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1. Introduction

Currently, we are frequently facing demands for automation of many systems. In particular,
demands for cars and robots are increasing daily. For such applications, high-performance
embedded systems are necessary to execute real-time operations. For example, image pro-
cessing and image recognition are heavy operations that tax current microprocessor units.
Parallel computation on high-capacity hardware is expected to be one means to alleviate the
burdens imposed by such heavy operations.
To implement such large-scale parallel computation onto a VLSI chip, the demand for a large-
die VLSI chip is increasing daily. However, considering the ratio of non-defective chips under
current fabrications, die sizes cannot be increased (1),(2). If a large system must be integrated
onto a large die VLSI chip or as an extreme case, a wafer-size VLSI, the use of a VLSI including
defective parts must be accomplished.
In the earliest use of field programmable gate arrays (FPGAs) (3)–(5), FPGAs were anticipated
as defect-tolerant devices that accommodate inclusion of defective areas on the gate array be-
cause of their programmable capability. However, that hope was partly shattered because de-
fects of a serial configuration line caused severe impairments that prevented programming of
the entire gate array. Of course, a spare row method such as that used for memories (DRAMs)
reduces the ratio of discarded chips (6),(7), in which spare rows of a gate array are used instead
of defective rows by swapping them with a laser beam machine. However, such methods re-
quire hardware redundancy. Moreover, they are not perfect. To use a gate array perfectly
and not produce any discarded VLSI chips, a perfectly parallel programmable capability is
necessary: one which uses no serial transfer.
Currently, optically reconfigurable gate arrays (ORGAs) that support parallel programming
capability and which never use any serial transfer have been developed (8)–(15). An ORGA
comprises a holographic memory, a laser array, and a gate-array VLSI. Although the ORGA
construction is slightly more complex than that of currently available FPGAs, the parallel
programmable gate array VLSI supports perfect avoidance of its faulty areas; it instead uses
the remaining area. Therefore, the architecture enables the use of a large-die VLSI chip and
even entire wafers, including fault areas. As a result, the architecture can realize extremely
high-gate-count VLSIs and can support large-scale parallel computation.
This chapter introduces an ORGA architecture as a high defect tolerance device, describes
how to use an optically reconfigurable gate array including defective areas, and clarifies its
high fault tolerance. The ORGA architecture has some weak points in making a large VLSI, as



Fig. 1. Overview of an ORGA.

do FPGAs. Therefore, this chapter also presents discussion of more reliable design methods
to avoid weak points.

2. Optically Reconfigurable Gate Array (ORGA)

The ORGA architecture has the following features: numerous reconfiguration contexts, rapid
reconfiguration, and large die size VLSIs or wafer-scale VLSIs. A large die size VLSI can
produce large physical gates that increase the performance of large parallel computation. Fur-
thermore, numerous reconfiguration contexts achieve huge virtual gates with contexts several
times more numerous than those of the physical gates. For that reason, such huge virtual
gates can be reconfigured dynamically on the physical gates so that huge operations can be
integrated onto a single ORGA-VLSI. The following sections describe the ORGA architecture,
which presents such advantages.

2.1 Overall construction
An overview of an Optically Reconfigurable Gate Array (ORGA) is portrayed in Fig. 1. An
ORGA comprises a gate-array VLSI (ORGA-VLSI), a holographic memory, and a laser diode
array. The holographic memory stores reconfiguration contexts. A laser array is mounted on
the top of the holographic memory for use in addressing the reconfiguration contexts in the
holographic memory. One laser corresponds to a configuration context. Turning one laser
on, the laser beam propagates into a certain corresponding area on the holographic memory
at a certain angle so that the holographic memory generates a certain diffraction pattern. A
photodiode-array of a programmable gate array on an ORGA-VLSI can receive it as a recon-
figuration context. Then, the ORGA-VLSI functions as the circuit of the configuration con-
text. The reconfiguration time of such ORGA architecture reaches nanosecond-order (14),(15).
Therefore, very-high-speed context switching is possible. Since the storage capacity of a holo-
graphic memory is extremely high, numerous configuration contexts can be used with a holo-
graphic memory. Therefore, the ORGA architecture can dynamically treat huge virtual gate
counts that are larger than the physical gate count on an ORGA-VLSI.

2.2 Gate array structure
This section introduces a design example of a fabricated ORGA-VLSI chip. Based on it, a
generalized gate array structure of ORGA-VLSIs is discussed.
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(c) (d)
Fig. 2. Gate-array structure of a fabricated ORGA. Panels (a), (b), (c), and (d) respectively
depict block diagrams of a gate array, an optically reconfigurable logic block, an optically
reconfigurable switching matrix, and an optically reconfigurable I/O bit.

2.2.1 Prototype ORGA-VLSI chip
The basic functionality of an ORGA-VLSI is fundamentally identical to that of currently avail-
able field programmable gate arrays (FPGAs). Therefore, ORGA-VLSI takes an island-style
gate array or a fine-grain gate array. Figure 2 depicts the gate array structure of a first pro-
totype ORGA-VLSI chip. The ORGA-VLSI chip was fabricated using a 0.35 µm triple-metal
CMOS process (8). The photograph of a board is portrayed in Fig. 3. Table 1 presents the spec-
ifications. The ORGA-VLSI chip consists of 4 optically reconfigurable logic blocks (ORLB), 5
optically reconfigurable switching matrices (ORSM), and 12 optically reconfigurable I/O bits
(ORIOB) portrayed in Fig. 2(a). Each optically reconfigurable logic block is surrounded by
wiring channels. In this chip, one wiring channel has four connections. Switching matrices
are located on the corners of optically reconfigurable logic blocks. Each connection of the
switching matrices is connected to a wiring channel. The ORGA-VLSI has 340 photodiodes
to program its gate array. The ORGA-VLSI can be reconfigured perfectly in parallel. In this
fabrication, the distance between each photodiode was designed as 90 µm. The photodiode
size was set as 25.5 × 25.5 µm2 to ease the optical alignment. The photodiode was constructed
between the N-well layer and P-substrate. The gate array’s gate count is 68. It was confirmed
experimentally that the ORGA-VLSI itself is reconfigurable within a nanosecond-order period
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Fig. 3. Photograph of an ORGA-VLSI board with a fabricated ORGA-VLSI chip. The ORGA-
VLSI was fabricated using a 0.35 µm three-metal 4.9 × 4.9 mm2 CMOS process chip. The gate
count of a gate array on the chip is 68. In all, 340 photodiodes are used for optical configura-
tions.

(14),(15). Although the gate count of the chip is too small, the gate count of future ORGAs was
already estimated (12). Future ORGAs will achieve gate counts of over a million, which is sim-
ilar to gate counts of FPGAs.

2.2.2 Optically reconfigurable logic block
The block diagram of an optically reconfigurable logic block of the prototype ORGA-VLSI
chip is presented in Fig. 2(b). Each optically reconfigurable logic block consists of a four-
input one-output look-up table (LUT), six multiplexers, four transmission gates, and a delay
type flip-flop with a reset function. The input signals from the wiring channel, which are
applied through some switching matrices and wiring channels from optically reconfigurable
I/O blocks, are transferred to a look-up table through four multiplexers. The look-up table
is used for implementing Boolean functions. The outputs of the look-up table and of a delay
type flip-flop connected to the look-up table are connected to a multiplexer. A combinational
circuit and sequential circuit can be chosen by changing the multiplexer, as in FPGAs. Finally,
an output of the multiplexer is connected to the wiring channel again through transmission
gates. The last multiplexer controls the reset function of the delay-type flip-flop. Such a four-
input one-output look-up table, each multiplexer, and each transmission gate respectively
have 16 photodiodes, 2 photodiodes, and 1 photodiode. In all, 32 photodiodes are used for
programming an optically reconfigurable logic block. Therefore, the optically reconfigurable
logic block can be reconfigured perfectly in parallel. In this prototype chip, since the gate array
is too small, a CLK for each flip-flop is provided through a single CLK buffer tree. However,
for a large gate array, CLKs of flip-flops are applied through multiple CLK buffer trees as
programmable CLKs, as well as that of FPGAs.

Technology 0.35µm double-poly
triple-metal CMOS process

Chip size 4.9 mm × 4.9 mm

Photodiode size 25.5 µm × 25.5 µm
Distance between photodiodes 90 µm
Number of photodiodes 340

Gate count 68

Table 1. ORGA-VLSI Specifications.

2.2.3 Optically reconfigurable switching matrix
Similarly, optically reconfigurable switching matrices are optically reconfigurable. The block
diagram of the optically reconfigurable switching matrix is portrayed in Fig. 2(c). The basic
construction is the same as that used by Xilinx Inc. One four-directional with 24 transmission
gates and 4 three-directional switching matrices with 12 transmission gates were implemented
in the gate array. Each transmission gate can be considered as a bi-directional switch. A
photodiode is connected to each transmission gate; it controls whether the transmission gate
is closed or not. Based on that capability, four-direction and three-direction switching matrices
can be programmed, respectively, as 24 and 12 optical connections.

2.2.4 Optically reconfigurable I/O block
Optically reconfigurable gate arrays are assumed to be reconfigured frequently. For that rea-
son, an optical reconfiguration capability must be implemented for optically reconfigurable
logic blocks and optically reconfigurable switching matrices. However, the I/O block might
not always be reconfigured under such dynamic reconfiguration applications because such
a dynamic reconfiguration arises inside the device and each mode of Input, Output, or In-
put/Output, and each pin location of the I/O block must always be fixed due to limitations of
the external environment. However, the ORGA-VLSI supports optical reconfiguration for I/O
blocks because reconfiguration information is provided optically from a holographic memory
in ORGA. Consequently, electrically configurable I/O blocks are unsuitable for ORGAs. Here,
each I/O block is also controlled using nine optical connections. Always, the optically recon-
figurable I/O block configuration is executed only initially.

3. Defect tolerance design of the ORGA architecture

3.1 Holographic memory part
Holographic memories are well known to have a high defect tolerance. Since each bit of a
reconfiguration context can be generated from the entire holographic memory, the damage of
some fraction rarely affects its diffraction pattern or a reconfiguration context. Even though
a holographic memory device includes small defect areas, holographic memories can cor-
rectly record configuration contexts and can correctly generate configuration contexts. Such
mechanisms can be considered as those for which majority voting is executed from an infinite
number of diffraction beams for each configuration bit. For a semiconductor memory, single-
bit information is stored in a single-bit memory circuit. In contrast, in holographic memory, a
single bit of a reconfiguration context is stored in the entire holographic memory. Therefore,
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the holographic memory’s information is robust while, in the semiconductor memory, the de-
fect of a transistor always erases information of a single bit or multiple bits. Earlier studies
have shown experimentally that a holographic memory is robust (13). In the experiments,
1000 impulse noises and 10% Gaussian noise were applied to a holographic memory. Then
the holographic memory was assembled to an ORGA architecture. All configuration experi-
ments were successful. Therefore, defects of a holographic memory device on the ORGA are
beyond consideration.

3.2 Laser array part
In an ORGA, a laser array is a basic component for addressing a configuration memory or
a holographic memory. Although configuration context information stored on a holographic
memory is robust, if the laser array becomes defective, then the execution of each config-
uration becomes impossible. Therefore, the defect modes arising on a laser array must be
analyzed. In an ORGA, many discrete semiconductor lasers are used for switching configu-
ration contexts. Each laser corresponds to one holographic area including one configuration
context. One laser addresses one configuration context. The defect modes of a certain laser are
categorizable as a turn-ON defect mode and a full-time turn-ON defect mode or a turn-OFF
defect mode. The turn-ON defect mode means that a certain laser cannot be turned on. The
full-time turn-ON defect mode means the state in which a certain laser is constantly turned
ON and cannot be turned OFF.

3.2.1 Turn-ON defect mode
A laser might have a Turn-ON defect. However, laser source defects can be avoided easily
by not using the defective lasers, and not using holographic memory areas corresponding to
the lasers. An ORGA has numerous reconfiguration contexts. A slight reduction of reconfig-
uration contexts is therefore negligible. Programmers need only to avoid the defective parts
when programming reconfiguration contexts for a holographic memory. Therefore, the ORGA
architecture allows Turn-ON defect mode for lasers.

3.2.2 Turn-OFF defect mode
Furthermore, a laser might have a Turn-OFF defect mode. This trouble level is slightly higher
than that of the Turn-ON defect mode. The corresponding holographic memory information
is constantly superimposed to the other configuration context under normal reconfiguration
procedure if one laser has Turn-OFF defect mode and turns on constantly. Therefore, the Turn-
OFF defect mode of lasers presents the possibility that all normal configuration procedures are
impossible. Therefore, if such Turn-OFF defect mode arises on an ORGA, a physical action to
cut the corresponding wires or driver units is required. The action is easy and can perfectly
remove the defect mode.

3.2.3 Defect mode for matrix addressing
Such laser arrays are always arranged in the form of a two-dimensional matrix and addressed
as the matrix. In such matrix implementation, the defect of one driver causes all lasers on the
addressing line to be defective. To avoid simultaneous defects of many lasers, a spare row
method like that used for memories (DRAMs) is useful (6)(7). By introducing the spare row
method, the defect mode can be removed perfectly.

Fig. 4. Circuit diagram of reconfiguration circuit.

Fig. 5. Defective area avoidance method on a gate array. Here, it is assumed that a defective
optically reconfigurable logic block (ORLB) exists, as portrayed in the upper area of the figure.
In this case, the defective area is avoided perfectly using parallel programming with the other
components, as presented in the lower area of the figure.

3.3 ORGA-VLSI part
In the ORGA-VLSIs, serial transfers were perfectly removed and optical reconfiguration cir-
cuits including static memory functions and photodiodes were placed near and directly con-
nected to programming elements of a programmable gate array VLSI. Figure 4 shows that the
toggle flip-flops are used for temporarily storing one context and realizing a bit-by-bit config-
uration. Using this architecture, the optical configuration procedure for a gate array can be
executed perfectly in parallel. Thereby, the VLSI part can achieve a perfectly parallel bit-by-bit
configuration.

3.3.1 Simple method to avoid defective areas
Using configuration, a damaged gate array can be restored as shown in Fig. 5. The structure
and function of an optically reconfigurable logic block and optically reconfigurable switching
matrices on a gate array are mutually similar. If a part is defective or fails, the same function
can be implemented onto the other part. Here, the upper part of Fig. 5 shows that it is assumed
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that a defective optically reconfigurable logic block (ORLB) exists in a gate array. In that case,
the lower part of Fig. 5 shows that another implementation is available. By reconfiguring the
gate array VLSI, the defective area can be avoided perfectly and its functions can be realized
using other blocks. For this example, we assumed a defective area of only one optically re-
configurable logic block. For the other cells, for optically reconfigurable switching matrices,
and for optically reconfigurable I/O blocks, a similar avoidance method can be adopted. Such
a replacement method can be adopted onto FPGAs; however, such a replacement method is
based on the condition that the configuration is possible. Regarding FPGAs, the defect or fail-
ure probability of configuration circuits is very high because of the serial configuration. On
the other hand, the ORGA architecture configuration is very robust because of the parallel
configuration. For that reason, the ORGA architecture has high defect and fault tolerance.

3.3.2 Weak point
However, a weak point exists on the ORGA-VLSI design. It is a common clock signal line.
When using a single common clock signal line to distribute a clock for all delay-type flip-
flops, damage to one clock tree renders all delay-type flip-flops useless. Therefore, the clock
line must be programmable with many buffer trees when a large gate count VLSI or a wafer
scale VLSI is made. In currently available FPGAs, each clock line of delay-type flip-flops
has already been programmable with several clock trees. To reduce the probability of the
clock death trouble, sufficient programmable clock trees should be prepared. If so, along with
FPGA, defects for clock trees in ORGA architecture can be beyond consideration.

3.3.3 Critical weak points
Figure 4 shows that more critical weak points in the ORGA-VLSIs are a refresh signal, a reset
signal, and a configuration CLK signal of configuration circuits to support optical configura-
tion procedures. These signals are common signals on VLSI chip and cannot be programmable
since the signals are necessary for programming itself. Therefore, along with the laser array,
a physical action or a spare method is required in addition to enforcing the wire and buffer
trees for defects so that critical weak points can be removed.

3.4 Possibility of greater than tera-gate capacity
In ORGA architecture, a holographic memory is a very robust device. For that reason, defect
analysis is done only for an ORGA-VLSI and a laser array. In ORGA-VLSI part, even if de-
fect parts are included on the ORGA-VLSI chip, almost all defect parts can be avoided using
parallel programming capability. The only remaining concern is the common signals used for
controlling configuration circuits. For those common signals, spare hardware or redundant
hardware must be used. On the other hand, in a laser array part, only a spare row method
must be applied to matrix driver circuits. The other defects are negligible.
Therefore, exploiting the defect tolerance and using methods of ORGA architecture described
above, a very large die size VLSI is possible. At that time, according to an earlier paper (12), if
it is assumed that an ORGA-VLSI is built on a 0.18 µm process 8 inch wafer and that 1 million
configuration contexts are stored on a corresponding holographic memory, then greater than
10-tera-gate VLSIs will be realized. Currently, although this remains only a distant objective,
optoelectronic devices might present a new VLSI paradigm.

4. Conclusion

Optically reconfigurable gate arrays have perfectly parallel programmable capability. Even
if a gate array VLSI and a laser array include defective parts, their perfectly parallel pro-
grammable capability enables perfect avoidance of defective areas. Instead, it uses the remain-
ing area of a gate array VLSI, remaining laser resources, and remaining holographic memory
resources. Therefore, the architecture enables fabrication of large-die VLSI chips and wafer-
scale integrations using the latest processes, even those chips with a high defect fraction. Fi-
nally, we conclude that the architecture has a high defect tolerance. In the future, optically
reconfigurable gate arrays will be a type of next-generation three-dimensional (3D) VLSI chip
with an extremely high gate count and with a high manufacturing-defect tolerance.
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that a defective optically reconfigurable logic block (ORLB) exists in a gate array. In that case,
the lower part of Fig. 5 shows that another implementation is available. By reconfiguring the
gate array VLSI, the defective area can be avoided perfectly and its functions can be realized
using other blocks. For this example, we assumed a defective area of only one optically re-
configurable logic block. For the other cells, for optically reconfigurable switching matrices,
and for optically reconfigurable I/O blocks, a similar avoidance method can be adopted. Such
a replacement method can be adopted onto FPGAs; however, such a replacement method is
based on the condition that the configuration is possible. Regarding FPGAs, the defect or fail-
ure probability of configuration circuits is very high because of the serial configuration. On
the other hand, the ORGA architecture configuration is very robust because of the parallel
configuration. For that reason, the ORGA architecture has high defect and fault tolerance.

