor in Fig. 11.2¢. The idea is that if this voltage, which we call
VReF, is much larger than the threshold voltage Vr, the quiescent drain current will
be relatively insensitive to Vy. We can see this by noting that Vgs = Vrpr — IsRs;
Ip equals Ig; and, in saturation, Ip = K(Vgs — Vr)?/2. Combining these we
arrive at a quadratic equation to solve for Ip:

VREF=IDR5+,/2[I<—D‘+VT (11.11)

Clearly the larger Vigr is, the less important small uncertainties in Vr are. The
drawback of this circuit, as we shall see in Sec. 11.4.1, is that it compromises the

+ VDD
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FIGURE 11.3

Three methods of resistively biasing an n-channel enhancement mode MOS field
effect transistor: (a) a voltage divider is used to set a reference voltage on the
gate terminal in a manner analogous to the bias in Fig. 11.2¢; (b) two voltage
sources are required, but the intrinsic high input resistance of field effect
transistors is not compromised; (c) a large resistor is used between the drain and
gate to automatically place the transistor in saturation.

*For purposes of illustration we will assume we are dealing with enhancement-mode, n-channel
MOSFETs in our circuitry. You should be able to ‘extend our discussions. to other FETs without
difficulty.
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potentially very high input resistance of MOSFET amplifier stages. An alternative
that does not use any resistors on the gate terminal but in general requires two
bias supplies, one positive (+Vpp) and one negative (— Vsg) relative to ground, is
shown in Fig. 11.3b. In this circuit, Vsg plays the role of Vggr in the first circuit.

The final step in the design, independent of which of the bias circuits in
Figs. 11.3a and & is used, is to calculate the drain-to-source voltage Vps and
to verify that the MOSFET is indeed in its forward active region (i.e., in its
saturation region). :

The final bias circuit in Fig. 11.3 is one that is unique to enhancement-mode
FETs. It makes use of the fact that if Vgg = Vpg, then the device is trivially in
saturation, that is, Vpg is automatically greater than (Vgs — V7). No current flows
into the gate terminal, so R can be made very large, which is important because
its magnitude determines the input resistance of this stage. In this case the equation
that relates Ip to the other circuit parameters is

/2
Vop = Ip(Rp + Rs) + %— +Vr (11.12)

This is also quadratic in /p, but it is worth remembering that when we are
designing a circuit we are not usually solving for Ip since that is specified as a
design objective (i.e., is a “known™). We are more typically trying to determine
suitable resistor, and possibly supply, values given a target value for Ip.

Example .

Question. Consider an n-channel MOSFET biased using the circuit in Fig. 11.35.
Assume that the transistor is biased in the saturation region and that V7 is 0.9 V
and K is 1 mA/V2. Assume also that Vpp is 5V, —Vsg is —5 V, and Rp is 3 k().
Choose Rs to give a quiescent drain current of 1 mA.

Discussion. Assuming that the MOSFET is saturated, Vgg — Vp must be 1.4 V,
from Eq. (10.15b), and thus Vg is 2.3 V. Since the gate is at ground potential, the
source voltage must be —2.3 V, and the voltage drop across Rg must be 2.7 V; thus
we select Rg to be 2.7 k{}. The device will be biased in saturation as long as Vpy is
greater than Vg5 — V¢ Since the quiescent drain voltage is 2 V relative to ground,
ie. 5V -3k mA), Vps is 4.3 V; the device is clearly biased in saturation.

The question of the maximum output voltage swing is an interesting one to
consider. Clearly the output voltage can go as high as 5 V, so the positive swing is
3 V. The negative swing is determined by the value of vpg that takes the MOSFET
out of saturation. It is tempting to say that this occurs when vpg is 1.4 V or when
vp is —0.9 V, yielding a maximum negative swing of 2.9 V, but this is not correct.
The value of vy does not stay fixed; instead, it must increase to create the increase
in ip that reduces vpg. In effect, (vgs — Vr) is increasing while vpg is decreasing,
so vpg cannot decrease as much as it would if vgg were fixed at 1.4 V. (We didn’t
have this problem with BJTs because vyg changes very little. That is, in a BJT very
small changes in vgg can cause enormous changes in i~. K would have to be much
larger for the same thing to be true in this MOSFET example.)

To find out what the lower bound on vpyg is, we must know something about
the circuit in which it will be used. If we assume that the source will be incrementally
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grounded in the circuit, then the source remains at —2.7 V. Thus, at the boundary
of saturation where vpg = (vgs — Vr), we have
RcK v
Yps = 5- CTVDS— e (—2.3)
Upon solving this, we find that vpg is 1,95 V and thus that the drain voltage
relative to ground, vpg —2.3, is —0.35 V, corresponding to a negative voltage swing
of 2.35 V. This is significantly less than our first (incorrect) estimate of 2.9 V.

Notice that the small-signal transconductance g, of a field effect transistor
always depends on device, as well as bias point, parameters (i.e., X and/or
Vr, as well as Ip and/or Vgg). This is in contrast to the situation with bipolar
transistors, where we could eliminate the dependence of g, on B by making
I¢ largely independent of Br. This makes it more difficult in practice to design
linear amplifiers with field effect transistors for applications that require specific
values of gain, which has limited their application in simple amplifier circuits.
However, as MOSFET technology has advanced and K and Vy have become
better controlled, more complicated circuits have become possible; now the use
of MOSFETs in high-performance linear integrated circuits has become common.
These circuits use current. source biasing to reduce the dependence of g,, on V7,
but the sensitivity to K remains [see Eq. (11.3)].

11.2 THE CONCEPT OF MID-BAND

After completing the large-signal analysis and/or design of a linear amplifier circuit
to determine the bias point, we will have to turn to an analysis of its small-signal
linear operation about that bias point using our small-signal (i.e., incremental)
equivalent circuit models. A question we must address first is what model to use. -

Usually we will be interested in knowing the small-signal response because
we have a time-varying signal that we wish to amplify. Thus we should assume
that we must use a model which includes the capacitors we added to extend our
initially quasistatic modeling to incorporate energy storage and so that we could
treat time-varying signals. That is, we should use the models pictured in Figs.
8.24 and 10.13. This is a major complication.

The picture is further complicated when we realize that we will find that
it is extremely useful to add additional capacitors to our circuits to introduce
current paths for time-varying signals that do not exist for the bias currents. We
very quickly find ourselves dealing with circuits containing many capacitors, in
addition to all of the other resistors and dependent and independent sources; the
analysis becomes overwhelming.

Fortunately, we will find that we can make major simplifications. To see
how, let us look at a specific example to make sure that first the problem and then
the solution are clear.

Consider the circuit shown in Fig. 11 .4a. This is a bipolar amplifier that we
will see a lot of in this text, but for now we just want to use it to illustrate some
general points. The capacitors C;, Cp, and Cg do not conduct non-time-varying
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' FIGURE 11.4
Resistively biased, capacitively coupled common-emitter bipolar transistor
amplifier: (a) the complete circuit schematic; (b) the complete small-signal linear
equivalent circuit; (¢) the model for mid-band analysis.