3.3.2 Weak point
However, a weak point exists on the ORGA-VLSI design. It is a common clock signal line.
When using a single common clock signal line to distribute a clock for all delay-type flip-
flops, damage to one clock tree renders all delay-type flip-flops useless. Therefore, the clock
line must be programmable with many buffer trees when a large gate count VLSI or a wafer
scale VLSI is made. In currently available FPGAs, each clock line of delay-type flip-flops
has already been programmable with several clock trees. To reduce the probability of the
clock death trouble, sufficient programmable clock trees should be prepared. If so, along with
FPGA, defects for clock trees in ORGA architecture can be beyond consideration.

3.3.3 Critical weak points
Figure 4 shows that more critical weak points in the ORGA-VLSIs are a refresh signal, a reset
signal, and a configuration CLK signal of configuration circuits to support optical configura-
tion procedures. These signals are common signals on VLSI chip and cannot be programmable
since the signals are necessary for programming itself. Therefore, along with the laser array,
a physical action or a spare method is required in addition to enforcing the wire and buffer
trees for defects so that critical weak points can be removed.

3.4 Possibility of greater than tera-gate capacity
In ORGA architecture, a holographic memory is a very robust device. For that reason, defect
analysis is done only for an ORGA-VLSI and a laser array. In ORGA-VLSI part, even if de-
fect parts are included on the ORGA-VLSI chip, almost all defect parts can be avoided using
parallel programming capability. The only remaining concern is the common signals used for
controlling configuration circuits. For those common signals, spare hardware or redundant
hardware must be used. On the other hand, in a laser array part, only a spare row method
must be applied to matrix driver circuits. The other defects are negligible.
Therefore, exploiting the defect tolerance and using methods of ORGA architecture described
above, a very large die size VLSI is possible. At that time, according to an earlier paper (12), if
it is assumed that an ORGA-VLSI is built on a 0.18 µm process 8 inch wafer and that 1 million
configuration contexts are stored on a corresponding holographic memory, then greater than
10-tera-gate VLSIs will be realized. Currently, although this remains only a distant objective,
optoelectronic devices might present a new VLSI paradigm.

4. Conclusion

Optically reconfigurable gate arrays have perfectly parallel programmable capability. Even
if a gate array VLSI and a laser array include defective parts, their perfectly parallel pro-
grammable capability enables perfect avoidance of defective areas. Instead, it uses the remain-
ing area of a gate array VLSI, remaining laser resources, and remaining holographic memory
resources. Therefore, the architecture enables fabrication of large-die VLSI chips and wafer-
scale integrations using the latest processes, even those chips with a high defect fraction. Fi-
nally, we conclude that the architecture has a high defect tolerance. In the future, optically
reconfigurable gate arrays will be a type of next-generation three-dimensional (3D) VLSI chip
with an extremely high gate count and with a high manufacturing-defect tolerance.

5. References

[1] C. Hess, L. H. Weiland, ”Wafer level defect density distribution using checkerboard test
structures,” International Conference on Microelectronic Test Structures, pp. 101–106,
1998.

[2] C. Hess, L. H. Weiland, ”Extraction of wafer-level defect density distributions to im-
prove yield prediction,” IEEE Transactions on Semiconductor Manufacturing, Vol. 12,
Issue 2, pp. 175-183, 1999.

[3] Altera Corporation, ”Altera Devices,” http://www. altera.com.

[4] Xilinx Inc., ”Xilinx Product Data Sheets,” http://www. xilinx.com.

[5] Lattice Semiconductor Corporation, ”LatticeECP and EC Family Data Sheet,”
http://www. latticesemi.co.jp/products, 2005.

[6] A. J. Yu, G. G. Lemieux, ”FPGA Defect Tolerance: Impact of Granularity,” IEEE Interna-
tional Conference on Field-Programmable Technology,pp. 189–196, 2005.

[7] A. Doumar, H. Ito, ”Detecting, diagnosing, and tolerating faults in SRAM-based field
programmable gate arrays: a survey,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, Vol. 11, Issue 3, pp. 386 – 405, 2003.

[8] M. Watanabe, F. Kobayashi, ”Dynamic Optically Reconfigurable Gate Array,” Japanese
Journal of Applied Physics, Vol. 45, No. 4B, pp. 3510-3515, 2006.

[9] N. Yamaguchi, M. Watanabe, ”Liquid crystal holographic configurations for ORGAs,”
Applied Optics, Vol. 47, No. 28, pp. 4692-4700, 2008.

[10] D. Seto, M. Watanabe, ”A dynamic optically reconfigurable gate array - perfect emula-
tion,” IEEE Journal of Quantum Electronics, Vol. 44, Issue 5, pp. 493-500, 2008.

[11] M. Watanabe, M. Nakajima, S. Kato, ”An inversion/non-inversion dynamic optically
reconfigurable gate array VLSI,” World Scientific and Engineering Academy and Soci-
ety Transactions on Circuits and Systems, Issue 1, Vol. 8, pp. 11- 20, 2009.

[12] M. Watanabe, T. Shiki, F. Kobayashi, ”Scaling prospect of optically differential reconfig-
urable gate array VLSIs,” Analog Integrated Circuits and Signal Processing, Vol. 60, pp.
137 - 143, 2009.

[13] M. Watanabe, F. Kobayashi, ”Manufacturing-defect tolerance analysis of optically re-
configurable gate arrays,” World Scientific and Engineering Academy and Society
Transactions on Signal Processing, Issue 11, Vol. 2, pp. 1457- 1464, 2006.



[14] M. Miyano, M. Watanabe, F. Kobayashi, ”Optically Differential Reconfigurable Gate
Array,” Electronics and Computers in Japan, Part II, Issue 11, vol. 90, pp. 132-139, 2007.

[15] M. Nakajima, M. Watanabe, ”A four-context optically differential reconfigurable gate
array,” IEEE/OSA Journal of Lightwave Technology, Vol. 27, No. 24, 2009.





























































Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1



Common clock

Word-wise accessible shared memo ry

Read/write operations from/to shared memo ry

P2 P3 P4P1







Registers
R1 ... Rr-1

Sequencer
       S

Global Memo ry units
M0      ...       Mm-1

Opcode
    O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memo ry
Request

Send

Memo ry
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Ou t

Instruction-In

Data
Out0

Add ress
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0      ...        Aq-1

Post-memo ry ALUs
Aq      ...        Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Sta tus
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back



Registers
R1 ... Rr-1

Sequencer
       S

Global Memo ry units
M0      ...       Mm-1

Opcode
    O

Instruction
Fetch

Operand
Select

Hash
Address

Calculation

Memo ry
Request

Send

Memo ry
Request
Receive

Sequencer
Operation

ALU
Operation

Result
Bypass

Result
Bypass

ALU
Operation

Result
Bypass

Instruction
Address-Ou t

Instruction-In

Data
Out0

Add ress
Outm-1

Data
Inm-1

Pre-memo ry ALUs
A0      ...        Aq-1

Post-memo ry ALUs
Aq      ...        Aa-1

Data
In0

Data
Outm-1

Address
Out0

ALU
Operation

Result
Bypass

ALU
Operation

Result
Bypass

ThreadID
TID

Scratchpad and
Step Cache Unit

Sta tus
SR

Intermediate
Registers

TO DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL
INSTRUCTION

MEMORY SYSTEM

FROM DISTRIBUTED
SHARED DATA

MEMORY SYSTEM

TO/FROM LOCAL D ATA
MEMORY SYSTEM

LMLSLA Local Address-Out
Local Data-Out

Local Data-In

PRAM MODE
PIPELINE

Instruction
Fetch

Operand
Select

Execute

NUMA MODE
PIPELINE

Write
Back



Shared memo ry access

Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T  threads per
processor
p

F  execution slots in a chain

Memo ry reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode



Shared memo ry access

Local memo ry access

Execute

3 execution slots
in parallel

fetch decode write
back

execute

T  threads per
processor
p

F  execution slots in a chain

Memo ry reply wait stages

fetch decode wait for
memo ry

execute wait for
memo ry

execute executeexecute write
back

Step

NUMA bunch occupying
6 non-consecutive thread slots

Synchronization wave
separating the steps

NUMA-mode
instruction

PRAM-mode
instruction

PRAM mode PRAM mode mixed PRAM and
NUMA mode

mixed PRAM and
NUMA mode

PRAM mode











Memo ry
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column
from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memo ry
output
decoder

Memo ry
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject
2. Route N/S
3. Goto WE
4. Route W/E
5. Eject

PHASES OF
ROUTING:



Memo ry
module

MBTAC
Processor

from
Row EQ 1

from
Previous Column

to Next Column to Resource

m

m

m

m

m

m

m

m

m

m

3x2

Queue
Next Column

Queue
Resource

from Previous Column
from Switch

Arbiter
Column
GT

Busy to
Row EQ 1

Busy to
Previous Column

Busy
from
Next Column

Busy
from
Resource

Processor
output
decoder

Processor
Switch-
element

Memo ry
output
decoder

Memo ry
Switch-
element

Select
Direction

Select
Direction

Arbiter
Next
Row

from
Row EQ 2

Busy to
Row EQ 2

Select
Direction

1. Inject
2. Route N/S
3. Goto WE
4. Route W/E
5. Eject

PHASES OF
ROUTING:

















































































0

Cache Coherence Protocols for Many-Core CMPs
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Universidad de Murcia

Spain

1. Introduction

Multi-core architectures have emerged as the best alternative to take advantage of the increas-
ing number of transistors currently offered in a single die. For example, the dual-core IBM
Power6 (Le et al., 2007) and the eight-core Sun UltraSPARC T2 (Shah et al., 2007) have a rela-
tively small number of cores, which are typically connected through a shared medium, i.e., a
bus or a crossbar. However, CMP architectures that integrate tens of processor cores (usually
known as many-core CMPs) are expected for the near future, after Intel recently unveiled the
80-core Polaris prototype (Azimi et al., 2007). Since the area required by a shared intercon-
nect becomes impractical as the number of cores grows (Kumar et al., 2005), it seems that the
processing cores of future CMPs will be connected by means of unordered point-to-point net-
works. Hence, tiled CMP architectures (Taylor et al., 2002; Zhang & Asanovic, 2005), which
are designed as arrays of replicated tiles connected over a point-to-point network, have arisen
as a scalable alternative to current small-scale CMP designs and they will help in keeping
complexity manageable.
On the other hand, most CMP systems provide programmers with the intuitive shared-
memory model, which requires efficient support for cache coherence. Although a great deal
of attention was devoted to scalable cache coherence protocols in the last decades in the con-
text of shared-memory multiprocessors, the technological parameters and constraints entailed
by many-core CMPs demand new solutions to the cache coherence problem (Bosschere et al.,
2007; Azimi et al., 2007).
In this chapter, we focus on three main design goals for cache coherence protocols aimed
at being employed in many-core CMPs: performance, on-chip network traffic, and area re-
quirements. For example, area constraints prevent from using an ordered interconnection
network and, consequently, the popular snooping-based cache coherence protocol. Addition-
ally, on-chip network traffic has been previously reported to constitute a significant fraction
(approaching 50% in some cases) of the overall chip power (Wang et al., 2003; Magen et al.,
2004).
We will firstly describe two cache coherence protocols which are used in current commodity
chip multiprocessors, discussing their scalability constraints and bottlenecks: Hammer, imple-
mented in the AMD OpteronTM(Ahmed et al., 2002), and Directory used in Piranha (Barroso
et al., 2000). Hammer avoids keeping coherence information at the cost of broadcasting re-
quests to all cores. Although it is very efficient in terms of area requirements, it generates a
prohibitive amount of network traffic, which translates into excessive power consumption.
On the other hand, Directory reduces network traffic compared to Hammer by storing in a di-
rectory structure precise information about the private caches holding memory blocks. Unfor-



tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.

CPU Core

L1D$L1I$

L2$

(Tags)

L2$ (Data) D
irectory

Fig. 1. Organization of a tile (left) and a 4×4 tiled CMP (right).

The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols
In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent



tunately, the storage overhead that directories entail could become prohibitive for many-core
CMPs (Azimi et al., 2007). Since neither the network traffic generated by Hammer nor the extra
area required by Directory scale with the number of cores, a great deal of attention was paid in
the past to address this traffic-area trade-off (Agarwal et al., 1988; Gupta et al., 1990; Chaiken
et al., 1991; Mukherjee & Hill, 1994; Acacio et al., 2001).
On the other hand, these traditional cache coherence protocols introduce indirection in the
critical path of cache misses. In both protocols, the ordering point for the requests to the same
memory block is the home node or tile. Therefore, all cache misses must reach this ordering
point before any coherence actions can be performed, a fact that adds extra latency to cache
misses. Recently, Token-CMP (Martin et al., 2003) and DiCo-CMP (Ros et al., 2008a) protocols
have been proposed to deal with the indirection problem. These indirection-aware protocols
avoid the access to the home node through alternative serialization mechanisms. In this way,
they reduce the latency of cache misses compared to Hammer and Directory, which translates
into performance improvements. Although Token-CMP entails low memory overhead, it is
based on broadcasting requests to all nodes, which is clearly non-scalable. Otherwise, DiCo-
CMP sends requests to just one node, but it adds a full-map sharing code that keeps track of
sharers to each cache entry, which does not scale with the number of cores.
In this chapter, we discuss both protocols that are used nowadays, such as Hammer and Direc-
tory, and these two novel indirection-aware protocols (Token-CMP and DiCo-CMP). We also
study how they can scale up to a greater number of cores. In particular, we perform this study
by considering direct coherence (DiCo) protocols and, therefore we first describe this kind of
protocols in detail. Finally, we compare all the described protocols in terms of performance,
network traffic and area requirements, thus performing a detailed evaluation of a wide range
of cache coherence protocols for many-core CMPs in a common framework.
The rest of the chapter is organized as follows. Section 2 introduces tiled CMP architectures.
Section 3 discusses and presents a classification of some cache coherence protocols that could
be used in tiled CMPs. Section 4 offers a detailed description of direct coherence protocols,
and Section 5 discusses several implementations that differ in the amount of coherence in-
formation that they keep. Section 6 focuses on the evaluation methodology. Section 7 shows
and analyses performance results. In Section 8, we present a review of the related work and,
finally, Section 9 concludes the chapter.

2. Tiled CMPs

Tiled CMP architectures are designed as arrays of identical or close-to-identical building
blocks known as tiles. In these architectures, each tile is comprised of a processing core,
one or several levels of caches, and a network interface or router that connects all tiles
through a tightly integrated and lightweight point-to-point interconnection network (e.g., a
two-dimensional mesh). Differently from shared networks, point-to-point interconnects are
suitable for many-core CMPs because their peak bandwidth and area overhead scale with the
number of cores. Tiled CMPs can easily support families of products with varying number
of tiles, including the option of connecting multiple separately tested and speed-binned dies
within a single package. Therefore, it seems that they will be the choice for future many-core
CMPs.
In this chapter, we assume a tiled CMP with two levels of on-chip caches, as shown in Figure
1. The first one (L1 cache) is private to its local processing core. In contrast, the second one (L2
cache) is logically shared (but physically distributed) among the processing cores. Therefore,
each cache block maps to a particular L2 cache bank, which is called the home tile for that block.
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The home bank of each block is commonly obtained from its address bits. Particularly, the
bits usually chosen for the mapping to a particular bank are the less significant ones without
considering the block offset (Huh et al., 2005; Zhang & Asanovic, 2005; Shah et al., 2007).
Since, wire delay of future CMPs will cause cross-chip communications to reach tens of cycles
(Agarwal et al., 2000; Ho et al., 2001), the access latency to a multibanked shared cache will
be dominated by the delay to reach each particular cache bank rather than the time spent
accessing the bank itself. In this way, the access latency to the shared cache can be drastically
different depending on the cache bank where the requested block maps. The resulting cache
design is what is known as non-uniform cache architecture (NUCA) (Kim et al., 2002).
The main downside of a NUCA organization is the long cache access latency (on average),
since it depends on the bank wherein the block is allocated, especially when home banks are
assigned by taking some fixed bits from the block address. Since, in this case, the distribution
of the blocks is performed in a round-robin fashion without considering the distance from the
requesting cores to the home banks, it is more important to avoid the indirection to the home
tile, because for most misses the requested block could map to a remote cache bank.

3. Cache coherence protocols for tiled CMPs

As introduced at the beginning of this chapter, traditional snooping-based protocols require
an ordered interconnect to keep cache coherence, but such interconnects do not scale in terms
of area requirements. This section describes and classifies the four cache coherence protocols
considered in this chapter as potential candidates to be employed in tiled CMPs (i.e., with un-
ordered networks): Hammer, Directory, Token, and DiCo. In particular, we classify these cache
coherence protocols into traditional protocols, in which cache misses suffer from indirection,
and indirection-aware protocols, which try to avoid the indirection problem. For each type, we
also differentiate between area-demanding and traffic-intensive protocols.
We discuss the implementation of these cache coherence protocols for a tiled CMP in which
each tile includes a private L1 cache and a slice of the shared L2 cache, as described in the
previous section. In this way, cache coherence is maintained among data stored in the L1
caches. We also assume that private caches use MOESI states, and that L1 and L2 caches are
non-inclusive.

3.1 Traditional protocols
In traditional protocols, the requests issued by several cores to the same block are serialized
through the home tile, which enforces cache coherence. Therefore, all requests must be sent



to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP
Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.
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Fig. 2. A cache-to-cache transfer miss in each one of the described protocols.

3.1.2 Directory-CMP
The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the



to the home tile before any coherence action can be performed. Then, requests are forwarded
to the corresponding tiles according to the coherence information (if needed). All processors
that receive a forwarded request answer to the requesting core by sending either an acknowl-
edgment (and invalidating the block in case of write misses) or the requested data block. The
requesting core can access the block when it receives all the acknowledgment and data mes-
sages. The access to the home tile introduces indirection, which causes that most cache misses
take three hops in the critical path.
Examples of these traditional protocols are Hammer and Directory. As commented in the in-
troduction, Hammer has the drawback of generating a considerable amount of network traffic.
On the other hand, directory protocols that use a precise sharing code to keep track of cached
blocks introduce an area overhead that does not scale with the number of cores.

3.1.1 Hammer-CMP
Hammer (Owner et al., 2006) is the cache coherence protocol used by AMD in their Opteron
systems (Ahmed et al., 2002). Like snooping-based protocols, Hammer does not store any co-
herence information about the blocks held in the private caches and, therefore, it relies on
broadcasting requests to all tiles to solve cache misses. Its key advantage with respect to
snooping-based protocols is that it targets systems that use unordered point-to-point inter-
connection networks. In contrast, the ordering point in this protocol is the home tile, a fact
that introduces indirection on every cache miss.
We have implemented a version of the AMD’s Hammer protocol for tiled CMPs that we call
Hammer-CMP. As an optimization, our implementation adds a small structure to each home
tile. This structure stores a copy of the tags for the blocks that are held in the private L1 caches.
In this way, cache miss latencies are reduced by avoiding off-chip accesses when the block can
be obtained on-chip. Moreover, the additional structure has small size and it does not increase
with the number of cores.
On every cache miss, Hammer-CMP sends a request to the home tile. If the memory block is
present on chip (this information is given by the structure that we add to each home tile), the
request is forwarded to the rest of tiles to obtain the requested block, and to eliminate potential
copies of the block in case of a write miss. Otherwise, the block is requested to the memory
controller.
All tiles answer to the forwarded request by sending either an acknowledgment or the data
message to the requesting core. The requesting core needs to wait until it receives the response
from each other tile. When the requester receives all the responses, it sends an unblock mes-
sage to the home tile. This message notifies the home tile about the fact that the miss has been
satisfied. In this way, if there is another request for the same block waiting at the home tile, it
can be processed. This unblock message prevents the occurrence of race conditions.
Figure 2(a)shows an example of how Hammer-CMP solves a cache-to-cache transfer miss. The
requesting core (R) sends a write request (1 GetX) to the home tile (H). Then, invalidation
messages (2 Inv) are sent to all other tiles. The tile with the ownership of the block (M) re-
sponds with the data block (3 Data). The other tiles that do not hold a copy of the block
(I) respond with acknowledgment messages (3 Ack). When the requester receives all the re-
sponses, it sends the unblock message (4 Unbl) to the home tile. First, we can see that this
protocol requires three hops in the critical path before the requested data block is obtained.
Second, broadcasting invalidation messages increases considerably the traffic injected into the
interconnection network and, therefore, its power consumption.
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3.1.2 Directory-CMP
The directory-based protocol that we have implemented for CMPs (Directory-CMP) is similar
to the intra-chip coherence protocol used in Piranha (Barroso et al., 2000). In particular, the
directory information consists in a full-map (or bit-vector) sharing code, that is employed
for keeping track of the sharers. This sharing code allows the protocol to send invalidation
messages just to the caches currently sharing the block, thus removing unnecessary coherence
messages. In addition, directory-based protocols that implement MOESI states add an owner
field that identifies the owner tile to the directory information of each block. The owner field
allows the protocols to detect the tile that must provide the block in case of several sharers. In
this way, requests are only forwarded to that tile. The use of directory information allows the
protocol to reduce considerably network traffic when compared to Hammer-CMP.
In the implemented directory protocol, on every cache miss, the core that causes the miss
sends the request only to the home tile, which is the serialization point for all requests issued
for the same block. Each home tile includes an on-chip directory cache that stores the sharing
and owner information for the blocks that it manages. This cache is used for the blocks that
do not hold a copy in the shared cache. In addition, the tags’ part of the shared cache also
include a field for storing the sharing information for those blocks that have a valid entry in
that cache. Once the home tile decides to process the request, it accesses the directory and it
performs the appropriate coherence actions. These coherence actions include forwarding the
request to the owner tile, and invalidating all copies of the block in case of write misses.
When a tile receives a forwarding request it provides the data to the requester if it is already
available or, in other case, the request must wait until the data is available. Like in Hammer-
CMP, all tiles must respond to the invalidation messages with an acknowledgment message to
the requester. Since acknowledgment messages are collected by the requester, it is necessary
to inform the requester about the number of acknowledgments that it has to receive before
accessing the requested data block. In our particular implementation, this information is sent
from the home tile, which knows the number of invalidation messages issued, to the requester
along with the forwarding and data messages. When the requester receives all acknowledg-
ments and the data block, data can be accessed.
Figure 2(b)shows an example of how Directory-CMP solves a cache-to-cache transfer miss.
The request is sent to the home tile, where the directory information is stored (1 GetX). Then,
the home tile forwards the request to the provider of the block, which is obtained from the
directory information (2 Fwd). The provider sends the unblock message to the home tile to
allow subsequent requests to be processed (3 Unbl) and it also sends the data to the requester
(3 Data). When the data block arrives to the requester, the miss is considered solved. As we
can see, although this protocol introduces indirection to solve cache misses (three hops in the



critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols
Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP
keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP
Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP
Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary
Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.



critical path of the miss), few coherence messages are required to solve them, which finally
translates into savings in network traffic and less power consumption. This characteristic
allows the directory protocol to scale up to a greater number of cores than Hammer-CMP.

3.2 Indirection-aware protocols
Recently, new cache coherence protocols have been proposed to avoid the indirection problem
of traditional protocols. Token-CMP avoids indirection by broadcasting requests to all tiles
and maintains coherence through a token counting mechanism. Token-CMP only cares about
requests ordering in case of race conditions. In those cases, a persistent requests mechanism is
responsible for ordering the different requests. Although the area required to store the tokens
of each block is reasonable, network requirements are prohibitive for may-core CMPs.
On the other hand, in DiCo-CMP the ordering point is the tile that provides the block in a
cache miss and indirection is avoided by directly sending the requests to that tile. DiCo-CMP
keeps traffic low by sending requests to only one tile. However, coherence information used
in its original implementation (Ros et al., 2008a) include bit-vector sharing codes, which are
not scalable in terms of area requirements.

3.2.1 Token-CMP
Token coherence (Martin et al., 2003) is a framework for designing coherence protocols whose
main asset is that it decouples the correctness substrate from several different performance
policies. Token coherence protocols can avoid both the need of a totally ordered network and
the introduction of additional indirection caused by the access to the home tile in the common
case of cache-to-cache transfers. Token coherence protocols keep cache coherence by assigning
T tokens to every memory block, where one of them is the owner token. Then, a processing
core can read a block only if it holds at least one token for that block and has valid data. On
the other hand, a processing core can write a block only if it holds all T tokens for that block
and has valid data. Token coherence avoids starvation by issuing a persistent request when a
core detects potential starvation.
In this chapter, we use Token-CMP (Marty et al., 2005) in our simulations. Token-CMP is a
performance policy aimed at achieving low-latency cache-to-cache transfer misses. It targets
CMP systems, and uses a distributed arbitration scheme for persistent requests, which are
issued after a single retry to optimize the access to contended blocks.
Particularly, on every cache miss, the requesting core broadcasts requests to all other tiles. In
case of a write miss, they have to answer with all tokens that they have. The data block is sent
along with the owner token. When the requester receives all tokens the block can be accessed.
On the other hand, just one token is required upon a read miss. The request is broadcast to
all other tiles, and only those that have more than one token (commonly the one that has the
owner token) answer with a token and a copy of the requested block.
Figure 2(c)shows an example of how Token-CMP solves a cache-to-cache transfer miss. Re-
quests are broadcast to all tiles (1 GetX). The only tile with tokens for that block is M, which
responds by sending the data and all the tokens (2 Data). We can see that this protocol avoids
indirection since only two hops are introduced in the critical path of cache misses. However,
as happens in Hammer-CMP, this protocol also has the drawback of broadcasting requests to
all tiles on every cache miss, which results in high network traffic and, consequently, power
consumption in the interconnect.

Traditional Indirection-aware
Traffic-intensive Hammer-CMP Token-CMP
Area-demanding Directory-CMP DiCo-CMP

Table 1. Summary of cache coherence protocols.

3.2.2 DiCo-CMP
Direct coherence protocols where proposed both to avoid the indirection problem of tradi-
tional directory-based protocols and to reduce the traffic requirements of token coherence
protocols. In direct coherence, the ordering point for the requests to a particular memory
block is the current owner tile of the requested block. In this way, the tile that must provide
the block in case of a cache miss is the one that keeps coherence for that block. Indirection is
avoided by directly sending requests to the corresponding owner tile instead of to the home
tile. In this work we evaluate DiCo-CMP (Ros et al., 2008a), an implementation of direct co-
herence for CMPs. Particularly, we implement the Base policy presented in that paper because
it is the policy that incurs in less area and traffic requirements.
Figure 2(d)shows an example of how DiCo-CMP solves a cache-to-cache transfer miss. The
request is directly sent to the tile that has the ownership of the requested block (1 GetX).
This tile responds by sending the data to the requesting core (2 Data), thus requiring just
two hops in the critical path of cache misses. Out of the critical path of the miss, the owner
tile informs the home tile about the change of ownership (2 ChOwn). Then, the home tile
acknowledges the change of ownership (3 AckCh) allowing to move again the ownership of
the block (if requested). Direct coherence protocols are explained in detail in next section. The
main drawback of this protocol is that it adds a sharing code to every cache entry, which could
result in high area requirements.

3.3 Summary
Table 1 summarizes the protocols described before. This table focuses on the three main met-
rics evaluated throughout this chapter. The first one is the applications’ execution time, which
can be affected by the indirection to the home tile. The second one is the network traffic, which
impacts power consumption. The third one is the area requirements, which can severely limit
the scalability of the CMP. Hammer-CMP and Token-CMP are based on broadcasting requests
on every cache miss. Although the storage required to keep coherence in these protocols is
small, they generate a prohibitive amount of network traffic. On the other hand, Directory-
CMP and DiCo-CMP achieve more efficient utilization of the interconnection network at the
cost of increasing storage requirements compared to Hammer-CMP and Token-CMP. Finally,
the key advantage of Token-CMP and DiCo-CMP is that they avoid the indirection problem for
most cache misses, thus reducing the execution time compared to traditional protocols.

4. Direct coherence protocols

In this section, we describe the main characteristics of a direct coherence protocol and its im-
plementation for tiled CMPs. First, we explain how direct coherence avoids indirection for
most cache misses by means of changing the distribution of the roles involved in cache coher-
ence maintenance. We also study the changes in the structure of the tiles necessary to imple-
ment DiCo-CMP. Then, we describe the cache coherence protocol for tiled CMPs and, finally,
we study how to avoid the starvation issues that could arise in direct coherence protocols.
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Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis
As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-
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Fig. 3. How cache-to-cache transfer misses are solved in directory and direct coherence proto-
cols. R=Requester; H=Home; D=Directory; O=Owner.

4.1 Direct coherence basis
As already discussed, directory protocols introduce indirection in the critical path of cache
misses. Figure 3(a)shows a cache miss suffering indirection in a directory protocol, a cache-to-
cache transfer for a read miss. When a cache miss takes place it is necessary to access the home
tile to obtain the directory information and serialize the requests before performing any co-
herence action (1 GetS). In case of a cache-to-cache transfer miss, the request is subsequently
forwarded to the owner tile (2 Fwd), where the block is provided (3 Data). As it can be ob-
served, the miss is solved in three hops. Moreover, requests for the same block cannot be
processed by the directory until it receives the unblock message (3 Unbl).
To avoid this indirection problem, direct coherence sends the request to the provider of the
block, i.e., the owner tile, instead of to the home tile. This is the main motivation behind
direct coherence. To allow the owner tile to process the request, direct coherence stores the
sharing information along with the owner block, and it also assigns the task of keeping cache
coherence and ensuring ordered accesses for every memory block to the tile that stores that
block. As shown in Figure 3(b)DiCo-CMP sends the request directly to the owner tile (1 GetS),
instead of to the home tile. In this way, data can be provided by the owner tile (2 Data),
requiring just two hops to solve the cache miss.
Therefore, direct coherence requires a re-distribution of the roles involved in solving a cache
miss. Next, we describe the tasks performed in cache coherence protocols and the component
responsible for each task in both directory and direct coherence protocols, which are illus-
trated in Figure 4:

• Order requests: Cache coherence maintenance requires to serialize the requests issued
by different cores to the same block. In snooping-based cache coherence protocols, the
requests are ordered by the shared interconnection network. However, since tiled CMP
architectures implement an unordered network, this serialization of the requests must
be carried out by another component. Directory protocols assign this task to the home
tile of each memory block. On the other hand, this task is performed by the owner tile
in direct coherence protocols.

• Keep coherence information: Coherence information is used to track blocks stored in pri-
vate caches. In protocols that include the O state, like MOESI protocols, coherence
information also identifies the owner tile. In particular, sharing information is used to
invalidate all cached blocks on write misses, while owner information is used to know

Fig. 4. Tasks performed in cache coherence protocols.

the identity of the provider of the block on every miss. Directory protocols store coher-
ence information at the home tile, where cache coherence is maintained. Instead, direct
coherence requires that sharing information be stored in the owner tile for keeping co-
herence there, while owner information is stored in two different components. First, the
requesting cores need to know the owner tile to send the requests to it. Processors can
easily keep the identity of the owner tile, e.g., by recording the last core that invalidated
their copy. However, this information can become stale and, therefore, it is only used
for avoiding indirection (dashed arrow in Figure 4). Then, the responsible for tracking
the up-to-date identity of the owner tile is the home tile which must be notified on every
ownership change.

• Provide the data block: If the valid copy of the block resides on chip, data is always pro-
vided by the owner tile, since it always holds a valid copy. The owner of a block is either
a tile holding the block in the exclusive or the modified state, the last core that wrote
the block when there are multiple sharers, or the the L2 cache bank within the home tile
in case of an eviction of the owner block from some L1 cache.

• Provide off-chip storage: When the valid copy of a requested block is not stored on chip,
an off-chip access is required to obtain the block. Both in directory and direct coherence
protocols the home tile is responsible for detecting that the owner copy of the block is
not stored on chip. It is also responsible for sending the off-chip request and receiving
the data block.

Another example of the advantages of direct coherence is shown in Figure 5. This diagram
represents an upgrade that takes place in a tile whose L1 cache holds the block in the owned
state, which happens frequently in common applications (e.g., for the producer-consumer
pattern). In a directory protocol, upgrades are solved by sending the request to the home tile (1
Upgr), which replies with the number of acknowledgements that must be received before the
block can be modified (2 Ack), and sends invalidation messages to all sharers (2 Inv). Sharers
confirm their invalidation to the requester (3 Ack). Once all the acknowledgements have been
received by the requester, the block can be modified and the directory is unblocked (4 Unbl).
In contrast, in DiCo-CMP only invalidation messages (1 Inv) and acknowledgements (2 Ack)
are required because the directory information is stored along with the data block, thereby
solving the miss with just two hops in the critical path.
Additionally, by keeping together the owner block and the directory information, control mes-
sages between them are not necessary, thus saving some network traffic (two messages in Fig-
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Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP
The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this chapter the Base
policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.

(a) Organization of a tile for di-
rectory protocols.

(b) Organization of a tile for di-
rect coherence protocols.

Fig. 6. Modifications to the structure of a tile required by direct coherence protocols.

4.3 Description of the cache coherence protocol
4.3.1 Requesting processor
When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner
When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile
Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.
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Fig. 5. How upgrades are solved in directory and direct coherence protocols. O=Owner;
H=Home; D=Directory; S=Sharers.

ure 3 and three in Figure 5). Moreover, this allows the O&D node to solve cache misses with-
out using transient states, thus reducing the number of states and making the implementation
simpler than a directory protocol. Finally, the elimination of transient states at the directory
reduces waiting time for the subsequent requests and, therefore, average miss latency.

4.2 Changes to the structure of the tiles of a CMP
The new distribution of roles that characterizes direct coherence protocols requires some mod-
ifications in the structure of the tiles that build the CMP. Firstly, the identity of the sharers for
every block is stored in the corresponding owner tile instead of the home one to allow caches
to keep coherence for the memory blocks that they hold in the owned state. Therefore, DiCo-
CMP extends the tags’ part of the L1 caches with a sharing code field, e.g., a full-map (L2
caches already include this field in directory protocols). In contrast, DiCo-CMP does not need
to store a directory structure at the home tile, as happens in directory protocols.
Additionally, DiCo-CMP adds two extra hardware structures that are used to record the iden-
tity of the owner tile of the memory blocks stored on chip:

• L1 coherence cache (L1C$): The pointers stored in this structure are used by the requesting
core to avoid indirection by directly sending local requests to the corresponding owner
tile. Therefore, this structure is located close to each processor’s core. Although DiCo-
CMP can update this information in several ways, we consider in this chapter the Base
policy presented in Ros et al. (2008a), in which this information is updated by using the
coherence messages sent by the protocol, i.e., invalidation and data messages.

• L2 coherence cache (L2C$): Since the owner tile can change on write misses, this struc-
ture must track the owner tile for each block allocated in any L1 cache. This structure
replaces the directory structure required by directory protocols and it is accessed each
time a request fails to locate the owner tile. This information must be updated whenever
the owner tile changes through control messages. These messages must be processed
by the L2C$ in the very same order in which they were generated in order to avoid any
incoherence when storing the identity of the owner tile, as described later in Section
4.3.3.

Figure 6 shows a tile design for directory protocols and for direct coherence protocols. A
comparison among the extra storage and structures required by all the protocols evaluated in
this chapter can be found in Section 7.4.
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4.3 Description of the cache coherence protocol
4.3.1 Requesting processor
When a processor issues a request that misses in its private L1 cache, it sends the request
directly to the owner tile in order to avoid indirection. The identity of the potential owner tile
is obtained from the L1C$, which is accessed at the time that the cache miss in detected. If
there is a hit in the L1C$, the request is sent to the obtained owner tile. Otherwise, the request
is sent to the home tile, where the L2C$ will be accessed to get the identity of the current
owner tile.

4.3.2 Request received by a tile that is not the owner
When a request is received by a tile that is not the current owner of the block, it simply re-
sends the request. If the tile is not the home one, the request is re-sent to it. Otherwise, if the
request is received by the home tile and there is a hit in the L2C$, the request is sent to the
current owner tile. In absence of race conditions the request will reach the owner tile. Finally,
if there is a miss in the L2C$ and the home tile is not the owner of the block, the request is
solved by providing the block from main memory, where, in this case, a fresh copy of the block
resides. This is because the L2C$ always keeps an entry for the blocks stored in the private L1
caches. If the owner copy of the block is not present in either any L1 cache or in the L2 cache,
it resides off-chip. After the off-chip access, the block is allocated in the requesting L1 cache,
which gets the ownership of the block, but not in the L2 cache (as occurs in the other protocols
evaluated), since we assume that the L1 and the L2 cache are non-inclusive. In addition, it is
necessary to allocate a new entry in the L2C$ pointing to the current L1 owner tile.

4.3.3 Request received by the owner tile
Every time a request reaches the owner tile, it is necessary to check whether this tile is cur-
rently processing a request from a different processor for the same block (a previous write
waiting for acknowledgements). In this case, the block is in a busy or transient state, and the
request must wait until all the acknowledgements are received.
If the block is not in a transient state, the miss can be immediately solved. If the owner is the
L2 cache at the home tile all requests (reads and writes) are solved by deallocating the block
from the L2 cache and allocating it in the private L1 cache of the requester. Again, the identity
of the new owner tile must be stored in the L2C$.
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Fig. 7. Example of ownership change upon write misses. R=Requester; O=Owner; S=Sharers;
H=Home.

When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.
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Fig. 8. Example of a starvation scenario in direct coherence protocols. Rx=Requester;
H=Home. Continuous arrows represent cache misses that take place in R1, dashed arrows
represent misses in R2 and dotted arrows represent misses in R3.