(i.e., DC) currents, so for purposes of biasing the circuit is identical to the circuit
in Fig. 11.2c. For small-signal linear operation about a bias point in the forward
active region, the equivalent circuit becomes that illustrated in Fig. 11.4b. Here
we have used the fact that the incremental signal on the power supply is zero (i.e.,
the Voc terminal is incrementally grounded), and we have replaced the transistor
with its hybrid-7 equivalent circuit, Fig. 8.28a. Looking at Fig. 11.4b, we can
count five capacitors. It is clear that unless we can do something dramatic we
have a lot of work to do to analyze this circuit.
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The key to simplifying the analysis of amplifier circuits like that of Fig. 11.45
is to note that the capacitors in the circuit vary widely in size and to recognize that
the impedance of a capacitor varies inversely with frequency. The intrinsic device
capacitors, C, and C, for example, are typically small and have relatively large
impedances at the signal frequencies of interest. By “relatively large” we mean
that the magnitude of the impedance presented by a given capacitor.is so much
larger than the equivalent resistance in parallel with it that it can be treated as
an open circuit. At sufficiently high frequencies this can no longer be true, of
course, but below some limiting frequency, which we call wyy, Cr and C, can
be treated as open circuits and effectively neglected.

C;, Cp, and Cg are elements whose values we choose, so they can be
made as large or as small as we want. We said earlier that the reason for having
these elements in the circuit is to provide additional current paths for the time-
varying signals. This means that we want those capacitors to be large, so that their
impedance is relatively low at the signal frequencies of interest. By “relatively
low” we mean that the magnitude of the impedance of a capacitor is sufficiently
lower than the equivalent resistance in series or parallel with it that the capacitor
can be treated as a short circuit. There will in general be a frequency limit, which
we will call wyg, above which the extrinsic capacitors like C;, Cp, and Cg can
be treated as short circuits.

The frequency range between wio and wyy is called the mid-band frequency
range. One of the objectives of linear amplifier design is to ensure that there is a
mid-band range (i.e., that wy; is greater than w;) and that the mid-band range
encompasses the signal frequencies of interest. We will consider the problem of
calculating wyo and wyy in Chap. 14. For now, we will assume that there is a
mid-band range and that we are operating in it. In this case the circuit in Fig.
11.4b reduces to that shown in Fig. 11.4c. No capacitors remain. C, and C,
have been replaced by open circuits; and Cy, Cp, and Cg have been replaced by
short circuits.

In summary, we will concentrate on analyzing the mid-band performance of
linear amplifiers. In the mid-band range all of the capacitors are effectively either
short or open circuits and do not appear in the analysis. The transistor models that
we must use for mid-band analysis are the low-frequency incremental equivalent
circuit models (i.e., those in Figs. 8.24 and 10.15).

11.3 SINGLE-BIPOLAR-TRANSISTOR
AMPLIFIERS

As we look at various single-transistor amplifier stages, we will want to consider
certain important performance characteristics as a way of evaluating their useful-
ness for various applications. The first such useful small-signal linear amplifier
characteristic is the mid-band voltage gain A, , which is defined as the ratio of the
incremental output and input voltages (see Fig. 11.4c):

A, = Jout (11.13)
Vin
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In certain situations, it is useful to also introduce the concept of open-circuit
voltage gain Ay,oc, Which is defined as the value of A, when R (see Fig. 11.4¢) is
infinite (i.e., with the output terminals open-circuited). The corresponding output
voltage Voutoc is the Thevenin equivalent voltage seen when looking back in at
the output terminals; clearly, Vour,oc = Av,ocVin.

We also define mid-band current gain A; as

; :

A= (11.14)
lin

Again, we can speak of a short-circuit current gain A; sc, which is the value of A;

when Ry is a short circuit. You will recognize the corresponding output current as

the Norton equivalent cuirent seen when looking back in at the output terminals;

clearly, Aoutse = Ai,sciin-

The mid-band power gain A, is defined as

Voutl
Ap = Pout _ out.out = AA; (11.15)
Pin Vinlin
where pout 1S Voutlont and pPin iS Viniin. Equation (11.15) shows that the power
gain A, can also be written as the product of A, and A;.
Additional characteristics of interest are the input and output resistances.
The mid-band input resistance Ry, is defined as

Rin

Yin (11.16)
Lin

Rji, is an important parameter because it provides us with a measure of how much
the amplifier will load the input source. Referring to Fig. 11.4c, we see that vj,
is related to v, as

Rin

Vin = mv, (1117)

Clearly, if we want the largest possible output signal vy, for.a given source
_signal v;, we also want the largest possible vi, for a given v;. That is, we want Ry,
to be much larger than R, so vy, is essentially v,. Input loading is an important
factor to keep in mind as you study linear amplifiers. We will choose to think of
the voltage gain as voyu/ vin rather than as voy/ v, SO we must remember that our
expressions may not reflect the negative impact of R;; and Ry seen in Eq. (11.17).

The mid-band output resistance Rqy is defined as the resistance seen when
looking back in at the output terminals with zero input signal. Ry is clearly also
the Thevenin equivalent resistance of the amplifier seen when looking back in at
the output terminals at mid-band.

We will now turn to the study of four single-transistor bipolar ampli-
fier stages: the common-emitter, degenerate-emitter, common-base, and emitter-
follower stages. After discussing these four stages here and similar field effect
transistor stages in Sec. 11.4, we will conclude by comparing and contrasting all
of these stages in Sec. 11.5.
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11.3.1 Common-Emitter Stage

In the common-emitter stage an input voltage signal is applied to the base terminal
of the transistor, the output voltage is taken from the collector terminal, and the
emitter terminal is grounded (at mid-band frequencies). The output voltage is
created by the collector current flowing through a device or circuit we call the
load. This load can take several forms. We will first look at common-emitter
stages in which a passive linear resistive network is connected to the collector
as the load. Then we will look at circuits in which more complicated “active”
devices, such as other transistors, are used as the load.

a) Linear resistor loads. We have already seen a resistively biased, capacitively
coupled version of a common-emitter stage with a linear resistor load in Fig.
11.4a. To analyze the small-signal mid-band performance of this amplifier we
use the circuit pictured in Fig. 11.4c. For convenience we redraw this common-
emitter amplifier and its mid-band small signal linear equivalent circuit in Fig.
11.5. Notice that we have included the parasitic base series resistance r, and the
output resistance r, in Fig. 11.5b because we do not know yet whether they can
be neglected.
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FIGURE 11.5
(@) Common-emitter bipolar transistor amplifier; (b) the small-signal linear
equivalent circuit at mid-band, including ry and r,.