4.3.4 Replacements
In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation
Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.
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When the owner is an L1 cache, read misses are completed by sending a copy of the block
to the requester and adding it to the sharing code field kept along with the block. For write
misses, the owner tile sends invalidation messages to all the tiles that hold a copy of the
block in their L1 caches and, then, it sends the data block to the requester. Acknowledge-
ment messages are collected at the requesting core. As previously shown in Figure 5, write
misses (upgrade) that take place in the owner tile just need to send invalidations and receive
acknowledgements (two hops in the critical path).
Finally, since the L2C$ must store up-to-date information regarding the owner tile, every time
that this tile changes, the old owner tile also sends a control message to the L2C$ indicating
the identity of the new owner tile. These messages must be processed by the L2C$ in the very
same order in which they were generated. Otherwise, the L2C$ could fail to store the identity
of the current owner tile. Fortunately, there are several approaches to ensure this order. In
the implementation evaluated in this chapter, once the L2C$ processes the message reporting
an ownership change from the old owner tile, it sends a confirmation response to the new
one. Until this confirmation message is received by the new owner tile, it could access the
data block (if already received), but cannot give the ownership to another tile. Since these
two control messages are not in the critical path of the cache miss, they do not introduce extra
latency.
As an example, Figure 7 illustrates a write miss for a shared block. It assumes that the re-
quester has valid and correct information about the identity of current owner tile in the L1C$
and, therefore, it directly sends the request to the owner tile (1 GetX). Then the owner tile must
perform the following tasks. First, it sends the data block to the requester (2 Data). Second,
it sends invalidation messages to all the sharers (2 Inv), and it also invalidates its own copy.
The information about the sharers is obtained from the sharing code stored along with every
owner block. Third, it sends the message informing about the ownership change to the home
tile (2 ChOwn). All tiles that receive an invalidation message respond with an acknowledge-
ment message to the requester once they have invalidated their local copies (3 Ack). When the
data and all the acknowledgements arrive to the requesting processor the write operation can
be performed. However, if another write request arrives to the tile that previously suffered
the miss, it cannot be solved until the acknowledgement to the ownership change issued by
the home tile (3 AckCh) is received.
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4.3.4 Replacements
In our particular implementation, when a block with the ownership property is evicted from
an L1 cache, it must be allocated at the L2 cache along with the up-to-date directory informa-
tion. Differently from Directory-CMP and Hammer-CMP protocols and similarly to Token-CMP,
replacements are performed by sending the writeback message directly to the home tile (in-
stead of requiring three-phase replacements). This operation can be easily performed in direct
coherence protocols because the tile where these blocks are stored is the responsible for keep-
ing cache coherence and, as consequence, no complex race conditions can appear. When the
writeback message reaches the home tile, the L2C$ deallocates its entry for this block because
the owner tile is now the home one. On the other hand, replacements for blocks in shared
state are performed transparently, i.e., no coherence actions are needed.
Finally, no coherence actions must be performed in case of an L1C$ replacement. However,
when an L2C$ entry is evicted, the protocol should ask the owner tile to invalidate all the
copies from the private L1 caches. Luckily, as happens to the directory cache in directory
protocols, an L2C$ with the same number of entries and associativity than the L1 cache is
enough to completely remove this kind of replacements (Ros et al., 2008b).

4.4 Preventing starvation
Directory protocols avoid starvation by enqueuing requests in FIFO order at the directory
buffers. Differently in DiCo-CMP, write misses can change the tile that keeps coherence for
a particular block and, therefore, some requests can take some extra time until this tile is
finally found. If a memory block is repeatedly written by several processors, a request could
take some time to find the owner tile ready to process it, even when it is sent by the home
tile. Hence, some processors could be solving their requests while other requests are starved.
Figure 8 shows an example of a scenario in which starvation appears. R1 and R2 tiles are
issuing write requests repeatedly and, therefore, the owner tile is continuously moving from
R1 to R2 and vice versa. On every change of owner the home tile is notified, and the requesting
core is acknowledged. However, at the same time, the home tile is trying to re-send the request
issued by R3 tile to the owner one, but the request is always returned to the home tile because
the write request issued by R1 or R2 arrives before to the owner tile.



DiCo-CMP detects and avoids starvation by using a simple mechanism. In particular, each
time that a request must be re-sent to the L2C$ in the home tile, a counter into the request
message is increased. The request is considered starved when this counter reaches a certain
value (e.g, three accesses to the L2C$ for the evaluation carried out in this chapter). When
the L2C$ detects a starved request, it re-sends the request to the owner tile, but it records the
address of the block. If the starved request reaches the current owner tile, the miss is solved,
and the home tile is notified, ending the starvation situation. If the starved request does not
reach the owner tile is because the ownership property is moving from a tile to another one. In
this case, when the message informing about the change of the ownership arrives to the home
tile, it detects that the block is suffering from starvation, and the acknowledgement message
required on every ownership change is not sent. This ensures that the owner tile does not
change until the starved request can complete.

5. Reducing area requirements in DiCo-CMP

DiCo-CMP needs two structures that keep the identity of the tile where the owner copy of the
block resides, the L1C$ and the L2C$. These two structures do not compromise scalability
because they have a small number of entries and each one stores a tag and a pointer to the
owner tile (log2n bits, where n is the number of cores). The L2C$ is needed to solve cache
misses in DiCo-CMP, since it ensures that the tile that keeps coherence for each block can
always be found. On the other hand, the L1C$ is required to avoid indirection in cache misses
and, therefore, it is essential to obtain good performance. Moreover, the L2C$ allows read
misses to be solved by sending only one forwarding request to the owner tile, since it stores
the identity of the owner tile, which significantly reduces network traffic when compared to
broadcast-based protocols.
Apart from these structures, DiCo-CMP also adds a full-map sharing code to each data cache
entry. The memory overhead introduced by this sharing code could become prohibitive in
many-core CMPs. In this section, we describe some alternatives that differ in the sharing code
scheme added to each entry of the data caches. Since these alternatives always include the
L1C$ and the L2C$, they have area requirements of at least O(log2n). The particular com-
pressed sharing code employed impacts on the number of invalidations sent in write misses.
Next, we comment on the different implementations of direct coherence protocols that we
have evaluated.
DiCo-FM is the DiCo-CMP protocol described in Ros et al. (2008a) and, therefore, it adds a
full-map sharing code to each data cache. Particularly, we evaluate the Base policy presented
in that work, which obtains good performance with low traffic overhead.
DiCo-CV-K reduces the size of the sharing code field by using a coarse vector (Gupta et al., 1990)
instead of a full-map sharing code. In a coarse vector, each bit represents a group of K tiles,
instead of just one. A bit is set when at least one of the tiles in the group holds the block in its
private cache. Therefore, even when just one of the tiles in the group requested a particular
block, all tiles belonging to that group will receive an invalidation message before the block
can be written. Particularly, we study a configuration that uses a coarse vector sharing code
with K = 2. In this case, 8 bits are needed for a 16-core configuration. Although this sharing
code reduces the memory required by the protocol, its size still increases linearly with the
number of cores.
DiCo-LP-P employs a limited pointers sharing code (Chaiken et al., 1991). In this scheme, each
entry has a limited number of pointers for the first P sharers of the block. Actually, since
DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer

Protocol Sharing Code Bits L1 and L2 Bits L1C$ and L2C$ Order
DiCo-FM Full-map n log2n O(n)
DiCo-CV-K Coarse vector n

K log2n O(n)
DiCo-LP-P Limited pointers 1 + P × (1 + log2n) log2n O(log2n)
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is employed to store the identity of the second sharer of the block. When the sharing degree
of a block is greater than P + 1, write misses are solved by broadcasting invalidations to all
tiles. Therefore, apart from the pointers, it is necessary an extra bit indicating the overflow
situation. However, this situation is not very frequent since the sharing degree of the appli-
cations is usually low (Culler et al., 1999). In particular, we evaluate this protocol with a P
value of 1. Under this assumption, the number of bits needed to store the sharing information
considering 16 cores is 5.
DiCo-BT uses a sharing code based on a binary tree (Acacio et al., 2001). In this approach, tiles
are recursively grouped into clusters of two elements, thus leading to a binary tree with the
tiles located at the leaves. The information stored in the sharing code is the smallest cluster
that covers all the sharers. Since this scheme assumes that for each block the binary tree is
computed from a particular leave (the one representing the home tile), it is only necessary to
store the number of the level in the tree, i.e., 3 bits for a 16-core configuration.
Finally, DiCo-NoSC (no sharing code) does not maintain any coherence information along with
the owner block. In this way, this protocol does not need to modify the structure of data caches
to add any field. This lack of information implies broadcasting invalidation messages to all
tiles upon write misses, although this is only necessary for blocks in shared state because the
owner tile is always known in DiCo-CMP. This scheme incurs in more network traffic com-
pared to the previous ones. However, it falls into less traffic than Hammer-CMP and Token-
CMP. This is because Hammer-CMP requires broadcasting requests on every cache miss, and
what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
response messages, it also relies on broadcasting requests for all cache misses.
Table 2 shows the number of bits required for storing coherence information in each imple-
mentation, both for the coherence caches (L1C$ and L2C$) and for the data caches (L1 and L2).
Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-
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DiCo-CMP always stores the information about the owner tile in the L2C$, the first pointer
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that covers all the sharers. Since this scheme assumes that for each block the binary tree is
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what is more expensive in a network with multicast support, every tile that receives the re-
quest answers with a control message. On the other hand, although Token-CMP avoids these
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Other compressed sharing codes, like tristate (Agarwal et al., 1988), gray-tristate (Mukherjee &
Hill, 1994) or binary tree with subtrees (Acacio et al., 2001) could also be implemented instead
of those shown in this table. However, for a 16-core tiled CMP, they incur in similar overhead
than DiCo-CV-2 (8, 8 and 7 bits respectively), which does not significantly increases network
traffic, as we will see in Section 7.3. For a greater number of cores, these compressed sharing
codes could be more appropriate.

6. Simulation environment

We perform the evaluation using the full-system simulator Virtutech Simics (Magnusson et al.,
2002) extended with Multifacet GEMS 1.3 (Martin et al., 2005), that provides a detailed mem-
ory system timing model. Since the network modeled by GEMS 1.3 is not very precise, we
have extended it with SICOSYS (Puente et al., 2002), a detailed interconnection network sim-



GEMS Parameters SICOSYS Parameters
Processor frequency 3 GHz Network frequency 1.5 GHz
Cache hierarchy Non-inclusive Topology 4x4 Mesh
Cache block size 64 bytes Switching technique Wormhole, Multicast
Split L1 I & D caches 128KB, 4 ways, 3 hit cycles Routing technique Deterministic X-Y
Shared unified 1MB/tile, 8 ways, Data message size 4 flits

L2 cache 6 hit cycles Control message size 1 flit
L1C$ & L2C$ 512 sets, 4 ways, 2 hit cycles Routing time 2 cycles
Directory cache 512 sets, 4 ways, 2 hit cycles Link latency (one hop) 2 cycles
Memory access time 300 cycles Link bandwidth 1 flit/cycle

Table 3. System parameters.

ulator. We simulate CMP systems with 16 tiles. Table 3 shows the values of the main parame-
ters used for the evaluation, where cache latencies have been calculated using the CACTI 5.3
tool (Thoziyoor et al., 2008) for 45nm technology. We also have used CACTI to measure the
area of the different structures needed in each one of the evaluated protocols. In this study,
we assume that the length of the physical address is 40 bits, like in the SUN UltraSPARC-III
architecture (Horel & Lauterbach, 1999).
The ten applications used in our simulations cover a variety of computation and communi-
cation patterns. Barnes (8192 bodies, 4 time steps), FFT (64K points), Ocean (130x130 ocean),
Radix (512K keys, 1024 radix), Raytrace (teapot), Volrend (head) and Water-Nsq (512 molecules,
4 time steps) are scientific applications from the SPLASH-2 benchmark suite (Woo et al., 1995).
Unstructured (Mesh.2K, 5 time steps) is a computational fluid dynamics application. MPGdec
(525 tens 040.m2v) and MPGenc (output of MPGdec), are multimedia applications from the
APLBench suite (Li et al., 2005). We account for the variability in multithreaded workloads
by doing multiple simulation runs for each benchmark in each configuration and injecting
random perturbations in memory systems timing for each run.

7. Evaluation results

In this section, we compare the different alternatives described in Section 5 with all the base
protocols described in this chapter. First, we show to what extent direct coherence protocols
avoid indirection, and its impact on execution time. Then, we analyze the network traffic
generated by each protocol, and the area required by them to store the coherence informa-
tion. Finally, we summarize these results by showing the trade-off in terms of execution time,
network traffic and area requirements of the protocols evaluated.

7.1 Impact on indirection
In general, DiCo-CMP reduces the average number of hops needed to solve a cache miss by
avoiding the indirection introduced by the access to the home tile, when compared to tra-
ditional protocols. However, in DiCo-CMP, some misses can increase the number of hops
compared to a directory protocol due to owner mis-predictions. In order to study how DiCo-
CMP impacts on the number of hops needed to solve cache misses, we classify each miss in
one of the following categories:

• 2-hop misses: Misses belonging to this category does not suffer from indirection since
the number of hops in the critical path of the miss is two. In Hammer-CMP, misses fall
into this category when the home tile of the requested block can provide the copy of

Fig. 9. How each miss type is solved for the applications evaluated in this chapter.

the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).
In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,
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the block and it is not necessary to invalidate blocks from other tiles. In directory pro-
tocols, misses fall into this category in the same cases as Hammer-CMP, but also when
the miss takes place in the home tile. Token-CMP solves all misses that do not require
persistent requests in two hops. Finally, DiCo-CMP solves cache misses using two hops
either when the request is directly sent to the current owner tile and invalidations are
not required or when the miss takes place either in the home tile or in the owner tile
(upgrades).
In all protocols, when the miss takes place in the home tile and this tile holds the owner
block in the L2 cache, the miss is solved without generating network traffic (0-hop miss).
These misses are also included in this category because they do not introduce indirec-
tion.

• 3-hop misses: A miss belongs to this category when three hops in the critical path are
necessary to solve it. This category represents the misses suffering from indirection in
traditional protocols. In contrast, 3-hop misses never take place in Token-CMP.

• +3-hop misses: We include in this category misses that need more than three hops in the
critical path to be solved. This type of misses only happens in DiCo-CMP, when the
identity of the owner tile is mis-predicted, or in Token-CMP, when persistent requests
are required to solve the miss. The traditional protocols evaluated in this chapter never
require more than three hops to solve cache misses since the acknowledgements to in-
validation messages are collected by the requesting core.

• Memory misses: Misses that require off-chip accesses since the owner block is not stored
on chip fall into this category.

Figure 9 shows the percentage of cache misses that fall into each category. As commented in
Section 2, in tiled CMP architectures it is not very frequent that the requester tile be the home
one for the requested block because the distribution of blocks among tiles is performed in a
round-robin fashion. Therefore, traditional protocols have a lot of cache misses with indirec-
tion. However, the fact that sometimes a coherent copy of the block is found in the L2 cache
bank of the home tile, decreases the number of misses with indirection. In this way, the first
and second bars in Figure 9 shows that most applications have an important fraction of misses
suffering from indirection when traditional protocols are considered, like Barnes, MPGdec,



Fig. 10. Normalized execution times.

MPGenc, Ocean, Raytrace, Unstructured, Volrend and Water-Nsq, while other applications, like
FFT and Radix, have most of the misses solved in two hops when a directory protocol is con-
sidered. Hammer-CMP has more cache misses suffering from indirection because sometimes it
has to broadcast forwarding messages due to the lack of information about the identity of the
owner tile. Obviously, DiCo-CMP will have more impact for the applications that suffer more
indirection, although this impact will also depend on the cache miss rate of each application.
We also can observe that Token-CMP solves most of the misses (90%) needing just two hops
(see third bar).
As shown in the fourth bar of Figure 9, DiCo-FM increases the percentage of cache misses
without indirection compared to both Hammer-CMP and Directory-CMP (from 34% and 41%,
respectively, to 67% on average). On the other hand, DiCo-FM solves 17% of cache misses
needing more than three hops. This fact is due to owner mis-predictions that can arise for two
reasons: (1) staled owner information was found in the L1C$ or (2) the owner tile is changing
or busy due to race conditions and the request is sent back to the home tile. Although, the
first case can be removed with a precise hints mechanism, as discussed in (Ros et al., 2008a),
in this chapter we do not use this mechanism in order to save network traffic.
The remaining bars show the different implementations of direct coherence aimed at reducing
the area requirements entailed by this protocol. We can see that, the indirection avoidance is
similar. However, the more compressed is the sharing code, the more invalidations are sent,
which slightly increases the number of misses without indirection due to a better prediction
of owner tiles.

7.2 Impact on execution time
Figure 10 plots the average execution times for the applications evaluated in this chapter nor-
malized with respect to Hammer-CMP. Compared to Hammer-CMP, Directory-CMP improves
performance for all applications as a consequence of an important reduction in terms of both
misses suffering from indirection and network traffic (as we will see in next section). As dis-
cussed in the previous section, the longer latency cache misses are suffered in Hammer-CMP.
This is because on each cache miss the requesting core must wait for all the acknowledgement
messages before the miss can be solved. On the contrary, in Directory-CMP only write misses
must wait for acknowledgements.

Fig. 11. Normalized network traffic.

On the other hand, indirection-aware protocols reduce average execution time when com-
pared to traditional protocols. Particularly, Token-CMP obtains average improvements of 11%
compared to Hammer-CMP and 1% compared to Directory-CMP. DiCo-FM improves the exe-
cution time by 14%, 5% and 4% compared to Hammer-CMP, Directory-CMP and Token-CMP,
respectively. On the other hand, when DiCo-CMP employs compressed sharing codes, the
execution time slightly increases. Although the protocol incurs in more network traffic, it
also increases the accuracy of owner predictions. Therefore, it remains close to DiCo-FM.
For DiCo-CV-2 and DiCo-LP-1 the increase in execution time is negligible, while DiCo-BT and
DiCo-NoSC increase execution time by 1%.

7.3 Impact on network traffic
Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
ments than Directory-CMP, and DiCo-NoSC, which does not have any sharing code, generates
an acceptable amount of network traffic (40% less traffic than Token-CMP and 58% less traffic
than Hammer-CMP).
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On the other hand, indirection-aware protocols reduce average execution time when com-
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execution time slightly increases. Although the protocol incurs in more network traffic, it
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7.3 Impact on network traffic
Figure 11 compares the network traffic generated by the protocols discussed previously. Each
bar plots the number of bytes transmitted through the interconnection network normalized
with respect to Hammer-CMP.
As expected, Hammer-CMP introduces much more network traffic than the other protocols
due to the lack of coherence information, which implies broadcasting requests to all cores and
receiving the corresponding acknowledgements. Directory-CMP reduces considerably traffic
by adding a full-map sharing code that filters unnecessary invalidations. Token-CMP gen-
erates more network traffic than Directory-CMP, because it relies on broadcasting requests,
and less than Hammer-CMP, because it does not need to receive acknowledgements from tiles
without tokens (i.e., the tiles that do not share the block). Finally, DiCo-FM decreases traffic
requirements compared to Directory-CMP (by 13%) due to the elimination of control messages
between the owner and the home tile, as discussed in Section 4.
In general, we can see that compressed sharing codes increase network traffic compared to
a full-map sharing code. However, the increase in traffic is admissible. Particularly, the
most scalable alternatives, DiCo-LP-1, DiCo-BT and DiCo-NoSC, increase network traffic by
8%, 16% and 21% compared to DiCo-FM, respectively. DiCo-BT has similar traffic require-
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Fig. 12. Overhead introduced by the cache coherence protocols.

7.4 Impact on area overhead
Finally, we compare the memory overhead introduced by the coherence information for the
cache coherence protocols evaluated in this chapter. Although some protocols can entail extra
overhead as a consequence of the additional mechanisms that they demand (e.g., timeouts
for reissuing requests or large tables for keeping active persistent requests in Token-CMP), we
only consider the amount of memory needed to keep coherence information. Obviously, the
extra tags required to store this information (e.g., for the L1C$ and L2C$) are also considered
in this study. Figure 12 shows the storage overhead introduced by these protocols in terms
of both number of bits and estimated area (calculated with the CACTI tool). The overhead is
plotted for varying number of cores from 2 to 1024.
Although the original Hammer protocol does not require any coherence information, our op-
timized version for CMPs adds a new structure to the home tile. This structure is a 512-set
4-way cache that contains a copy of the tags for blocks stored in the L1 caches but not in the
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ideal protocol with the best characteristics of the base protocols, for the sake of clarity, we
only show the trade-off for DiCo-BT. DiCo-BT requires less area (7.65mm2 for a 16-tiled CMP)
than all evaluated protocols except Hammer-CMP, it also generates similar network traffic than
Directory-CMP and, finally, it has a low average execution time (increasing just by 1% the best
approach, DiCo-FM).

8. Related work

In the shared-memory multiprocessors domain, Acacio et al. propose to avoid the indirec-
tion for cache-to-cache transfer misses (Acacio et al., 2002a) and upgrade misses (Acacio et al.,
2002b) separately by predicting the current holders of every cache block. Predictions must be
verified by the corresponding directory controller, thus increasing the complexity of the pro-
tocol on mis-predictions. Hossain et al. (2008) propose different optimizations for each shar-
ing pattern considering a chip multiprocessor architecture. Particularly, they accelerate the
producer-consumer pattern by converting 3-hop read misses into 2-hop read misses. Again,
communication between the cache providing the data block and the directory is necessary,
thus introducing more complexity in the protocol. In contrast, direct coherence is applicable
to all types of misses (reads, writes and upgrades) and just the identity of the owner tile is pre-
dicted. Moreover, the fact that the directory information is stored along with the owner of the
block simplifies the protocol. Finally, differently from the techniques proposed by Acacio et
al., direct coherence avoids predicting the current holders of a block by storing the up-to-date
directory information in the owner tile.
Also in the context of shared-memory multiprocessors, Cheng et al. (2007) have proposed con-
verting 3-hop read misses into 2-hop read misses for memory blocks that exhibit the producer-
consumer sharing pattern by using extra hardware to detect when a block is being accessed
according to this pattern. In contrast, direct coherence obtains 2-hop misses for read, write
and upgrade misses without taking into account sharing patterns.
Jerger et al. (2008) propose Virtual Tree Coherence (VTC). This mechanism uses coarse-grain
coherence tracking (Cantin et al., 2006) and the sharers of a memory region are connected by
means of a virtual tree. Since the root of the virtual tree serves as the ordering point in place of
the home tile, and the root tile is one of the sharers of the region, the indirection can be avoided
for some misses. Contrarily, direct coherence protocols keep the coherence information at
block granularity and the ordering point always has the valid copy of the block, which leads
to less network traffic and lower levels of indirection.
Huh et al. (2005) propose to allow replication in a NUCA cache to reduce the access time to a
shared multibanked cache. More recently, Beckmann et al. (2006) present ASR that replicates
cache blocks only when it is estimated that the benefits of replication (lower L2 hit latency)
exceeds its costs (more L2 misses). In contrast, direct coherence reduces miss latencies by
avoiding the access to the L2 cache when it is not necessary, and no replication is performed.
It could be also used in conjunction with techniques that try to make the best use of the limited
on-chip cache storage.
Martin et al. (2000) present a technique that allows snooping-based protocols to utilize un-
ordered networks by adding logical timing to coherence requests and reordering them on
destiny to establish a total order. Likewise, Agarwal et al. (2009) propose In-Network Snoop
Ordering (INSO) to allow snooping over unordered networks. Since direct coherence proto-
cols do not rely on broadcasting requests, they generate less traffic and, therefore, less power
consumption when compared to snooping-based protocols.

Martin et al. (2003) propose to use destination-set prediction to reduce the bandwidth required
by a snoopy protocol. Differently from DiCo-CMP, this proposal is based on a totally-ordered
interconnect (a crossbar switch), which does not scale with the number of nodes. Destination-
set prediction is also used by Token-M in shared-memory multiprocessors with unordered
networks (Martin, 2003). However, on mis-predictions, requests are solved by resorting on
broadcasting after a time-out period. Differently, in direct coherence protocols mis-predictions
are re-sent immediately to the owner cache, thus reducing both latency and network traffic.

9. Conclusions

Tiled CMP architectures have recently emerged as a scalable alternative to current small-scale
CMP designs, and will be probably the architecture of choice for future many-core CMPs. On
the other hand, although a great deal of attention was devoted to scalable cache coherence pro-
tocols in the last decades in the context of shared-memory multiprocessors, the technological
parameters and constraints entailed by CMPs demand new solutions to the cache coherence
problem. New cache coherence protocols, like Token-CMP and DiCo-CMP, have been recently
proposed to cope with the indirection problem of traditional protocols. However, neither
Token-CMP nor DiCo-CMP scale efficiently with the number of cores, and future cache coher-
ence protocols need to be efficient in terms of execution time, network traffic generated and
area requirements.
In this chapter, we take into consideration these three constraints, and we discuss and evaluate
both protocols that are used nowadays, such as Hammer and Directory, and novel indirection-
aware protocols, such as Token-CMP and DiCo-CMP. In this way, we perform a detailed eval-
uation of a wide range of cache coherence protocols for many-core CMPs in a common frame-
work. We also study several implementations of DiCo-CMP that differ in the amount of co-
herence information that they store in order to achieve the best trade-off among the three
constraints considered.
Particularly, we show that DiCo-LP-1, which only stores the identity of one sharer along with
the data block, DiCo-BT, which codifies the directory information just using three bits, and
DiCo-NoSC, which does not store any coherence information in the data caches (and it does not
need to modify the structure of the caches), are the alternatives that achieve a better trade-off.
For example, DiCo-BT requires less area than all evaluated protocols, except Hammer-CMP,
it also generates similar network traffic than Directory-CMP and, finally, it has a low average
execution time (increasing just by 1% the best approach, DiCo-FM).
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1. Introduction

Major chip manufacturers have adopted multicore technologies in recent years, due to the
thermal problems that distress traditional single-core chip designs in terms of processor per-
formance and power consumption. Nowadays, multiprocessor platforms have proliferated
in the marketplace, not only for servers and personal computers but also for embedded ma-
chines. The research on real-time systems has been therefore renewed for those multiprocessor
platforms, especially in the context of real-time scheduling.
Real-time scheduling techniques for multiprocessors are mainly classified into partitioned
scheduling and global scheduling. In the partitioned scheduling class, tasks are first assigned to
specific processors, and then executed on those processors without migrations. In the global
scheduling class, on the other hand, all tasks are stored in a global queue, and the same num-
ber of the highest priority tasks as processors are selected for execution.
The partitioned scheduling class has such an advantage that can reduce a problem of multi-
processor scheduling into a set of uniprocessor one, after tasks are partitioned. In addition,
it does not incur runtime overhead as much as global scheduling, since tasks never migrate
across processors. However, there is a disadvantage in theoretical scheduling performance,
i.e., schedulability a likelihood of a system being schedulable. Specifically, the worst-case
leads to that a periodic task system can cause deadline misses in partitioned scheduling, if the
system utilization exceeds 50% (Lopez et al., 2004).
The global scheduling class is meanwhile attractive in the worst-case schedulability. In this
class, Pfair (Baruah et al., 1996) and LLREF (Cho et al., 2006) are known to be optimal algo-
rithms. Any task sets are scheduled successfully by those algorithms, if the processor utiliza-
tion does not exceed 100%. However, the number of migrations and context switches is often
criticized. This scheduling class also provides concise and efficient algorithms, such as EDZL
(Cho et al., 2002) and EDCL (Kato & Yamasaki, 2008a), which perform with less preemptions
than the optimal ones, but the absolute worst-case processor utilization is still 50%.
For the purpose of finding a balance point between partitioned scheduling and global schedul-
ing, recent work have made available a new class, called semi-partitioned scheduling in this pa-
per. In this scheduling class, most tasks are fixed to specific processors as partitioned schedul-
ing to reduce the number of migrations, while a few tasks may migrate across processors to
improve available processor utilization as much as possible.
In addition to scheduling classes, the real-time systems community often argue priority-
driven scheduling policies. Commodity operating systems for practical use usually pre-



fer fixed-priority algorithms in terms of implementation simplicity and priority-based pre-
dictability. The most well-known fixed-priority algorithm is Rate Monotonic (RM) (Liu &
Layland, 1973). Andersson et al. showed that RM based on global scheduling offers the bound
on system utilization no greater than 33% (Andersson et al., 2001), while RM based on par-
titioned scheduling offers the one up to 50% (Andersson & Jonsson, 2003). So if we restrict
our attention to fixed-priority algorithms, partitioned scheduling may be more efficient than
global scheduling.
This chapter presents a new fixed-priority algorithm based on semi-partitioned scheduling.
The presented algorithm has two major contributions. First, it allows tasks to migrate across
processors only if they cannot be assigned (fixed) to any individual processors, to strictly dom-
inate the previous algorithms based on classical partitioned scheduling. Second, its schedul-
ing policy conforms Deadline Monotonic (DM) (Leung & Whitehead, 1982), which is a gener-
alization of RM for arbitrary-deadline tasks, to make available the prior analytical results of
DM (and RM). The contents of this chapter are based on the paper in (Kato & Yamasaki, 2009).
The reminder of this chapter is organized as follows. The next section reviews prior work on
semi-partitioned scheduling. The system model is defined in Section 3. Section 4 then presents
a new algorithm based on semi-partitioned scheduling. Section 5 evaluates the effectiveness
of the new algorithm. This chapter is concluded in Section 6.

2. Related Work

The concept of semi-partitioned scheduling was originally introduced by EDF-fm (Anderson
et al., 2005). EDF-fm assigns the highest priority to migratory tasks in a static manner. The
fixed tasks are then scheduled according to EDF, when no migratory tasks are ready for exe-
cution. Since EDF-fm is designed for soft real-time systems, the schedulability of a task set is
not tightly guaranteed, while the tardiness is bounded.
EKG (Andersson & Tovar, 2006) is designed to guarantee all tasks to meet deadlines for
implicit-deadline periodic task systems. Here, a deadline is said to be implicit, if it is equal
to a period. EKG differs from EDF-fm in that migratory tasks are executed in certain time
slots, while fixed tasks are scheduled according to EDF. The achievable processor utilization is
traded with the number of preemptions and migrations by a parameter. The optimal parame-
ter configuration leads to that any task sets are scheduled successfully with more preemptions
and migrations.
In the later work (Andersson & Bletsas, 2008), EKG is extended for sporadic task systems.
Here, a task is said to be sporadic, if its job arrivals are separated at least length equal to
its period. The extended algorithm is also parametric with respect to the length of the time
slots reserved for migratory tasks. EDF-SS (Andersson et al., 2008) is a further extension of
the algorithm for arbitrary-deadline systems. Here, a deadline is said to be arbitrary, if it is
not necessarily equal to a period. It is shown by simulations that EDF-SS offers a significant
improvement on schedulability over EDF-FFD (Baker, 2005), the best performer among parti-
tioned scheduling algorithms.
EDDHP (Kato & Yamasaki, 2007) is designed in consideration of reducing preemptions, as
compared to EKG. In EDDHP, the highest priority is assigned to migratory tasks, and other
fixed tasks have the EDF priorities, though it differs in that the scheduling policy guarantees
all tasks to meet deadlines unlike EDF-fm. It is shown by simulations that EDDHP outper-
forms partitioned EDF-based algorithms, with less preemptions than EKG. EDDP (Kato &
Yamasaki, 2008b) is an extension of EDDHP in that the priority ordering is fully dynamic. The
worst-case processor utilization is then bounded by 65% for implicit-deadline systems.

RMDP (Kato & Yamasaki, 2008c) is a fixed-priority version of EDDHP: the highest priority
is given to migratory tasks, and other fixed tasks have the RM priorities. It is shown by
simulations that RMDP improves schedulability over traditional fixed-priority algorithms.
The worst-case processor utilization is bounded by 50% for implicit-deadline systems. To the
best of our knowledge, no other algorithms based on semi-partitioned scheduling consider
fixed-priority assignments.
We have several concerns for the previous algorithms mentioned above. First, tasks migrate
across processors, even though they can be assigned to individual processors. Hence, we are
not sure that those algorithms are truly more effective than classical partitioned scheduling
approaches. Then, such tasks may migrate in and out of the same processor many times
within the same period, which is likely to cause the cache hit ratio to decline. The number
of context switches is also problematic due to repetition of migrations. In addition, optional
techniques for EDF and RM, such as synchronization and dynamic voltage scaling, may not
be easily available, since the scheduling policy is more or less modified from EDF and RM. In
this chapter, we aim at addressing those concerns.

3. System Model

The system is composed of m identical processors P1, P2, ..., Pm and n sporadic tasks
T1, T2, ..., Tn. Each task Ti is characterized by a tuple (ci,di, pi), where ci is a worst-case com-
putation time, di is a relative deadline, and pi is a minimum inter-arrival time (period). The
utilization of Ti is denoted by ui = ci/pi. We assume such a constrained task model that sat-
isfies ci ≤ di ≤ pi for any Ti. Each task Ti generates an infinite sequence of jobs, each of which
has a constant execution time ci. A job of Ti released at time t has a deadline at time t + di.
Any inter-arrival intervals of successive jobs of Ti are separated by at least pi.
Each task is independent and preemptive. Any job is not allowed to be executed in parallel.
Jobs produced by the same task must be executed sequentially, which means that every job
of Ti is not allowed to begin before the preceding job of Ti completes. The costs of scheduler
invocations, preemptions, and migrations are not modeled.

4. New Algorithm

We present a new algorithm, called Deadline Monotonic with Priority Migration (DM-PM),
based on the concept of semi-partitioned scheduling. In consideration of the migration and
preemption costs, a task is qualified to migrate, only if it cannot be assigned to any individ-
ual processors, in such a way that it is never returned to the same processor within the same
period, once it is migrated from one processor to another processor. On uniprocessor plat-
forms, Deadline Monotonic (DM) has been known as an optimal algorithm for fixed-priority
scheduling of sporadic task systems. DM assigns a higher priority to a task with a shorter
relative deadline. This priority ordering follows Rate Monotonic (RM) for periodic task sys-
tems with all relative deadlines equal to periods. Given that DM dominates RM, we design
the algorithm based on DM.

4.1 Algorithm Description
As the classical partitioning approaches Andersson & Jonsson (2003); Dhall & Liu (1978);
Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995), DM-PM assigns each task to a partic-
ular processor, using kinds of bin-packing heuristics, upon which the schedulable condition
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for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.

P1 P2

assigned
assigned

assigned

Ti

C
P

U
 u

til
iz

a
tio

n

0%

100%

Pm

assigned

P3

Fig. 1. Example of sharing a task.

Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.

P1

P2

P3

inter-arrival time of

migration

Ti

Fig. 2. Example of scheduling a shared task

Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.
When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the
highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The



for DM is satisfied. In fact, any heuristics are available for DM-PM. If there are no such pro-
cessors, DM-PM is going to share the task among more than one processor, whereas a task
set is decided to be unfeasible in the classical partitioning approaches. In a scheduling phase,
such a shared task is qualified to migrate across those multiple processors.
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Figure 1 demonstrates an example of sharing a task among more than one processor. Let us
assume that none of the m processors has spare capacity enough to accept full share of a task
Ti. According to DM-PM, Ti is for instance shared among the three processors P1, P2, and P3.
In terms of utilization share, Ti is “split” into three portions. The share is always assigned
to processors with lower indexes. The execution capacity is then given to each share so that
the corresponding processors are filled to capacity. In other words, the processors have no
spare capacity to receive other tasks, once a shared task is assigned to them. However, only
the last processor to which the shared task is assigned may still have spare capacity, since
the execution requirement of the last portion of the task is not necessarily aligned with the
remaining capacity of the last processor. Thus, in the example, no tasks will be assigned to
P1 and P2, while some tasks may be later assigned to P3. In a scheduling phase, Ti migrates
across P1, P2 and P3. We will describe how to compute the execution capacity for each share
in Section 4.2.
Here, we need to guarantee that multiple processors never execute a shared task simultane-
ously. To this end, DM-PM simplifies the scheduling policy as follows.

• A shared task is scheduled by the highest priority within the execution capacity on each
processor.

• Every job of the shared task is released on the processor with the lowest index, and it is
sequentially migrated to the next processor when the execution capacity is consumed
on one processor.