330 MICROELECTRONIC DEVICES AND CIRCUITS

Looking first at the voltage gain, we see from Fig. 11.5b that vq is given by

Vout = —gmvaL' ‘ - (11.18)
where R; is the equivalent of resistors r,, Rc, and Ry in parallel; that is,
Ry=ro||Rc| R (11.19)
Next, we see that v, can be related to v, as
: B o .
Vo = PR Vin (11203)

In a modern transistor r is typically 25 to 30 {2; if B is 50 or more and /¢ is on
the order of 1 mA, r, will be greater than 1 k{2, so that to a good approximation
we can write

Vo = Vin (11.20b)

Substituting these results in Eq. (11.18) we arrive at the following expression for
the voltage gain:

A, = —gmR! (11.21)

A frequent objective of a circuit designer is to make A, as large as possible,
so let us now see how big we can make A,. Looking at Eq. (11.21), we see that
we want to make both g,, and R; as large as possible. Looking first at R}, we see
that it will essentially equal the smallest of r,, R¢, and R;. Assuming we have
already chosen the transistor with the highest available r,, the only quantities we
can change are R¢ and R. If we make R¢ and R; much larger than r,, R; will
be approximately r, and A, will be maximized for this particular transistor at

Ay max = —8mTo (11.22)

Both g,, and r, are functions of the bias point, so we next consider what
bias point makes A, max largest. Recalling that g, is gl¢/kT and r, is [V4}/Ic,
where V, is the Early voltage of the transistor, we find that in terms of the bias
point, Eq. (11.22) can also be written as

Ay,max = _Q_]l‘;_?l (11.23)
Interestingly, the collector bias current /¢ does not appear in this expression.
- 'Thus, the maximum voltage gain we can ever get from a given transistor in a
common-emitter connection is determined solely by its Early voltage (and the
operating temperature). This gain can be very large. For example, a transistor
with an Early voltage of 50 V has an A, max of 2000 at room temperature.

The collector bias current /¢ does not appear explicitly in Eq. (11.23), but
it is lurking in the background because we have already assumed that R¢ and
R; are much greater than r, and because r, depends on I. Thus if I is too
small, r, will be too large, and our assumption that it is less than Rc and Ry
will no longer be valid. The implication is that we must make I- greater than
some minimum value, but there is also a problem in making it large. Specifically,
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if I is large, the quiescent voltage drop across Rc will be too large, and the
transistor will be saturated. To see this, look back at Fig. 11.4a (you may also
want to review the example on page 322). To keep the transistor biased in its
forward active region, the voltage drop across R¢ must be less than some value,
call it Vo max, and thus we must have

IcRc < Ve Max (11.24a)
or
Ic < Ve max (11.24b)
Rc

This in turn places a restriction on r,; that is, we have

o= Dl Wl (11.25)
Ie  VeMmax

which says that to have R greater than r,, we must have V¢ yax greater than
[Val. :
Now we have a problem. V¢ max is determined by the power supply voltage
Ve and the desired output voltage swing, and it is typically at most a few tens of
volts. At the same time, |V4| in a good transistor is several tens or even hundreds
of volts. Typically then |V, is at worst comparable to V¢ max, and frequéntly is
much larger than V¢ max, so making Rc much greater than r, is impossible!*
We will see how to get around this problem by using nonlinear active loads in
the next subsection, but for now where we are using linear resistors, we cannot
have r, much less than R¢ and Ry, and we cannot get a gain as large as A, max
in Egs. (11.22) and (11.23).

If Rc and Ry are in fact restricted to be much less than r,, as we have just
seen they will be if we have a good transistor with a reasonable Early voltage,
R; in Eq. (11.19) will be more nearly Rc¢ in parallel with R, than r,, and our
voltage gain expression is now approximately

. ngCRL
A, Re + Ry (11.26)
or, using the bias dependence of g,,,
_ _4qlcR;, _ g IcRiRc ‘
Av kT kT R; + Rc¢ (11.27)

Again using our restriction on the I¢R¢ product [i.e., Eq. (11.24a)], we
have

R .
g Ve maxRy (11.28)

< -
Av kT (Rc + Ry)

*“Impossible” is, of course, a bit strong; perhaps “impractical” is a better word. We can always find
a poor transistor with a small Early voltage |V,| and small output resistance ro, but A, max for this
device will also be small [see Eq. (11.23)], so what’s the point?
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Clearly, to make A, large we want to keep the product IcR¢ as large as
~ possible, but within this constraint we still have the freedom to make /¢ small and
Rc large, or vice versa. Looking at Eq. (11.27), we see that the best choice, if we
want to increase A,, is to reduce R¢. /¢ will have to be increased correspondingly
to keep the IcR¢ product at its maximum value, of course, and this increases the
power dissipation in the stage and reduces its input resistance (see below), both
of which may be undesirable consequences. Notice also that once R is reduced
to less than roughly a tenth of Ry, little is gained by reducing it further since the
factor R;/(R¢ + Rp) will already be just about as large as it can ever get (i.e.,
approximately 1).

Increasing the size of the bias supply V¢ is a way to increase the bound
on the IcR¢ product and thus is another way to increase A,, but doing so also
increases the power dissipation in the circuit and is not always an attractive or
practical solution. A far better solution is to use an active load, as we shall see in
the next subsection; the “cost” of doing this comes in terms of circuit complexity
and device count rather than power or other performance parameters.

Returning to our characterization of the common-emitter amplifier stage,
the easiest way to determine the mid-band current gain is to first think of the
dependent current source as [Bri, rather than g,,v,, and to notice that —iyy is
the fraction of this current flowing through Ry, or BripRc/(Ry + R¢), assuming
ro is so large that it can be neglected. Next notice that i, is the fraction of ij,
flowing through r,, which is iWRp/(Rp + r), assuming r, can be neglected.
(Here Ry is the parallel combination of Rp; and Rp,.) By substituting this latter
expression for i, in the former expression for ioy and dividing by ij,, we ar-
rive at -

Re R,
(RL + Rc) (R +157)

Notice that A; is always less than 8r, but in the limit of R; much smaller than R¢

and of Ry much larger than r,, A; becomes very nearly Br. Of course, making

Ry very small means that the voltage gain is also very small, so clearly choices

must be made in the design of the stage depending on the performance objectives.

The power gain A is the product of A, and A;. It is maximized when Rj
is much larger than r, and when Rc = R;, in which case ‘

A; = —BF

(11.29)

| R
Apmax = 'BLgZ"l_‘E_ ‘ (11.30a)
or, equivalently,
IcR
Apams = 2P CHC (11.300)

Notice again the importance of the quiescent voltage drop across the collector
resistor, /cRc.

The input resistance of this stage is Ry in parallel with r,, and the out-
put resistance is Rc. In a typical common-emitter amplifier Ry will be much larger
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than r,, so Ry, is essentially r, and depends on the bias point as BrkT/qlc.
As we have said earlier, this is typically on the order of a thousand ochms. Notice
also that making I larger reduces Rj,, as we mentioned above.

Example

Question. Assume that we have a common-emitter amplifier like that in Fig. 11.5a,
biased with I = 1 mA, using the supply and resistor values from our earlier
example; that is, Voo = 9V, Rc = 3 kQ, R = 2.5 kQ), Rgy = 21 kQ, and
Rp, = 39 k). Assume also that R; is 3 k{). What are the mid-band incremental
voltage gain, current gain, power gain, and input resistance?

Discussion. The transconductance g, for .this bias point is 40 mS, and r; is
1.88 k€. Applying our formulas we calculate that Ry is 1.5 kQ, so A, is —60,
A; is —18.75, and A is 1125. The input resistance is 1.65 k(). These results will
have more meaning to us after we discuss other amplifier stages in the next several
sections.

To summarize the properties of the common-emitter stage with a linear
resistor load, this stage can have significant amounts of both voltage and current
gain. Its input resistance is typically r,, which is often relatively low, and its
output resistance is R¢.

b) Nonlinear and active loads. The voltage and power gains of the common-
emitter amplifier are limited by the quiescent voltage drop across the collector
resistor R¢ caused by the quiescent collector current /- flowing through it: the
infamous I¢cR¢ product, or Vo max. For a given R, increasing I¢ (to increase
g&m, for example) reduces the magnitude of the permissible output voltage swing;
and, as we have already pointed out, if the IcR¢ product is made too large, the
transistor will be saturated. Thus the IcR¢ product can be only so large. As a
practical matter, we find in many designs that /¢R¢ turns out to be on the order
of Vcc/2 or Vcc/3. » ‘

A way around this dilemma is illustrated in Fig. 11.6. The idea (as shown
in Fig. 11.6a) is to use a collector bias element in place of R that is nonlin-
ear and for which the incremental resistance at the bias point, dvap/di Dl 0
is much larger than the ratio of the quiescent terminal voltage and current,
Vag/Ip, as shown in Fig. 11.6b. If we define the incremental resistance of this
nonlinear element at its bias point as r, that is,

dVAB

o= (11.31)

then the incremental equivalent circuit of the amplifier is that illustrated in Fig.
11.6¢. Now there is no bias-related restriction on the magnitude of r.. If . and
R; are much greater than r,, the voltage gain of the stage can mdeed be the
A, max we defined earlier in Eq. (11.22), that is,

A, = Av,max = —8mlo - (11.32)
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FIGURE 11.6

(a) Common-emitter circuit with a nonlinear element (NE) as a load; (b) the
current-voltage characteristics sought for such a load; (c) the small-signal linear
equivalent model for this circuit.

Since achieving this gain relies on R, being very large, it is convenient at
this point to recall that the definition of open-circuit voltage gain A, o is the gain
of the stage with the output terminals open-circuited (i.e., with Ry infinite). Thus,
what we want to be talking about is the open circuit voltage gain, and for the
" common-emitter stage in Fig. 11.6 we have '

Yol'e

" (11.33)

Av,oc = -8
In the limit of . > r,, this approaches Ay max-

As far as finding a suitable nonlinear load is concerned, there are many
nonlinear devices, some active and some passive, that have the property illustrated
in Fig. 11.6b (and there are many, such as p-n diodes, that do not), but most
nonlinear devices tend to be active. In fact, a near-ideal device for this application
is a current source, and we can make excellent current sources using transistors.
An example is shown in Fig. 11.7, where a bipolar transistor current source circuit
is used to bias a bipolar common-emitter stage. (We will see additional examples
involving FET amplifier stages later in Sec. 11.4.)
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FIGURE 11.7

Use of npn and pnp bipolar transistors as loads: (a) the idea of a BIT as a current
source, showing in (i) that fixing the base-emitter voltage of a high—f transistor at Vrgr
fixes its collector current at I = Igge9'ReF/KT and showing in (ii) that the
corresponding incremental equivalent circuit reduces simply to r,; (b) a
common-emitter amplifier stage with a bipolar transistor current source replacing R in
the collector circuit; {c) the corresponding mid-band small-signal linear equivalent
circuit. Notice that a numerical subscript has been added to the equivalent circuit
parameters to indicate to which transistor in the circuit they correspond.
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The circuit in Fig. 11.7a illustrates the basic concept: a bipolar transistor
with a fixed base-emitter voltage Vzr looks like a current source when viewed
at the collector terminal, as long as the transistor is in its forward active region.
This is illustrated in Fig. 11.7a(i) where Vzr is fixed at Vggr, and the value of
the current source /; is approximately Ipse?'Rer/KT | With respect to mid-band
frequency signals, then, this device looks like a transistor with no incremental
base-emitter voltage (i.e., vy, is zero), and the only element seen between the
collector and emitter is the output resistance r,. This is illustrated in Fig. 11.7a(ii).
Consequently, the incremental resistance of this load 7, is r,.

Implementing this type of current souce load is somewhat complicated in
practice, albeit straightforward, as the circuit in Figure 11.7b helps illustrate. The
complexity arises because the collector current of the transistor we are loading,
Q1, is already set by its bias network (i.e., Rpi1, Rpz1, and Rgp) and if the
value of the load current souce [; is not identical to I¢y, either Q; or Q3 will
saturate. It would be easy to set I; equal-to Iy if we knew [gg for O3, but
a circuit designer can never rely on knowing /gs with any accuracy. The best
we can do is to rely on the fact that in an integrated circuit we can comfortably
assume that devices having the same size and shape will have essentially identical
characteristics. Thus if we duplicate the network biasing (; and use it to bias
an identical transistor 05, then the collector current of @, will equal that of Q.
Then we can use /¢2, the collector current of Q», to establish Vrgr by using I¢;
to bias Q4, a transistor that is identical to the current source load transistor Q3.
Doing this, Vzg4 becomes the Vrgr we seek, and with this value of Vrgr we have
[cs| = [Ical = Ica = Icy.

Notice that we did not say |/ 3| and |I¢4] equal I, and I¢y, but only that
they are similar. The descrepency arises because we have to account for the base
currents of Q3 and Q4. In the circuit in Fig. 11.7b, the base currents for Q3 and
Q4 are supplied by the transistor 05, which has been connected between the base
and collector of Q4, and the base current of Qs is supplied by Q,. Summing
the currents into the collector of Oy, we find that because of this base current,
[Zcal is not exactly I¢c2, so |[Ics) is not exactly Icy. Instead |Ic4| is related to I
through I¢c; = |Ica| + |Ips|. Pursuing this further, since Ips is (/z3 + Ip4)/Bs and
_ since Ip3 and Ip4 are both I3/ B3 (recall that Q3 and Q4 are identical and that
Ic3 = Ic4), we can write Iey = Ico = [Ical(1 +2/BafBs) = |Ics| (if B3 and Bs
are large). Thus, |Ic3| is not exactly equal to I, but it is very, very close if the
Bs are large.