• Fixed tasks are then scheduled according to DM.
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Figure 2 illustrates an example of scheduling a shared task Ti whose share is assigned to three
processors P1, P2, and P3. Let c′i,1, c′i,2, and c′i,3 be the execution capacity assigned to Ti on P1,
P2, and P3 respectively. Every job of Ti is released on P1 that has the lowest index. Since Ti is
scheduled by the highest priority, it is immediately executed until it consumes c′i,1 time units.
When c′i,1 is consumed, Ti is migrated to the next processor P2, and then scheduled by the
highest priority again. Ti is finally migrated to the last processor P3 when c′i,2 is consumed on
P2, and then executed in the same manner.
The scheduling policy of DM-PM above implies that the execution of a shared task Ti is re-
peated exactly at its inter-arrival time on every processor, because it is scheduled by the high-
est priority on each processor until the constant execution capacity is consumed. A shared
task Ti can be thus regarded as an independent task with an execution time c′i,k and a mini-
mum inter-arrival time pi, to which the highest priority is given, on every processor Pk. As a
result, all tasks are scheduled strictly in order of fixed-priority, though the scheduling policy
is slightly modified from DM.
We next need to consider the case in which one processor executes two shared tasks. Let us
assume that another task Tj is shared among three processors T3, T4, and T5, following that
a former task Ti has been assigned to three processors P1, P2, and P3, i.e. P3 is not filled to
capacity yet as explained in the previous example with Figure 3. We here need to break a tie
between two shared tasks Ti and Tj assigned to the same processor P3, since they both have
the highest priority. DM-PM is for this designed so that ties are broken in favor of the one
assigned later to the processor. Thus, in the example, Tj has a higher priority than Ti on P3 in
a scheduling phase.
Figure 4 depicts an example of scheduling two shared tasks Ti and Tj, based on the tie-
breaking rule above, that are assigned to processors as shown in Figure 3. Jobs of Ti and
Tj are generally executed by the highest priority. However, the second job of Ti is blocked by
the second job of Tj, when it is migrated to P3 from P2, because Tj has a higher priority. The
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Fig. 3. Example of assigning two shared tasks to one processor.

third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks
We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti
is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet
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deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = !di/pj" denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)
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third job of Ti is also preempted and blocked by the third job of Tj. Here, we see the reason
why ties are broken between two shared tasks in favor of the one assigned later to the proces-
sor. The execution of Ti is not affected very much, even if it is blocked by Tj, since P3 is a last
processor for Ti to execute. Meanwhile, P3 is a first processor for Tj to execute, and thus the
following execution would be affected very much, if it is blocked on P3.
Implementation of DM-PM is fairly simplified as compared to the previous algorithms based
on semi-partitioned scheduling, because all we have to renew implementation of DM is to set
a timer, when a job of a shared task Ti is released on or is migrated to a processor Pk at time t,
so that the scheduler will be invoked at time t + c′i,k to preempt the job of Ti for migration. If
Pk is a last processor for Ti to execute, we do not have to set a timer. On the other hand, many
high-resolution timers are required for implementation of the previous algorithms Andersson
& Bletsas (2008); Andersson & Tovar (2006); Kato & Yamasaki (2007; 2008b;c).

4.2 Execution Capacity of Shared Tasks
We now describe how to compute the execution capacity of a shared task on each processor.
The amount of execution capacity must guarantee that timing constraints of all tasks are not
violated, while processor resource is given to the shared task as much as possible to improve
schedulability. To this end, we make use of response time analysis.
It has been known Liu & Layland (1973) that the response time of tasks is never greater than
the case in which all tasks are released at the same time, so-called critical instant, in fixed-
priority scheduling. As we mentioned before, DM-PM guarantees that all tasks are scheduled
strictly in order of priority, the worst-case response time is also obtained at the critical instant.
Henceforth, we assume that all the tasks are released at the critical instant t0.
Consider two tasks Ti and Tj, regardless of whether they are fixed tasks or shared tasks. Ti
is assigned a lower priority than Tj. Let Ii,j(di) be the maximum interference (blocking time)
that Ti receives from Tj within a time interval of length di. Since we assume that all tasks meet
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deadlines, a job of Ti is blocked by Tj for at most Ii,j(di). Given the release at the critical instant
t0, it is clear that the total amount of time consumed by a task within any interval [t0, t1) is
maximized, when the following two conditions hold.

1. The task is released periodically at its minimum inter-arrival time.

2. Every job of the task consumes exactly ci time units without being preempted right after
its release.

The formula of Ii,j(di), the maximum interference that Ti receives from Tj within di, is derived
as follows. According to Buttazzo (1997), the maximum interference that a task receives from
another task depends on the relation among execution time, period, and deadline. Hereinafter,
let F = !di/pj" denote the maximum number of jobs of Tj that complete within a time interval
of length di.
We first consider the case of di ≥ Fpj + cj, in which the deadline of Ti occurs while Tj is not
executed, as shown in Figure 5. In this case, Ii,j(di) is obtained by Equation (1).

Ii,j(di) = Fcj + cj = (F + 1)cj (1)

We next consider the case of di ≤ Fpj + cj, in which the deadline of Ti occurs while Tj is
executed, as shown in Figure 6. In this case, Ii,j(di) is obtained by Equation (2).

Ii,j(di) = di − F(pj − cj) (2)
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For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
Tj∈Pk∩Hi

Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every
processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =

⌈
di
ps

⌉
c′s,k (4)

In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by
Equation (6), where G = &di/ps'.

c′s,k = min
{

di − Ri,k
G

∣∣∣∣ Ti ∈ Pk

}
(6)

In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

1. for each Pk ∈ Π
2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk
5. if Ti is a shared task then
6. x := (di − ci)/$di/ps%;
7. else
8. x := (di − Ri,k)/$di/ps%;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k &= 0 then
15. Pk := Pk ∪ {Ts}:
16. creq := creq − c′s,k:
17. if creq = 0 then
18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. return SUCCESS:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of
each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned
to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/$di/pi% but by
(di − ci)/$di/pi% (line 6), because a job of Ti released at time t always completes at time t + ci
given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/$di/ps%
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the
share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-
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For the sake of simplicity of description, the notation of Ii,j(di) unifies Equation (1) and Equa-
tion (2) afterwards. The worst-case response time Ri,k of each task Ti on Pk is then given by
Equation (3), where Pk is a set of tasks that have been assigned to Pk, and Hi is a set of tasks
that have priorities higher than or equal to Ti.

Ri,k = ∑
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Ii,j(di) + ci (3)

We then consider the total amount of time that a shared task competes with another task. Let
Ts be a shared task, and Pk be a processor to which the share of Ts is assigned. As we mention
in Section 4.1, a shared task Ts can be regarded as an independent task with an execution
time c′s,k and a minimum inter-arrival time ps, to which the highest priority is given, on every
processor Pk. The maximum total amount Ws,k(di) of time that Ts competes with a task Ti on
Pk within a time interval of length di is therefore obtained by Equation (4).

Ws,k(di) =
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⌉
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In order to guarantee all tasks to meet deadlines, the following condition must hold for every
task Ti on every processor Pk to which a shared task Ts is assigned.

Ri,k + Ws,k(di) ≤ di (5)

It is clear that the value of c′s,k is maximized for Ri,k + Ws,k(di) = di. Finally, c′s,k is given by
Equation (6), where G = &di/ps'.

c′s,k = min
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In the end, we describe how to assign tasks to processors. As most partitioning algorithms
Dhall & Liu (1978); Fisher et al. (2006); Lauzac et al. (1998); Oh & Son (1995) do, each task is

1. for each Pk ∈ Π
2. creq := cs;
3. c′s,k := 0;
4. for each Ti ∈ Pk
5. if Ti is a shared task then
6. x := (di − ci)/$di/ps%;
7. else
8. x := (di − Ri,k)/$di/ps%;
9. end if

10. if x < c′s,k then
11. c′s,k := max(0, x);
12. end if
13. end for
14. if c′s,k &= 0 then
15. Pk := Pk ∪ {Ts}:
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17. if creq = 0 then
18. Π := Π \ {Pk}:
19. return SUCCESS:
20. else if creq < 0 then
21. c′s,k := c′s,k + creq:
22. return SUCCESS:
23. else
24. Π := Π \ {Pk}:
25. end if
26. end if
27. end for
28. return FAILURE:

Fig. 7. Pseudo code of splitting Ts.

assigned to the first processor upon which a schedulable condition is satisfied. The schedu-
lable condition of Ti for Pk here is defined by Ri,k ≤ di. If Ti does not satisfy the schedulable
condition, its utilization share is going to be split across processors.
Figure 7 shows the pseudo code of splitting Ts. Π is a set of processors processors that have
spare capacity to accept tasks. creq is a temporal variable that indicates the remaining exe-
cution requirement of Ts, which must be assigned to some processors. For each processor,
the algorithm computes the value of c′s,k until the total of those c′s,k reaches cs. The value of
each c′s,k is based on Equation (6). Notice that if Ti is a shared task that has been assigned
to Pk before Ts, the temporal execution capacity is not denoted by (di − c′i,k)/$di/pi% but by
(di − ci)/$di/pi% (line 6), because a job of Ti released at time t always completes at time t + ci
given that Ti is assigned the highest priority. Otherwise, it is denoted by (di − Ri,k)/$di/ps%
(line 8). The value of c′s,k must be non-negative (line 11). If c′s,k is successfully obtained, the
share of Ts is assigned to Pk (line 15). Now creq is reduced to creq − c′s,k (line 16). A non-positive
value of creq means that the utilization share of Ts has been entirely assigned to some proces-



sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization
This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(21/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us " 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound
The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈
L
pi

⌉
(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)
⌈

L
min{ps | Ts ∈ τ′}

⌉
(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-



sors. Thus, it declares success. Here, a negative value of creq means that the execution capacity
has been excessively assigned to Ts. Therefore, we need to adjust the value of c′s,k for the last
portion (line 21). If creq is still positive, the same procedure is repeated.

4.3 Optimization
This section considers optimization of DM-PM. Remember again that a shared task Ts can be
regarded as an independent task with an execution time c′s,k and a minimum inter-arrival time
ps, to which the highest priority is given, on every processor Pk. We realize from this charac-
teristic that if Ts has the shortest relative deadline on a processor Pk, the resultant scheduling
is optimally conformed to DM, though the execution time of Ts is transformed into c′s,k.
Based on the idea above, we consider such an optimization that sorts a task set in non-
increasing order of relative deadline before the tasks are assigned to processors. This leads
to that all tasks that have been assigned to the processors before Ts always have longer rel-
ative deadlines than Ts. In other words, Ts always has the shortest relative deadline at this
point.
Ts may not have the shortest relative deadline on a processor Pk, if other tasks are later as-
signed to Pk. Remember that those tasks have shorter relative deadlines than Ts, since a
task set is sorted in non-increasing order of relative deadline. According to DM-PM, Ts is
assigned to processors so that they are filled to capacity, except for a last processor to which
Ts is assigned. Thereby for optimization, we need to concern only such a last processor Pl that
executes Ts.
In fact, there is no need to forcefully give the highest priority to Ts on Pl , because the next job
of Ts will be released at the beginning of the next period, regardless of its completion time,
whereas it is necessary to give the highest priority to Ts on the preceding processors, because
Ts is never executed on the next processor unless the execution capacity is consumed. We thus
modify DM-PM for optimization so that the prioritization rule is strictly conformed to DM.
As a result, a shared task would have a lower priority than fixed tasks, if they are assigned to
the processor later.
The worst case problem. Particularly for implicit-deadline systems where relative deadlines
are equal to periods, a set of tasks is scheduled on each processor Pk successfully, if the proces-
sor utilization Uk of Pk satisfies the following well-known condition, where nk is the number
of the tasks assigned to Pk, because the scheduling policy of the optimized DM-PM is strictly
conformed to DM.

Uk ≤ nk(21/nk − 1) (7)

The worst-case processor utilization is derived as 69% for nk → ∞. Thus to derive the worst-
case performance of DM-PM, we consider a case in which an infinite number of tasks, all of
which have very long relative deadlines (close to ∞), meaning very small utilization (close to
0), have been already assigned to every processor. Note that the available processor utilization
is at most 69% for all processors.
Let Ts be a shared task with individual utilization (us = cs/ps) greater than 69%, and Pl be a
last processor to which the utilization share of Ts is assigned. We then assume that another
task Ti is later assigned to Pl . At this point, the worst-case execution capacity that can be
assigned to Ti on Pl is ds − cs = ds(1 − us), due to di ≤ ds. Hence, the worst-case utilization
bound of Ti on Pl is obtained as follows.

ui =
ds(1 − us)

di
≥ (1 − us) (8)

Now, we concern a case in which Ts has a very large value of us (close to 100%). The worst-
case utilization bound of Ti is then derived as ui = 1 − us " 0, regardless of the processor
utilization of Pl . In other words, even though the processor resource of Pl is not fully utilized
at all, Pl cannot accept any other tasks.
In order to overcome such a worst case problem, we next modify DM-PM for optimization
so that the tasks with individual utilization greater than or equal to 50% are preferentially
assigned to processors, before a task set is sorted in non-increasing order of relative deadline.
Since no tasks have individual utilization greater than 50%, when Ts is shared among proces-
sors, the worst-case execution capacity of Ti is improved to ui = 1 − us ≥ 50%. As a result,
the optimized DM-PM guarantees that the processor utilization of every processor is at least
50%, which means that the entire multiprocessor utilization is also at least 50%. Given that no
prior fixed-priority algorithms have utilization bounds greater than 50% Andersson & Jonsson
(2003), our outcome seems sufficient. Remember that this is the worst case. The simulation-
based evaluation presented in Section 5 shows that the optimized DM-PM generally performs
much better than the worst case.

4.4 Preemptions Bound
The number of preemptions within a time interval of length L is bounded as follows. Let
N(L) be the worst-case number of preemptions within L for DM. Since preemptions may
occur every time jobs arrive in DM, N(L) is given by Equation (9), where τ is a set of all tasks.

N(L) = ∑
Ti∈τ

⌈
L
pi

⌉
(9)

Let N∗(L) then be the worst-case number of preemptions within L for DM-PM. It is clear that
there are at most m − 1 shared tasks. Each shared task is migrated from one processor to
another processor once in a period. Every time a shared task is migrated from one processor
to another processor, two preemptions occurs: one occurs on the source processor and the
other occurs on the destination processor. Hence, N∗(L) is given by Equation (9), where τ′ is
a set of tasks that are shared among multiple processors.

N∗(L) = N(L) + 2(m − 1)
⌈

L
min{ps | Ts ∈ τ′}

⌉
(10)

5. Evaluation

In this section, we show the results of simulations conducted to evaluate the effectiveness
of DM-PM, as compared to the prior algorithms: RMDP Kato & Yamasaki (2008c), FBB-
FDD Fisher et al. (2006), and Partitioned DM (P-DM). RMDP is an algorithm based on semi-
partitioned scheduling, though the approach and the scheduling policy are different from
DM-PM. FBB-FDD and P-DM are algorithms based on partitioned scheduling. FBB-FDD sorts
a task set in non-decreasing order of relative deadline, and assigns tasks to processors based
on a first-fit heuristic Dhall & Liu (1978). P-DM assigns tasks based on first-fit heuristic for
simplicity without sorting a task set. The tasks are then scheduled according to DM. Note that
FBB-FDD uses a polynomial-time acceptance test in a partitioning phase, while P-DM uses a
response time analysis presented in Section 4.2.
To the best of our knowledge, FBB-FDD is the best performer among the fixed-priority algo-
rithms based on partitioned scheduling. We are then not aware of any fixed-priority algo-



rithms, except for RMDP, that are based on semi-partitioned scheduling. We thus consider
that those algorithms are worthwhile to compare with DM-PM.
The fixed-priority algorithms based on global scheduling, such as Andersson (2008); Ander-
sson et al. (2001); Baker (2006), are not included in a series of simulations, because the pre-
vious report Kato & Yamasaki (2008c) on simulation-based evaluation of fixed-priority algo-
rithms testified that their schedulability is in general worse than the ones based on partitioned
scheduling.

5.1 Simulation Setup
A series of simulations has a set of parameters: usys, m, umin, and umax. usys denotes system
utilization. m is the number of processors. umin and umax are the minimum utilization and the
maximum utilization of every individual task respectively.
For every set of parameters, we generate 1,000,000 task sets. A task set is said to be successfully
scheduled, if all tasks in the task set are successfully assigned to processors. The effectiveness
of an algorithm is then estimated by success ratio, which is defined as follows.

the number of successfully-scheduled task sets
the number of submitted task sets

The system utilization usys is set every 5% within the range of [0.5,1.0]. Due to limitation
of space, we have three sets of m such that m = 4, m = 8, and m = 16. Each task set T is
then generated so that the total utilization ∑Ti∈T u becomes equal to usys × m. The utilization
of every individual task is uniformly distributed within the range of [umin,umax]. Due to
limitation of space, we have simulated only the case for [umin,umax] = [0.1,1.0]. The minimum
inter-arrival time of each task is also uniformly distributed within the range of [100,10,000].
For every task Ti, once ui and pi are determined, we compute the execution time of Ti by
ci = ui × pi.
Since RMDP is designed for implicit-deadline systems, for fairness we presume that all tasks
have relative deadlines equal to periods. However, DM-PM is also effective to explicit-
deadline systems where relative deadlines are different from periods.

5.2 Simulation Results

Fig. 8. Results of simulations (m = 4 and [umin,umax] = [0.1,1.0]).

Fig. 9. Results of simulations (m = 8 and [umin,umax] = [0.1,1.0]).

Fig. 10. Results of simulations (m = 16 and [umin,umax] = [0.1,1.0]).

Figure 8, 9, and 10 show the results of simulations with [umin,umax] = [0.1,1.0] on 4, 8, and
16 processors respectively. Here, “DM-PM(opt)” represents the optimized DM-PM. DM-PM
substantially outperforms the prior algorithms. Particularly, the optimized DM-PM is able
to schedule all task sets successfully, even though system utilization is around 0.9, while the
prior algorithms more or less return failure at system utilization around 0.6 to 0.7. It has been
reported Lehoczky et al. (1989) that the average case of achievable processor utilization for
DM, as well as RM, is about 88% on uniprocessors. Hence, the optimized DM-PM reflects
the schedulability of DM on multiprocessors. Even without optimization, DM-PM is able to
schedule all task sets when system utilization is smaller than 0.7 to 0.8.
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On the whole, the performance of DM-PM is better as the number of processors is greater. That
is because tasks are shared among processors more successfully, if there are more processors,
when they cannot be assigned to any individual processors. Although RMDP is also able
to share tasks among processors, it is far inferior to DM-PM, while it outperforms FBB-FDD
and P-DM that are based on classical partitioned scheduling. The difference between DM-PM
and RMDP clearly demonstrates the effectiveness of the approach considered in this paper.
Note that P-DM outperforms FBB-FDD, because P-DM uses an acceptance test based on the
presented response time analysis, while FBB-FDD does a polynomial-time test.

6. Conclusion

A new algorithm was presented for semi-partitioned fixed-priority scheduling of sporadic
task systems on identical multiprocessors. We designed the algorithm so that a task is qual-
ified to migrate across processors, only if it cannot be assigned to any individual processors,
in such a manner that it is never migrated back to the same processor within the same pe-
riod, once it is migrated from one processor to another processor. The scheduling policy was
then simplified to reduce the number of preemptions and migrations as much as possible for
practical use.
We also optimized the algorithm to improve schedulability. Any implicit-deadline systems
are successfully scheduled by the optimized algorithm, if system utilization does not exceed
50%. We are not aware of any fixed-priority algorithms that have utilization bounds greater
than 50%. Thus, our outcome seems sufficient.
The simulation results showed that the new algorithm significantly outperforms the tradi-
tional fixed-priority algorithms regardless of the number of processors and the utilization of
tasks. The parameters used in simulations are limited, but we can easily estimate that the new
algorithm is also effective to different environments.
In the future work, we will consider arbitrary-deadline systems where relative deadlines may
be longer than periods, while we consider constrained-deadline systems where relative dead-
lines are shorter than or equal to periods. We are also interested in applying the presented
semi-partitioned scheduling approach to dynamic-priority scheduling. The implementation
problems of the algorithm in practical operating systems are left open.
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1. Introduction

Divisible loads are a special class of applications that have regular linear structure, and which
if given a large enough volume, can be partitioned into independently- and identically-
processable load fractions (parts). Examples of applications that satisfy this divisibility prop-
erty include image processing and rendering, signal processing, computation of Hough trans-
forms, tree and database search, Monte Carlo simulations, computational fluid dynamics, and
matrix computations.
The partitioning of a divisible load, the allocation (mapping) of the parts to appropriate pro-
cessors for execution, and the sequencing (ordering) the transfer of the parts to and from the
processors, is together known as Divisible Load Scheduling (DLS). Divisible Load Theory (DLT)
is the framework that studies the optimization of DLS (Bharadwaj et al., 1996). Beaumont,
Casanova, Legrand, Robert & Yang (2005) recently published a review of the work done to
date in DLT. An exhaustive listing of papers regarding DLT and DLS is available on (Rober-
tazzi, 2008).