An alternative to using Qs in this circuit is to simply short the base and
collector of Q4 together (you will find an illustration of this alternative applied
to npns in Fig. 12.16). When Q5 is eliminated and the base and collector of Q4
“are shorted, 0, must supply the base currents of O3 and Q4 directly, and we find
that Ic; = Icy = |I¢3|(1 4+ 2/B3). In this case, the difference between I¢; and
|7c3| may be much more significant, and adding Qs is a wise design move,

Summarizing our discussion thus far, the practical implementation of a
current source load is more complicated than one might have guessed looking at
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Fig. 11.7a, but it can be done straightforwardly in an integrated circuit context
where we can safely assume that the characteristics of devices will be matched.
Turning now to the incremental analysis of this circuit, the transistor Q3 is the
current source, and the base-emitter voltage on (3 has a constant value established
by Q4. Thus the g,3v,s dependent generator in the hybrid-7 model for Q3 is
zero, and the only element between the collector and emitter of the incremental
model of Q3 is the output resistance r,3, as the sequence in Fig. 11.7q illustrates.
The incremental equivalent circuit for the amplifier in Fig. 11.7b is therefore as
shown in Fig. 11.7c¢. Thus, the load resistance r. is now r,3, and the open circuit
voltage gain is

7017 03 ‘ :
A = — o 11.34
v,0c gmlrol o3 ( a)

which can also be written as

Ay = ——2mL (11.34b)
8ol t 803
By using the bias point dependences of g,, and g, and noting that the magnitude
of the quiescent collector current, |/¢|, is the same in Q; and O3, we find that
Eq. (11.34a) can also be written as

Ay oo = -2 [VarllVas] (11.34c)

kT [VA1| + [‘/;43|

Once again the importance of a large Early voltage, and thereby a large output
resistance, is apparent.

A current source load like this is most commonly used with an emitter
coupled pair, or differential amplifier, which we shall study in Chap. 12. The
circuit in Fig. 11.7b is used in the 741 operational amplifier, for example (a
schematic of the 741 circuit is given in Fig. 14.5). In this context, it is also called
a current mirror, a subject we will discuss again in Sec. 13.3.

The incremental analysis of the amplifier in Fig. 11.7b is actually the easy
part; the more troublesome aspect of the circuit is biasing it. As we discussed ear-
lier, this circuit requires very close matching of the components to be successful:
Q, must be identical to Q1, Q4 to Q3, Rp1z to Rpyr, etc. Such close matching
of components is possible only in integrated circuits where all of the devices are
fabricated simultaneously. Even then, however, we must also stabilize the result-
ing high-gain amplifier in a feedback loop to keep the amplifier from saturating.
This is so because the output of any very high-gain amplifier, such as the one
we have just presented, will saturate unless the input is very small. At the same
time, any imbalance in the circuit (including any imbalance in the components) .
will function effectively as a virtual input signal that can easily be large enough
to saturate the output (i.e., saturate one or more of the transistors in the circuit).
As a practical matter then, the only realistic way of using such a “beast” is to put
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it in a feedback loop.* This is exactly what you already do with an operational
amplifier, for example, when you put a resistor between the output terminal and
the negative input terminal. The price you pay is reduced overall gain, but what
you buy is an amplifier that works and a gain you can rely on since it is set by
passive, linear resistances.

11.3.2 Degenerate-Emitter Stage

The common-emitter amplifier stage is an extremely important one that is widely
used, but it does have some shortcomings. In particular, its voltage gain is
temperature-dependent, its current gain depends directly on Bp, and its input re-
sistance is relatively low. A common solution for these problems is to leave some
or all of the emitter bias resistor Rg in the small-signal circuit by not shorting it
completely with Cg. The circuit, which is now said to have emitter degeneracy,
is illustrated in Fig. 11.8a. The corresponding small-signal incremental equivalent
circuit for mid-band analysis is presented in Fig. 11.85.

The analysis of the circuit in Fig. 11.8b is facilitated if we recognize that
the current through the resistor Rg; is (g, + gx)Vx. The input voltage vy, is thus
equal to v, + Rg1(gm + g#)ve, and we can write v as
- Vin

1+ REl(gm + g’TT)
The output voltage vou iS —R; gmVa, as it was in the common-emitter stage, so
we can immediately write the voltage gain A, as

(11.35)

Vo

gmRyp
A, = — 11.36a
’ I+ Rei(gm + 8x) ( )

By multiplying the numerator and denominator of this expression by r, and
recognizing that the product rg,, is Br, we find that we can also write this as

BrR;
A, = — - 11.36b
r» T (Br + DRz, (11.360)

If Br is large, as is typically the case, the r, factor in the denominator will be
_negligible and Eq. (11.36b) for A, can be simplified significantly to
!
4, ~ -2 (11.36¢)
Re1
We now see that A, depends only on the ratio of resistor values. This is a useful
result for an integrated circuit amplifier because it is often difficult to fabricate
integrated circuit resistors to within 20 percent of their design value; however,
the ratio of resistor values can easily be maintained to within a few percent of a

*This discussion can readily be quantified; this is done in Sec. 13.3. You may want to look ahead to
that section and particularly to Fig. 13.17, which should help you visualize the concept of feedback
stabilization.



SINGLE-TRANSISTOR LINEAR AMPLIFIER STAGES 339

T+ VCC

Vout g R
L

(»)

FIGURE 11.8
Degenerate-emitter stage: (a) the full circuit; (b) the small-signal linear
equivalent circuit for mid-band analysis.

design value. The temperature dependence of A, is, of course, also completely
removed, assuming the temperatures of the two resistors stay the same.

Comparing Eq. (11.36¢) with Eq. (11.21), we see that the magnitude of the
gain is now smaller by a factor of essentially 1/g,»Rg1),which can also be written
‘as rp/BrRE;. We said earlier that 7, is much smaller than BrRg1, so clearly this
factor is much less than 1. This reduction in the magnitude of the voltage gain
is one of the costs we must pay for the increased control that we have achieved
over the value of the voltage gain. :

The magnitude of the current gain is also reduced significantly from that of
the common-emitter circuit. A little algebra shows that it is approximately

___Rc Rp
e RL'(Rm | (11.37)
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The parameter 8 does not enter this expression for the current gain, as long as 3
is large, but again a price has been paid for increased control and stability. The
first factor in Eq. (11.37) is typically of order %, whereas the second factor might
be as large as 30, yielding a current gain of 10 to 15, rather than By as in the
common-emitter circuit.