1.1 Shortcomings of Traditional DLT
The basic principle of DLT to determine an optimal schedule for a master-slave system is the
AFS (All slaves Finish Simultaneously) policy (Barlas, 1998). The AFS policy implies that
after the nodes finish computing their individual load fractions, no results are returned to
the source. This is an unrealistic assumption for many applications, as the result collection
phase can contribute significantly to the total execution time. This is a serious shortcoming of
traditional DLT. Along with the AFS policy, the presence of idle time in the optimal schedule
has been overlooked in DLT work on result collection and heterogeneity. It is a very important
issue because it may sometimes be possible to improve a schedule by inserting idle time.
A few papers that have dealt with DLS on heterogeneous systems to date (Beaumont, Mar-
chal, Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharad-
waj et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001) proved that the sequence of
allocation of data to the processors is important in heterogeneous networks. Without consid-
ering result collection, they proved that for optimum performance, (a) when processors have
equal computation capacity, the optimal schedule results when the fractions are allocated in
the order of decreasing communication link capacity, and (b) when communication capacity
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is equal, the data should be allocated in the order of decreasing computation capacity. As far
as can be judged, no paper has given a satisfactory solution to the scheduling problem where
both the network bandwidth and computation capacities of the slaves are different, and the
result transfer to the master is explicitly considered.
Cheng & Robertazzi (1990) and Bharadwaj et al. (1996, Chap. 3) addressed the issue of result
collection with a simplistic constant result collection time, which is possible only for a limited
number of applications on homogeneous networks. All other papers that have addressed
result collection to date, advocated FIFO (First In, First Out) and LIFO (Last In, First Out) type
of schedules. In FIFO, results are collected in the same order as that of load allocation, while
in LIFO, the order of result collection is reversed. Barlas (1998) addressed the result collection
phase for single-level and arbitrary tree networks, but the optimal sequences derived were
essentially LIFO or FIFO. Rosenberg (2001) too proposed the LIFO and FIFO sequences for
result collection. He concluded through simulations that FIFO is better when the network
is homogeneous with a large number of processors, while LIFO is advantageous when the
network is heterogeneous with a small number of processors.
For the first time, it was shown in (Beaumont, Marchal & Robert, 2005) that the LIFO and
FIFO orderings are not always optimal for a given set of processors. In (Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006), it was proved that all processors from a given
set of processors may not be used in the optimal solution. For the unidirectional single-port
communication model (see Section 2), (Beaumont, Marchal, Rehn & Robert, 2005; Beaumont
et al., 2006; Beaumont, Marchal & Robert, 2005) proved several interesting features in optimal
schedules.

1.2 Chapter Organisation
Section 2 explains the choices made to represent the communication and computation speeds,
the model used for size of result data, the assumptions and reasons regarding continuous
delivery of data, the unidirectional one-port communication model, and the decision to use
linear models of computation and communication time. Sections 2.3 and 3 provide a detailed
derivation of the DLSRCHETS problem definition. After first laying the theoretical basis, the
DLSRCHETS problem is defined in terms of a linear program. Section 4 lays the foundation of
the two-slave system that forms the basis for the SPORT algorithm. Section 5 introduces the
SPORT algorithm as a solution to the DLSRCHETS problem. Given a set of processors sorted
in the order of decreasing communication speed, the complexity of SPORT is O(m). Section 6
summarizes the chapter and ideas for future work.

2. The System Model

The execution of a divisible job on each slave comprises of three distinct phases in the fol-
lowing order — the allocation phase, where data is sent to the slave from the master, the
computation phase, where the data is processed, and the result collection phase, where the
slave sends the result data back to the source. The computation phase begins only after the
entire load fraction allocated to that slave is received from the source. Similarly, the result
collection phase begins only after the entire load fraction has been processed, and is ready
for transmission back to the master. This is known as the non-preemptive, atomic, or block based
model, and each phase forms a block on the time line as shown in Fig. 1.
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Fig. 1. A general schedule for DLSRCHETS. Processors can do only one thing at a time —
either compute or communicate. There are three phases for each processor — allocation, com-
putation, and result collection, in that order. However, phases of different processors may be
interleaved. Each phase is atomic, i.e., continues to its end without interruption. Communi-
cation phases (either allocation or collection) cannot overlap as shown by the dashed lines.
Computation phases are independent of each other.

2.1 Communication and Computation Model
The non-preemptive communication and computation phases necessitate that the slaves are
continuously and exclusively available during the course of execution of the divisible load.
The master and slaves can do only any one thing at a time — either communicate or com-
pute (the no-overlap model), and if communicating, then either send data or receive data (the
unidirectional one-port model).
A heterogeneous master-slave (sometimes called as star or single-level tree) system H = (P ,L)
is as shown in Fig. 2, where P = {p0, . . . , pm} is the set of m + 1 processors, and L =
{l1, . . . , lm} is the set of m network links that connect the master scheduler (source) p0 at the
center of the star (root of the tree), to the slave processors p1, . . . , pm at the points of the star
(leaves of the tree). E = {E1, . . . , Em} is the set of unit computation times of the slave proces-
sors, and C = {C1, . . . , Cm} is the set of unit communication times of the network links, i.e.,
pk takes Ek time units to process a unit load transmitted to it from p0 in Ck time units over the
link lk. It follows that Ek, Ck > 0, k ∈ {1, . . . , m}. The values in E and C are assumed to be
deterministic and available at the master.
The master holds a divisible load (job) J that is to be distributed and processed on H. Based
on the unit communication and computation time values of the slaves, the master p0 splits J
into parts (fractions) α1, . . . , αm and sends them to the respective slave processors p1, . . . , pm
for computation. Each such set of m fractions is known as a load distribution α = {α1, . . . , αm}.
The source does not retain any part of the load for computation. Since the job J is assumed
to be arbitrarily divisible, αk ∈ R+

0 , αk ≥ 0, k ∈ {1, . . . , m}. The unit communication and
computation times are conditional upon the job J under consideration. So ideally, the values
should be indexed as CJ

k and EJ
k , to indicate that the values are valid only for the job J . This

index is omitted as the context is clear to be the job J .
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link lk. It follows that Ek, Ck > 0, k ∈ {1, . . . , m}. The values in E and C are assumed to be
deterministic and available at the master.
The master holds a divisible load (job) J that is to be distributed and processed on H. Based
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for computation. Each such set of m fractions is known as a load distribution α = {α1, . . . , αm}.
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Fig. 2. The heterogeneous master-slave system H. The processors have different computation
speeds and network bandwidths.

2.2 Result Data Model
For the divisible loads under consideration, the computation phase usually involves simple
linear transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated load
fraction is αk, then the returned result is equal to δαk, 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted model
for returned results in literature to date (Adler et al., 2003; Barlas, 1998; Beaumont, Marchal,
Rehn & Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005; Bharadwaj
et al., 1996; Comino & Narasimhan, 2002; Rosenberg, 2001; Yu & Robertazzi, 2003).

2.3 Communication and Computation Time
The time taken for communication and computation is assumed to be a linearly increasing
function of the size of load fraction. For a load fraction αk, αkCk is the transmission time from
p0 to pk, αkEk is the time it takes pk to perform the requisite processing on αk, and δαkCk is the
time it takes pk to finally transmit the results back to p0. Though a linear model is considered
for computation and communication times for the sake of simplicity, all results can be easily
extended to other models.
In the DLSRCHETS problem, the master has to partition the load J into fractions α1, . . . , αm,
and manage the allocation of these fractions to, and collection of the results from the proces-
sors p1, . . . , pm in the minimum possible time. Let T = {1, . . . , m} be the set of tasks corre-
sponding to the m fractions that are allocated to, and R = {1, . . . , m} be the set of results that
are collected from the processors p1, . . . , pm respectively.
Though the load fractions (tasks) can be processed independently of each other on the respec-
tive processors, the single-port communication model implicitly induces a precedence order on
the distribution of the tasks and collection of the results. Let ≺a and ≺c be total orders on the
sets T and R respectively, such that ≺a represents the sequence (order) in which processors
are allocated tasks, and ≺c is the sequence in which results are collected from the processors at
the master. Then, i ≺a j implies that task i precedes task j (or equivalently task j succeeds task i)
in the allocation sequence ≺a, and i ≺c j signifies that result i precedes result j in the collection
sequence ≺c. If {k ∈ T : i ≺a k ≺a j} = ∅, then task i is the immediate predecessor of task j in
≺a, and is denoted as i !a j. Similarly, if {k ∈ R : i ≺c k ≺c j} = ∅, then result j is the immedi-
ate successor of result i in ≺c, and is denoted as i !c j. Define Bi

≺a := {j ∈ T : j ≺a i}∪ {i} and
Fi
≺a := {j ∈ T : i ≺a j} ∪ {i}, i.e., Bi

≺a is the set of task i and the tasks before i (predecessors of i)
in ≺a, while Fi

≺a is the set of task i and the followers (successors) of task i in ≺a. Bi
≺c and Fi

≺c are
defined accordingly for ≺c. The minimal element of ≺a is defined as ≺+

a := ∃! i ∈ T : Bi
≺a = {i}

and the maximal element of ≺a is defined as, ≺−
a := ∃! i ∈ T : Fi

≺a = {i}, i.e., ≺+
a and ≺−

a are
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Fig. 3. A possible schedule with m = 3. The three phases of each processor are atomic and
satisfy the constraints (1) to (9).

the first and last tasks allocated in ≺a. ≺+
c and ≺−

c are similarly defined as the first and last
results returned in ≺c.
For a given load J , the objective is to minimize the total processing time T, which is defined
as the time taken from the point when the master first initiates the allocation of tasks, to the
point when the master completes reception of all the results. The schedule S of DLSRCHETS
for a given load distribution α, is a pair (t, r), where, t : T #→ R+

0 is the task allocation start
time function, and r : R #→ R+

0 is the result collection start time function. In a feasible schedule,
the start times in t and r must satisfy the following constraints:

tj − ti ≥ αiCi ∀ i ∈ {1, . . . , m}, i !a j (1)

ti ≥ ∑
j∈Bi

≺a \{i}
αjCj ∀ i ∈ {1, . . . , m} (2)

rj − ri ≥ δαiCi ∀ i ∈ {1, . . . , m}, i !c j (3)

T − ri ≥ ∑
j∈Fi

≺c

δαjCj ∀ i ∈ {1, . . . , m} (4)

ri − ti ≥ αiCi + αiEi ∀ i ∈ {1, . . . , m} (5)
ti (= rj ∀ i, j ∈ {1, . . . , m} (6)

rj − ti ≥ αiCi ∀ j ∈ {1, . . . , m}, ∀ ti < rj (7)

ti − rj ≥ δαjCj ∀ i ∈ {1, . . . , m}, ∀ rj < ti (8)

ti, rj ≥ 0 ∀ i, j ∈ {1, . . . , m} (9)

The precedence constraints of ≺a are enforced by (1) and (2), while inequalities (3) and (4)
impose the precedence constraints of ≺c and define the processing time T. The fact that the
result collection cannot begin before the execution of the entire load fraction is complete is
shown by (5). Constraints (6), (7), and (8) impose the single-port model so that no allocation
and collection phase can overlap. The non-negativity of the start times is ensured by (9).
Figure 3 shows the timing diagram for a feasible schedule with m = 3. The time spent in
communication with the master p0 is shown above the horizontal axes, and time spent in
computation by the individual processors below the horizontal axes. Since p0 does not retain
any part of the load for itself, there is no p0 axis.
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2.2 Result Data Model
For the divisible loads under consideration, the computation phase usually involves simple
linear transformations on the input data, and the volume of returned results can be considered
to be proportional to the amount of load received in the allocation phase. If the allocated load
fraction is αk, then the returned result is equal to δαk, 0 ≤ δ ≤ 1. The constant δ is application
specific, and is the same for all processors for a particular load J . This is the accepted model
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p0 to pk, αkEk is the time it takes pk to perform the requisite processing on αk, and δαkCk is the
time it takes pk to finally transmit the results back to p0. Though a linear model is considered
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In the DLSRCHETS problem, the master has to partition the load J into fractions α1, . . . , αm,
and manage the allocation of these fractions to, and collection of the results from the proces-
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sponding to the m fractions that are allocated to, and R = {1, . . . , m} be the set of results that
are collected from the processors p1, . . . , pm respectively.
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the distribution of the tasks and collection of the results. Let ≺a and ≺c be total orders on the
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are allocated tasks, and ≺c is the sequence in which results are collected from the processors at
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The precedence constraints of ≺a are enforced by (1) and (2), while inequalities (3) and (4)
impose the precedence constraints of ≺c and define the processing time T. The fact that the
result collection cannot begin before the execution of the entire load fraction is complete is
shown by (5). Constraints (6), (7), and (8) impose the single-port model so that no allocation
and collection phase can overlap. The non-negativity of the start times is ensured by (9).
Figure 3 shows the timing diagram for a feasible schedule with m = 3. The time spent in
communication with the master p0 is shown above the horizontal axes, and time spent in
computation by the individual processors below the horizontal axes. Since p0 does not retain
any part of the load for itself, there is no p0 axis.
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Fig. 4. Interleaved result collection. There exists at least one pair of ri and tj that immediately
follow each other.

Condition 1 (Allocation Precedence Condition). The master should first allocate the entire
load to the processors before receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS that
satisfies the allocation precedence condition. (There may exist other optimal schedules that do not satisfy
the allocation precedence condition.)

Proof. Consider a feasible schedule with processing time T, that satisfies (1) to (9) for a load
distribution α, and an arbitrary order of allocation and collection ≺a and ≺c, such that some
results are collected before the load is completely allocated first.
Then, there exists at least one pair (i, j) with i ≺a j, such that the result collection starting at ri
is followed by a task allocation at tj, without any other intermediate communication phase as
shown in Fig. 4.
Suppose that all load fractions in α, and all other start times in t and r are maintained the
same, and only the order of collection of result i and allocation of task j is exchanged, such
that the new allocation start time of task j is t′j = ri, and the new collection start time of result
i is r′i = ri + αjCj.
Since the above exchange does not alter the order of allocation of different tasks, the prece-
dence constraints of ≺a defined by (1) and (2) still hold. Similarly, the precedence constraints
of ≺c, imposed by (3) and (4) also hold after the exchange. The constraints (6), (7), and (8) are
valid after the exchange because the single-port model is not violated by the exchange.
Only the conditions expressed by (5) require verification. Before the exchange, the conditions
ri − ti ≥ αiCi + αiEi and rj − tj ≥ αjCj + αjEj are satisfied. After the exchange, the con-
straints (5) are still valid because r′i − ti = ri + αjCj − ti > ri − ti, and rj − t′j = rj − ri > rj − tj.
From the above observations, it is clear that after the reordering, all conditions for feasibility
are still satisfied. Moreover, the orders ≺a and ≺c are unchanged, and no additional process-
ing time is required for the reordering.
If a similar reordering is carried out for all such pairs (i, j), then the allocation precedence
condition is satisfied with no addition in total processing time T.
Now if there is an optimal schedule for DLSRCHETS that does not satisfy the allocation prece-
dence condition, then a reordering can be performed as mentioned above so that the schedule
satisfies the allocation precedence condition without an increase in the total processing time.
That is, there always exists an optimal schedule that satisfies the allocation precedence condi-
tion, and only such schedules need be considered in the search for the optimal schedule.

Two other basic lemma are stated before the DLSRCHETS problem is defined.

Lemma 2. There exists an optimal schedule for DLSRCHETS that has no idle time between any two
consecutive allocation phases and any two consecutive result collection phases. (There may exist other
optimal schedules that do not satisfy this condition.)

Proof. Assume that a feasible schedule that obeys (1) to (9), and in addition also satisfies the
allocation precedence condition, has idle time between the consecutive communication phases
(see Fig. 3). Let the processing time be T, the load distribution be α, and (≺a,≺c) be the orders
of allocation and collection.
According to the assumptions in the system model, all processors are available continuously
and exclusively during the entire execution process, and the master can only communicate
with one processor at a time. For any i !a j, when processor pi completes the reception of
its allocated task at time ti + αiCi, processor pj is already available and can start receiving
data immediately at tj = ti + αiCi. Because the schedule satisfies the allocation precedence
condition, load is first distributed to all the processors sequentially before result collection
begins. Thus the start time of each task i ∈ T can be brought forward so that ti = t≺+

a
+

∑j∈Bi
≺a \{i} αjCj, and the inequalities (1) and (2) are reduced to equalities without exceeding T.

Following a similar logic to the one above, the result collection of each result i ∈ R can be
delayed to the extent necessary to make the result collection start time ri = T − ∑j∈Fi

≺c
δαjCj,

with inequalities (3) and (4) reduced to equalities and no extra time added to T.
Since any feasible schedule can be reordered in this manner to eliminate the idle time between
communication phases, it follows that an optimal schedule to DLSRCHETS also has no idle
time between any two consecutive allocation and result collection phases.

Lemma 3. There exists an optimal schedule for DLSRCHETS that has no idle time between the allo-
cation and computation phases of each processor. (There may exist other optimal schedules that do not
satisfy this condition.)

Proof. Following an argument similar to the one used in Lemma 2, since all processors are
always available, they can begin computing immediately upon receiving their load fractions
in the allocation phase without affecting the schedule.
Any processor pi begins computing its allocated task at time t≺+

a
+ ∑j∈Bi

≺a
αjCj without cross-

ing the time interval T. Since any feasible schedule can be reordered in this manner, an optimal
schedule to DLSRCHETS too has no idle time between the allocation and computation phases
of each processor.

Theorem 1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS that
satisfies Lemmas 1 to 3.

Proof. If there exists an optimal schedule that does not satisfy any or all of the Lemmas 1 to 3,
it can always be reordered as explained in the respective proofs to satisfy the same.

From Theorem 1, it follows that only those schedules that satisfy Lemmas 1 to 3 need be
considered in the search for the optimal solution to DLSRCHETS. A possible timing diagram
for such a schedule is shown in Fig. 5.
From the preceding discussion, it can be concluded that the start times t and r in the optimal
schedule for DLSRCHETS can be determined from the sequences ≺a and ≺c, and the load
distribution α that minimize the processing time T. Hence instead of finding t and r as in tra-
ditional scheduling practice, the DLSRCHETS problem is formulated as a linear programming
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Condition 1 (Allocation Precedence Condition). The master should first allocate the entire
load to the processors before receiving any results from the processors.