The mid-band power gain is easily found as the product of Egs. (11.36c)
and (11.37). It is maximum when Rc = Ry, as expected, and is given approx-
imately by

RiRy

Ap,vmax = 4R%1 (1138)

The output resistance of this stage is the same as that of a common-emitter am-

plifier (i.e., R¢), but the input resistance is now significantly larger and is one of

the important characteristics of this circuit. The input resistance is now essentially
(B + 1)Rg), in parallel with Ry. To see this we first write

1 +RE1(gm + gw)

T

Rin = R} | (11.3%)

or, equivalently,
Ry, =~ Ry [ [(BF + 1)REL + 7] (11.39b)

If we approximate (Sr + 1) as Br and neglect r relative to the other terms, this
becomes

Rin = Ry || BrRE: (11.39¢)

Usually this is essentially Ry because BrRg; is very much the larger factor. In
this case we would want to make the base bias resistors, Rp; and Rp;, as large
as possible, keeping in mind the desirability of having the quiescent bias current
through them be much larger than the quiescent transistor base current /.

Example

Question, Consider a circuit identical to the one in the preceding example except
that the entire emitter resistor is no longer shorted incrementally to ground. Assume
that the circuit now looks like that in Fig. 11.8a with Rgq = 0.5 k() and RE2 =
2.0 k. What are Ay, A;, Ap; and Ry, in this circuit?

Discussion. The product g Rpq is 20, which allows us to use Eq. (11.36¢) for A,.
Doing this we find that A, is —3. We also find that A; is now —13.65 and A, is
+41. These gains are considerably smaller than the corresponding quantities for a
common-emitter amplifier.

The input resistance is [(8 + 1)Rgy + r], which is 39,7 kQ, in parallel with
Rp, which is 13.7 kQ); the combination is 10.2 k), which is clearly dominated by

Rp. A high input resistance is one of the attractive features of this stage.

The degenerate-emitter stage might seem like a good place to use a nonlin-
ear active load as a way to recover the gain we lose from the presence of Rgi,
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but this is not often done. If emitter degeneracy is being used to increase the
input resistance, then using it with an active load makes sense, but if it is being

used to accurately set the gain (as is more common), an active load 1s counterpro-
ductive. This is because the effective resistance of a nonlinear active load is not
a well-controlled parameter; therefore its value can be expected to vary widely
from circuit to circuit. Consequently the advantage of using emitter degeneracy
“to precisely set the gain of the stage is lost.

We should point out that the use of emitter degeneracy is a form of feedback.
An element such as Rz (which appears in both the input and the output ¢ircuit)
couples, or feeds back, some of the output signal to the input of the transistor in
such a way that it controls the gain more precisely, albeit at a lower magnitude.

The degenerate-emitter amplifier stage may be summarized as follows: the
use of a feedback resistor in the emitter yields a high input resistance and mid-
band gains that depend only on the ratios of resistor values in the circuit and are
independent of the transistor parameters.

11.3.3 Common-Base Stage

Sometimes we need an amplifier stage that has a very small input resistance, even
smaller than that available from a common-emitter amplifier. This can be achieved
by applying the input signal to the emitter of a bipolar transistor, taking the output
off the collector, and incrementally grounding the base. This is illustrated for our
standard resistively biased, capacitively coupled circuit topology in Fig. 11.9a. It
is more common to draw this circuit, the common-base stage, as shown in Fig.
11.9b, which is exactly the same circuit as in Fig. 11.9a with the components po-
sitioned differently. The corresponding mid-band small-signal model is presented
in Fig. 11.9c¢.

The mid-band input resistance of this circuit is Rg in parallel with r.. The
resistance r, can be written as (g, + g,)”!; writing it this way we can recognize
that r, is usually quite smiall, so that we have

1 1
Ry =Rgliro=r, = =
" E” ¢ ¢ Em T &x gm(1+1/BF)

When Br is large, we can neglect 1/ B relative to 1 and this becomes

(11.402)

~ 1 _ I (11.40b)

’ Em Br »
This is much smaller (by a factor of Br) than the input resistance of the common-
emitter stage; it can be on the order of 25 to 50 €} (see the example below).
The output resistance of the common base circuit is the same as that of the
common-emitter and degenerate-emitter circuits. The magnitude of the voltage
gain of this circuit is the same as that of the common-emitter circuit, but.is now
positive:

A, = +gmR. (11.41)
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FIGURE 11.9

Common-base stage: (a) the full circuit drawn in the format used in earlier
figures; (b) the full circuit in more standard common-base format; (c) the
small-signal linear equivalent circuit for mid-band analysis.
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The current gain is also positive but is now less than 1:
Rc

= Rc + Ry

assuming that the product Rg(g, + g-) is much greater than 1, as is typically

the case. The power gain is still greater than 1, however, and the circuit is a very

useful amplifier stage. The maximum power gain, which occurs when R- = R;,
is approximately:

A; (11.42)

Ay~ g'”4RL (11.43)

Example

Question. Consider a common-base stage biased using the same supply and resistor
values used in the preceding examples. What are the mid-band voltage, current, and
power gains of this stage, and what is the input resistance?

Discussion. Using Eqs. (11.41) through (11.43), we find that A, is 60, A; is 0.5,
and Ap is 30. The input resistance Ry, is 25 {2, by far the lowest of any of the
stages we have considered thus far.

In summary, the common-base circuit has a very low input resistance, high
voltage gain, and no net current gain. It is a useful first stage in applications
where a low input resistance is important.

11.3.4 Emitter-Follower Stage

All of the stages we have looked at thus far have had the same relatively large
output resistance Rc. A stage with a low output resistance can be obtained by
putting the input on the base, taking the output off the emitter, and making the
collector common to both input and output (i.e., incrementally grounding it).
This circuit is called the common-collector stage or the emitter-follower stage.
It is illustrated in Fig. 11.10a using our standard resistor biasing and capacitor
coupling. The mid-band equivalent circuit is illustrated in Fig. 11.105.
The voltage gain of this stage is given by
Ay, = L
1+[1/(gm + gmR;]

where R; is now Rg in parallel with R;. Since (g + g#)R} is typically much
greater than 1, this expression for A, reduces to approximately 1, that is,

A, =1 (11.44b)

Note that A, is in fact very slightly less than 1. Thus the output very closely
matches, or follows, the input. Since the output is taken off the emitter, we arrive
at the name emitter-follower. ,

~Although the voltage gain is 1, the current gain is still appreciable for this
stage. The expression is complicated because there are several current dividers in
the circuit, but we find that we have approximately

(11.44a)
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Emitter-follower stage: (a) the full circuit; (b) the small-sigﬁal linear
.. equivalent circuit for mid-band analysis.

4 Fb

~ 1.45
iR (11.45)
Emitter-follower stages are designed to have a large input resistance (see below)

and to be used with small load resistances, so 4; is typically large. Note, finally,
that since the voltage gain is approximately 1, the current and power gains are
essentially equal.

The input resistance of the emitter-follower stage is Ry in parallel with
(B + 1R}, where R} is the parallel combination of Rg, Ry, and r,; that is,

Rin =~ R [ [(B + DR, + 14] (11.46)
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This is clearly very much larger than Ry, and this stage very effectively buffers
stages preceding it from small resistance loads, such as audio speakers, etc.

The output resistance of the emitter-follower stage is much lower than any
of the other stages we have studied. Looking back in at the output terminals with

v, set to zero, we find

(Rr | Rp) + rx

Rout'_"'RE“ B+ 1

7o . (11.47)

For typical bias levels, [(Rr || Ry) + r»]/(B + 1) is by far the smallest of the three

parallel resistances in Eq. (11.47), and we have, assuming 3 is much greater than 1,

~ (Rt ”RJIB) + 7
B

The output resistance is clearly much smaller than the output resistance of the
input circuit (i.e., than Ry alone).

Rom (1 1.48)

Example

Question. Consider an emitter-follower stage like that in Fig. 11.10a with Rp; =
39k, Rgy = 21kQ, Rg = 2.5kQ, Ry = 1k, and Ry = 1 k). What are the
linear small-signal mid-band voltage, current, and power gains; and what are the
input and output resistances of this circuit?

Discussion. R; is 0.71 k{2, so (g + gx)R] is approximately 29 and A, is then
0.97 (i.e., essentially 1). The current and power gains are approximately 14. The
input resistance is essentially Rg, and the output resistance is just under 40 Q. This
Rout is far smaller than in any of the preceding stages.

In summary, the emitter-follower is characterized byva large input resistance,
small output resistance, unity voltage gain, and modest current and power gains.

11.4 SINGLE FIELD EFFECT
TRANSISTOR AMPLIFIERS

We will continue to use n-channel, enhancement mode metal-oxide-semiconductor
field effect transistors, or MOSFETS, for purposes of illustration as we now extend
our discussion of single-transistor amplifiers to include field effect transistors. The
results we obtain will, however, be applicable to all types of field effect transistors.

There are many similarities between the small-signal analysis and perfor-
mance of bipolar and field effect transistor circuits, and we can use our knowledge
of bipolar transistor circuits in our analysis to take certain shortcuts. The circuits
we will consider—the common-source, degenerate-source, common-gate, and
source-follower circuits—are the FET analogs to the common-emitter, degenerate-
emitter, common-base, and emitter-follower bipolar circuits, respectively. The
FET and bipolar circuits share many properties. You will notice, however, some
important differences that arise from the fact that the input resistance of a field
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effect transistor is extremely large. A large input resistance is one of the attractive
features of FETs.

11.4.1 Common-Source Stage

As we did when we discussed common-emitter amplifiers, we will divide our
discussion of common-source amplifiers into two parts. The first deals with circuits
that have only linear resistors as load elements in the drain circuit, and the second
deals with the use of nonlinear, active elements as loads. We will see that using
nonlinear active loads is much more important in FET amplifier design than it is
in bipolar design and makes possible some very exciting circuits.

a) Linear-resistor load. A capacitively coupled, resistively biased common-
source field effect transistor circuit is shown in Fig. 11.11a. In this circuit a
voltage divider is used to set the gate-to-source bias, which then fixes the drain
current as satisfying

K ( Re2Vop

2 .
Ip = = - - .
D Rorr a ~ IoRs VT> (11.49)

2
The mid-band incremental equivalent circuit for the common-source ampli-
fier of Fig. 11.11a is shown in Fig. 11.11b. The resistance R, is Rg; in parallel
with Rgz. R} is the parallel combination of r,, Rp, and R; .*
Looking first at the mid-band voltage gain A,, we see from Fig. 11.11b that
Vout 8 —gmVgsRy and that v, is vi,, so we immediately have

A, = —gmR} (11.50)

This voltage gain has its maximum possible value for a given transistor when R,
and Rp are much larger than r,, in which case

A, = Av,max = —Gmlo = _'gﬂ (11.51a)

8o

This quantity is very much dependent on the bias point because both g,, and r,
. depend on the quiescent drain current. That is, gn is /2K |Ip| and r, is |V4|/Ip,
where V, is the Early voltage of the transistor. Thus

P
[Ip|

This expression tells us immediately that to make A, m.x large we want to keep
the quiescent drain current small.

Ay max = —|Va4l (11.51b)

*Notice that the equivalent circuit in Fig. 11.11b is very similar topologically to the common-emitter
mid-band incremental model in Fig. 11.5 and that many of the gain expressions are the same, as we
shall see.
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FIGURE 11.11

(@) Common-source amplifier circuit; (b) its mid-band small-signal linear
equivalent circuit; (c) a second common-source amplifier circuit biased in such

a way as to achieve an infinite mid-band input resistance (doing this requires
the use of two bias supplies, Vpp and Vsg).
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Another useful form for A, max can be obtained by writing Ip in saturation
as K (Vgs — Vr)?/2, which yields

__ 2V
Av,max - IVGS _ VT|

As a practical matter, it is difficult to bias an FET within several kT /g of Vr, so
the factor |Vgs — Vr| will typically be 4 to 5 kT /q. This fact, coupled with the
fact that |V,| for MOSFETs tends to be less than for BJTs, results in A, max for a
typical MOSFET being as much as an order of magnitude (i.e., 10 times) smaller
than that of a typical BIT.

Unfortunately, as we discussed at length in Sec. 11.3.1a, we cannot realize
a voltage gain of A, max in a stage biased through a linear output resistor because
we cannot make Rp arbitrarily large and keep the transistor biased in its forward
active region. Using the same arguments we used in Sec. 11.3.1a, we can show
that to have Rp larger than r, we must have the maximum voltage drop across
Rp, which we can call Vp yax, larger than ||, and this is not a likely situation. It
is only with active nonlinear loads, which we will discuss in the next subsection,
that we can hope to approach A, max.

In most situations where Rp is a linear resistor and the transistor has a
reasonable Early voltage, r, will be greater than Rp. In addition, r, can frequently
be neglected compared to Rp and Ry . In this case, the voltage gain becomes

(11.51¢)

8 mRLRD
A~ —Z— . :
v Rp + Ry (11.52a)
To understand what freedom we have to make this factor large, it is helpful
to write g,, in terms of its bias point dependence:

R;Rp '
= - J2KIp— 11.
A, -y (11.52b)
As we have just said, the voltage drop IpRp across resistor Rp can only be so large
or the MOSFET will no longer be in saturation; this has important implications
for the voltage gain in this case. Writing A, to isolate this product, we have

(11.52¢)

Written this way, we can see that the prescription for maximizing the voltage gain
of a common-source stage is to use a transistor with the largest available value for
K and to keep the IpRp product as large as possible. Within this later constraint
we also want to keep Ip as small as possible. Doing this implies that Rp must
be made larger, which will eventually make the last term in Eq. (11.52c) smaller,
but in a MOSFET circuit it is often the case that R; is extremely large (it may
even be infinite), and so Rp can usually be made quite big before it starts to have
a detrimental effect on the gain.

Next consider the mid-band current gain A; of this stage. The output cur-
rent ioy is the fraction of —g,v,, flowing through R;, which, neglecting r,,
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is —gmVesRp/(RL + Rp); and v, is inRg. Combining these and dividing by i,
yields ‘

_ _&nRsRp
A P (11.53)

Finally, multiplying Egs. (11.52c) and (11.53), we arrive at the mid-band power
gain A,: '

_ 8LRLRLR}

4 = ®p T RL?

(11.54)

The input resistance to this stage is R, and it is important to note that
this factor can be much larger for an FET amplifier than is usually the case for a
bipolar transistor amplifier. The intrinsic input resistance of a MOSFET is infinite,
so the input resistance of the stage is finite only because of the bias resistors, Rg;
and Rg,. Furthermore, since there is no quiescent gate current, we do not have
the same type of limit on how large Rg; and Rg, can be as we do with base bias
resistors in a bipolar circuit. The only limit is that we do have to supply charge
to the gate capacitor through them, so they cannot truly be infinite; as a practical
matter they might be several megaohms.

If we want a larger input resistance, we must use the bias scheme that was
shown in Fig. 11.3b; a common-source amplifier biased in this way is illustrated
in Fig. 11.11c. This circuit requires that we use a second bias supply voltage, but
it achieves the maximum input resistance. It also eliminates the input coupling
capacitor, which is also good. Before leaving this bias scheme, it is worthwhile
to consider how to design it to achieve a particular Jp. At first glance this seems
to be a bit messy because Ip is the solution to the quadratic

i .
Ip = 5 (Vss = IpRs — r)? (11.55)

which we obtained by replacing Vgs in the expression for Ip of a MOSFET in
saturation with Vsg — IpRgs. Recall, however, that if you are designing a circuit-
to achieve a specific bias point, /p is already known; what you need to calculate
is either the value of the resistor Ry or the bias supply Vss. Either of these is a
relatively simple calculation given Ip. '

Notice that A; and A, are infinite for the circuit in Fig. 11.11¢, in which
Ry, is infinite. This observation is a direct result of the infinite input resistance of
- FETs. In many FET circuits the mid-band current and power gain are infinite, as
we have found here.

The output resistance of both of these circuits is Rp.

Example

Question. Consider a MOSFET, for which V¢ is 0.9 V and X is 1 mA/V?, used
in the common-source circuit of Fig. 11.11b with Vpp = 5V, V55 = ~5V, Rp =
3 kO, Rg = 2.7 k), and R; = 3 k(). What is the mid-band linear small-signal
voltage gain of this circuit?
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Discussion. The bias circuit and device are the same as, the ones we discussed in
the example in Sec. 11.1.2, so we know that Ip is 1 mA. From Eq. (10.42b) we
then find that g,, is 1.4 mS. Thus from Eq.(11.52a), A, is 2.1. This low value
reflects the relatively small transconductance. The input resistance is infinite (and,
thus, so too are the current and power gains); the output resistance of this stage is
3 k.

b) Nonlinear and active loads. The use of FETs as active loads is very important
in FET amplifier design because much more can be gained by using an active
load in a FET amplifier than can be gained in a bipolar amplifier. This is true,
as we shall see, in large part because the input resistance of an FET amplifier
stage can be very large, often much larger than that of a bipolar amplifier gain
stage, such as a common-emitter stage. A common-source stage like that in Fig.
11.115, for example, ideally has an infinite input resistance, whereas the common-
emitter stage in Fig. 11.4a has an input resistance of only a few kilo-ohms.
We are typically interested in coupling several single-transistor amplifier stages
together to form a multistage amplifier, as we shall see in Chap. 13; in this type of
arrangement, the input resistance of one stage is the Ry of the preceding stage. In
a bipolar circuit, Ry, tends to be small (typically a few kilo-ohms) and making R¢
large increases R; from something on the order of Rj,/2 to roughly Ri, (i.e.,bya
factor of 2) at best. With FET stages, on the other hand, Rj, can be infinite and the
net load resistance—R; in our previous discussions—is now entirely R¢. Using
an active load to make R~ big is thus very attractive in this situation because
increasing R¢ by a factor of 10 or 100 will increase R; by the same factor. The
payoff is much greater.* _

In an integrated circuit based on n-channel enhancement mode MOSFETs,
a logical first choice for an active load would be another enhancement mode
MOSFET. A second choice would be an n-channel depletion mode MOSFET.
Beyond that, we might consider.using a p-channel MOSFET or even a pnp bipolar
junction transistor, but these require much more complicated processing and have
to be worth the trouble. To begin to understand which of these choices are worth
the trouble, let us next consider what each of these possible FET loads looks like
as a load. (We already know what the BJT looks like from the discussion in Sec.
. 11.3.1b and Fig. 11.7.) '

Four possible MOSFET loads for an n-channel MOSFET amplifier stage
are illustrated in Fig. 11.12a through 4. The depletion mode device is already
-on, and its gate can simply be shorted to its source as in Fig. 11.12¢. Enhance-
ment mode devices, on the other hand, are normally off, and a voltage needs to
be applied to their gates to turn them on so that they conduct and function as
a finite load. The most desirable way to do this is to apply a bias between the gate

*The difference is not so dramatic if the following stage is a high input resistance stage like an
emitter-follower stage, of course, but the advantage is still significant. We will discuss these issues
more in Chap. 13.
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FIGURE 11.12

Four possible diode connections of MOSFETs that are useful as loads in an
n-channel enhancement mode MOSFET amplifier circuit: (a) an enhancement mode
n-channel MOSFET biased in saturation with vgs = vpg; (b) an enhancement
mode n-channel MOSFET biased in its linear region; (¢) a depletion mode
n-channel MOSFET with vgg = 0 V; (d) a p-channel enhancement mode
MOSFET; (e) the large-signal diode characteristics of each connection. In plotting
these characteristics it was assumed for circuit (a) that X = 0.16 mA/V? and

Vp = 1V;for (b) that K = 28 pA/V?, Vp = 1V, and Vggr = 10 V; for (¢) that
K = 1mA/V? and Vy = —2 V; and for (d) that K = 1 mA/VZ, Vp = —1 V, and
Vrer = 3 V. The characteristic of a linear resistor is shown as a dashed line for
comparison.
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and source, as is done for the p-channel MOSFET load in Fig. 11.124; but doing
this turns out to be impractical when using an n-channel MOSFET as a load with
an n-channel amplifier MOSFET, so the bias must be applied between the drain

and gate, as is seen in Figs. 11.12a and b.

There are several ways in which we can view these loads. One is to look
at their large-signal characteristics in the connections shown. Realizing that the
slope of the characteristic at any point is the incremental conductance of the load
at that bias point, we see that the flatter the curve, the lower the conductance and
the higher the resistance. The large-signal terminal characteristics of each of the
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connections are plotted in Fig. 11.12e. Looking at these characteristics it is clear
that the first two options (i.e., those that involve using an enhancement <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>