Lemma 1 (Allocation Precedence Lemma). There exists an optimal schedule for DLSRCHETS that
satisfies the allocation precedence condition. (There may exist other optimal schedules that do not satisfy
the allocation precedence condition.)
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shown in Fig. 4.
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(see Fig. 3). Let the processing time be T, the load distribution be α, and (≺a,≺c) be the orders
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a
+

∑j∈Bi
≺a \{i} αjCj, and the inequalities (1) and (2) are reduced to equalities without exceeding T.

Following a similar logic to the one above, the result collection of each result i ∈ R can be
delayed to the extent necessary to make the result collection start time ri = T − ∑j∈Fi

≺c
δαjCj,

with inequalities (3) and (4) reduced to equalities and no extra time added to T.
Since any feasible schedule can be reordered in this manner to eliminate the idle time between
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a
+ ∑j∈Bi

≺a
αjCj without cross-

ing the time interval T. Since any feasible schedule can be reordered in this manner, an optimal
schedule to DLSRCHETS too has no idle time between the allocation and computation phases
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Theorem 1 (Feasible Schedule Theorem). There exists an optimal schedule for DLSRCHETS that
satisfies Lemmas 1 to 3.
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From Theorem 1, it follows that only those schedules that satisfy Lemmas 1 to 3 need be
considered in the search for the optimal solution to DLSRCHETS. A possible timing diagram
for such a schedule is shown in Fig. 5.
From the preceding discussion, it can be concluded that the start times t and r in the optimal
schedule for DLSRCHETS can be determined from the sequences ≺a and ≺c, and the load
distribution α that minimize the processing time T. Hence instead of finding t and r as in tra-
ditional scheduling practice, the DLSRCHETS problem is formulated as a linear programming
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Fig. 5. A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result collection
begins only after the entire load is distributed. Each allocation and result collection phase
follows its predecessor without delay. The computation phase of each processor follows its
allocation phase without delay. Idle time may be present in each processor between the end
of its computation phase and the start of the result collection phase.

problem, to find ≺a, ≺c, and α that minimize T. Once the optimal values of these variables
are known, it is straightforward to find the optimal schedule.
The constraints (1) to (9) and the allocation precedence condition are combined into a unified
form, and for each processor pi, constraints on T are written in terms of Bi

≺a and Fi
≺c . The

DLSRCHETS problem is defined in terms of a linear program as follows.

Definition 1 (Divisible Load Scheduling with Result Collection on HETerogeneous Systems).

Given a heterogeneous network H = (P ,L), a divisible load J , unit communication
and computation times C, E , find the sequence pair (≺∗

a ,≺∗
c ), and load distribution α∗ =

{α∗1, . . . , α∗m} that

Minimize T
Subject To:

∑
j∈Bk

≺a

αjCj + αkEk + ∑
j∈Fk

≺c

δαjCj ≤ T k = 1, . . . , m (10)

m

∑
j=1

αjCj +
m

∑
j=1

δαjCj ≤ T (11)

m

∑
j=1

αj = J (12)

T ≥ 0, αk ≥ 0 k = 1, . . . , m (13)

In the above formulation, for a sequence pair (≺a,≺c), and a load distribution α, the LHS
(Left Hand Side) of constraint (10) indicates the total time spent in transmission of tasks to
all the processors that must receive load before the processor pi can begin processing its al-
located task, the computation time on the processor pi itself, and the time for transmission
back to the master of results of processor pi, and all its subsequent result transfers. For the
no-overlap model to be satisfied, the processing time T should be greater than or equal to
this time for all the m processors. The single-port communication model is enforced by (11)

since its LHS represents the lower bound on the time for distribution and collection under this
model. The fact that the entire load is distributed amongst the processors is imposed by (12).
This is the normalization equation. The non-negativity of the decision variables is ensured by
constraint (13).

3. Analysis of Optimal Solution

Processors that are allocated load are called participating processors or participants.

Theorem 2 (Idle Time Theorem). There exists an optimal solution to the DLSRCHETS problem,
in which irrespective of whether load is allocated to all available processors, at the most one of the
participating processors has idle time, and the idle time exists only when the result collection begins
immediately after the completion of load distribution.

Proof. For a pair (≺a,≺c), the DLSRCHETS problem defined by (10) to (13) always has a
feasible solution. This is because, for any load distribution α that satisfies (12), T can be made
arbitrarily large to satisfy the inequalities (10) and (11). It implies that the polyhedron formed
by the constraints of the DLSRCHETS problem, P := {x ∈ Rm+1 : Ax ≤ b, x ≥ 0} %= ∅.
According to the theory of linear programming, the optimal solution to DLSRCHETS is
obtained at some vertex of this polyhedron (Dantzig, 1963; Vanderbei, 2001). As the DL-
SRCHETS problem has m + 1 decision variables and 2m + 3 constraints, in a non-degenerate
optimal solution, at the optimal vertex, m + 1 constraints out of these must be tight, i.e., satis-
fied with equality. In a degenerate optimal solution, more than m + 1 constraints are tight.
It is clear that in an optimal solution, the normalization constraint (12) will always be tight,
and T will always be greater than zero. This means that m constraints out of the remaining
2m + 1 constraints will be tight in a non-degenerate optimal solution. There are two possible
ways to proceed with the analysis at this point depending on the allocated load fractions in
the optimal solution.

1. ∀ k ∈ {1, . . . , m} : αk > 0.
In this case, all the load fractions are assumed to be always greater than zero, i.e. num-
ber of participants is m. Since all decision variables are positive, there can be no degen-
eracy (Vanderbei, 2001, Chapter 3).
It leaves only m + 1 constraints (10) and (11), out of which m will be tight in the optimal
solution. Hence, in the optimal solution, either,

(a) the m constraints (10) are tight, and the (11) constraint is not, or
(b) the (11) constraint is tight and one of the (10) constraints is not.

If any constraint from (10) and (11) is not tight in the optimal solution, it implies a
shortfall in the LHS as compared to the optimal processing time. In constraints (10) this
shortfall represents idle time in a processor, while in (11) it represents the intervening
time interval between completion of load distribution from the master and the start of
result transfer to the master.
Thus, if the option (a) above is true, then none of the processors have any idle time
in the optimal solution. If the option (b) is true, then one of the processors has idle
time, and since this happens only when constraint (11) is tight, it means that idle time
in a processor exists only when result transfer to the master begins immediately after
completion of load allocation is completed. This is similar to the analysis in Beaumont,
Marchal, Rehn & Robert (2005); Beaumont et al. (2006).



Time

p1
α1C1

α1E1

δα1C1

T

p2
α2C2

α2E2

δα2C2

p3
α3C3

α3E3

δα3C3

x1

x2

x3

y

Fig. 5. A schedule for m = 3 that satisfies the Feasible Schedule Theorem. Result collection
begins only after the entire load is distributed. Each allocation and result collection phase
follows its predecessor without delay. The computation phase of each processor follows its
allocation phase without delay. Idle time may be present in each processor between the end
of its computation phase and the start of the result collection phase.
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2. ∃ k ∈ {1, . . . , m} : αk = 0.
In this case, some of the processors can be allocated zero load in the optimal solution.
The analysis has two parts — one for non-degenerate and the other for degenerate op-
timal solutions.
Non-degenerate Optimal Solution
If there are p (p ≤ m) participants in the optimal solution,then m − p constraints of (13)
are necessarily tight. This means that out of the m + 1 constraints (10) and (11), only p
constraints will be tight in the optimal solution. Hence, in an optimal solution, either,

(a) p of the (10) constraints are tight, m − p of the (10) constraints are not tight, and
the (11) constraint is not tight, or

(b) the (11) constraint is tight, p − 1 of the (10) constraints are tight, and m − p + 1 of
the (10) constraints are not tight.

In the optimal solution, if the option (a) is true, then m − p processors have idle time,
while if the option (b) is true, then m − p + 1 processors have idle time.
Since m − p processors are not allocated load, it is obvious that they are idle throughout
in either of the above two options. The additional processor with idle time if the op-
tion (b) is true has to be one of the participating processors. This means that idle time
in a participating processor exists only when the result collection begins immediately
upon completion of load allocation.
Degenerate Optimal Solution
Similar to the non-degenerate case, if there are p (p ≤ m) participants in the optimal
solution, then m − p constraints of (13) are necessarily tight. Since the optimal solution
is degenerate, more than p constraints out of the m + 1 constraints (10) and (11) will be
tight.
This means that in the optimal solution, irrespective of whether the (11) constraint is
tight, at least p of the (10) constraints are tight, and less than m − p of the (10) constraints
are not tight. Since m − p processors are necessarily idle, some of the (10) constraints
corresponding to the processors allocated zero load are tight in the degenerate solution.
Since ∀ k ∈ {1, . . . , m}, Bk

≺a , Fk
≺c ⊆ {1, . . . , m}, it implies that,

∑
j∈Bk

≺a

αjCj ≤
m

∑
j=1

αjCj k ∈ {1, . . . , m}

and

∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

δαjCj k ∈ {1, . . . , m}

It follows that,

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj ≤
m

∑
j=1

αjCj +
m

∑
j=1

δαjCj k ∈ {1, . . . , m} (14)

If (11) is not tight, then the RHS (Right Hand Side) of (14) is strictly less than T. That is,

∑
j∈Bk

≺a

αjCj+ ∑
j∈Fk

≺c

δαjCj < T k ∈ {1, . . . , m} (15)

If ∃ k ∈ {1, . . . , m} : αk = 0, then αkEk = 0, and from (15), it immediately follows that
the corresponding constraint from (10) can never be tight.
Thus, a constraint corresponding to a processor pk allocated zero load is tight in the
optimal solution only if

∑
j∈Bk

≺a

αjCj + ∑
j∈Fk

≺c

δαjCj − T = 0 (16)

or equivalently if (14) is satisfied with an equality, and the RHS of (14) is equal to T, i.e,
the (11) constraint is tight.
It is now clear that a degenerate optimal solution exists only when the (11) constraint is
tight, and the condition (16) is satisfied. To find when the condition is satisfied, consider
the case where for some pair (≺a,≺c), one or more of the processors allocated zero
load follow each other at the end of the allocation sequence and the start of the result
collection sequence in the optimal solution.
For example, if αi, αj, αk = 0, and one or more of the following occur (the list is not
exhaustive):

• ≺−
a = i and ≺+

c = i
• i !a j, ≺−

a = j and ≺+
c = i

• i !a j, ≺−
a = j, ≺+

c = k and k !c i

Only if such tail-end zero-load processors exist, then (14) is satisfied with an equality.
Finally, if constraint (11) is tight in the optimal solution, then it follows that the con-
straints corresponding to these processors are tight.
The linear program obtained after eliminating the redundant constraints correspond-
ing to the tail-end zero-load processors has a non-degenerate optimal solution. This
is because, the feasible region defined by the constraints of the non-degenerate prob-
lem does not change after addition of the redundant constraints. Hence only a single
participant processor has idle time in the degenerate optimal solution.

From the preceding discussion on the optimal solution to the linear program for a pair (≺a
,≺c), it follows that in the optimal solution to the DLSRCHETS problem, (≺∗

a ,≺∗
c , α∗), at

the most one participating processor can have idle time. The idle time occurs only when the
result collection from processor ≺+

c starts immediately after completion of load allocation to
processor ≺−

a .

There are m! possible permutations each of ≺a and ≺c, and the linear program has to be eval-
uated (m!)2 times to determine the globally optimum solution (≺∗

a ,≺∗
c , α∗) for DLSRCHETS.

Since the solution to the linear program is completely determined by the values of δ, C and E ,
along with the pair (≺a,≺c), it is not possible to predict which of the processors or how many
processors will be allocated zero load.

4. Analysis of Two-Slave System

For a sequence pair (σa, σc) and load distribution α = {α1, . . . , αm}, a slave processor pi, may
have idle time xi because it may have to wait for another processor to release the commu-
nication medium for result transfer (ref. Fig. 5). In the optimal solution to DLSRCHETS,
∀i ∈ {1 . . . m}, xi = 0, if and only if y > 0, and that there exists a unique xi > 0 if and only
if y = 0, where y is the intervening time interval between the end of allocation phase of pro-
cessor σa[m] and the start of result collection from processor σc[1]. For the FIFO schedule in
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∀i ∈ {1 . . . m}, xi = 0, if and only if y > 0, and that there exists a unique xi > 0 if and only
if y = 0, where y is the intervening time interval between the end of allocation phase of pro-
cessor σa[m] and the start of result collection from processor σc[1]. For the FIFO schedule in
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particular, processor σa[m] can always be selected to have idle time when y = 0, i.e., in the
FIFO schedule, xσa [m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always,
no processor has idle time, i.e., ∀i ∈ {1 . . . m}, xi = 0 always (Beaumont, Marchal, Rehn &
Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005).
Let the allocation sequence be represented by σa, and the collection sequence by σc, both of
which are permutations of the index set K = {1, . . . , m} of slave processors in the heteroge-
neous system H. For a pair (σa, σc), the solution to the linear program defined by (10) to (13)
is completely determined by the values of δ, E , C, and it is not possible to predict which pro-
cessor is the one that has idle time in the optimal solution. In fact, it is possible that not all
processors are allocated load in the optimal solution, in which case some processors are idle
throughout.
The heterogeneous system H = (P ,L) with m = 2 is shown in Fig. 6. It is defined by P =
{p0, p1, p2} and L = {l1, l2}. The unit computation and communication times are defined by
the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it is assumed that the total
load to be processed available at the master is J = 1. Also it is assumed that C1 ≤ C2. No
assumptions are possible regarding the relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2.
An important parameter, ρk, known as the network parameter is introduced, which indicates for
a slave pk, how fast (or slow) its computation parameter Ek is with respect to the communica-
tion parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . , m (17)

The master p0 distributes the load J between the two slave processors p1 and p2 so as to
minimize the processing time T. Depending on the values of δ, E and C, there are three possi-
bilities:

1. Entire load is distributed to p1 only.
The total processing time is given by

T1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (18)

2. Entire load is distributed to p2 only.

The total processing time in this case is

T2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (19)

3. Load is distributed to both p1 and p2.
It can be proved that as long as C1 ≤ C2, only the schedules in Figs. 7, 8, and 9 can
be optimal for a two-slave system. These schedules are the FIFO schedule, the LIFO
schedule, and the FIFO schedule with idle time in p2.
These schedules are referred to as Schedule f , Schedule l, and Schedule g respectively.
Superscripts f , l, and g are used to distinguish the three schedules. The equations for
load fractions, processing times, and the conditions for optimality of Schedules f , l,
and g are not derived on account of space constraints. The interested reader is directed
to (Ghatpande, Nakazato, Beaumont & Watanabe, 2008) for details.

4.1 Optimal Schedule in Two-Slave System
A few lemmas and theorems to determine the optimal schedule for a two-slave system are
now stated without proof. Please refer to Ghatpande, Nakazato, Beaumont & Watanabe (2008)
for the proofs.

Lemma 4. It is always advantageous to distribute the load to both the processors, rather than execute
it on the individual processors (for the system model under consideration).

Lemma 5 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate the
presence of idle time in the FIFO schedule (i.e. Schedule g).

The simplicity of the condition to detect the presence of idle time in the FIFO schedule is both
pleasing and surprising, and has been derived for the first time ever. Further confirmation of
this condition is obtained in Sect. 4.2.

Theorem 3 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can be found
as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.
2. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 ≤ C1

(
1 + (1+ρ1)ρ2

δ(1+δ+ρ2)

)
, then Schedule g is

optimal.
3. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 > C1

(
1 + (1+ρ1)ρ2

δ(1+δ+ρ2)

)
, then Schedule l is

optimal.
4. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f ≤ C1C2

(C2−C1)
, then Schedule f is optimal.

5. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f > C1C2
(C2−C1)

, then Schedule l is optimal.

The optimal solution to DLSRCHETS, (σ∗
a , σ∗

c , α∗), for a system with two slave processors is a
function of the system parameters and the application under consideration, because of which,
no particular sequence of allocation and collection can be defined a priori as the optimal se-
quence. The optimal solution can only be determined once all the parameters become known.
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particular, processor σa[m] can always be selected to have idle time when y = 0, i.e., in the
FIFO schedule, xσa [m] > 0 if and only if y = 0. In the LIFO schedule, since y > 0 always,
no processor has idle time, i.e., ∀i ∈ {1 . . . m}, xi = 0 always (Beaumont, Marchal, Rehn &
Robert, 2005; Beaumont et al., 2006; Beaumont, Marchal & Robert, 2005).
Let the allocation sequence be represented by σa, and the collection sequence by σc, both of
which are permutations of the index set K = {1, . . . , m} of slave processors in the heteroge-
neous system H. For a pair (σa, σc), the solution to the linear program defined by (10) to (13)
is completely determined by the values of δ, E , C, and it is not possible to predict which pro-
cessor is the one that has idle time in the optimal solution. In fact, it is possible that not all
processors are allocated load in the optimal solution, in which case some processors are idle
throughout.
The heterogeneous system H = (P ,L) with m = 2 is shown in Fig. 6. It is defined by P =
{p0, p1, p2} and L = {l1, l2}. The unit computation and communication times are defined by
the sets E = {E1, E2}, and C = {C1, C2}. Without loss of generality, it is assumed that the total
load to be processed available at the master is J = 1. Also it is assumed that C1 ≤ C2. No
assumptions are possible regarding the relationship between E1 and E2, or C1 + E1 + δC1 and
C2 + E2 + δC2.
An important parameter, ρk, known as the network parameter is introduced, which indicates for
a slave pk, how fast (or slow) its computation parameter Ek is with respect to the communica-
tion parameter Ck of its network link:

ρk =
Ek
Ck

k = 1, . . . , m (17)

The master p0 distributes the load J between the two slave processors p1 and p2 so as to
minimize the processing time T. Depending on the values of δ, E and C, there are three possi-
bilities:

1. Entire load is distributed to p1 only.
The total processing time is given by

T1 = C1 + E1 + δC1 = C1(1 + δ + ρ1) (18)

2. Entire load is distributed to p2 only.

The total processing time in this case is

T2 = C2 + E2 + δC2 = C2(1 + δ + ρ2) (19)

3. Load is distributed to both p1 and p2.
It can be proved that as long as C1 ≤ C2, only the schedules in Figs. 7, 8, and 9 can
be optimal for a two-slave system. These schedules are the FIFO schedule, the LIFO
schedule, and the FIFO schedule with idle time in p2.
These schedules are referred to as Schedule f , Schedule l, and Schedule g respectively.
Superscripts f , l, and g are used to distinguish the three schedules. The equations for
load fractions, processing times, and the conditions for optimality of Schedules f , l,
and g are not derived on account of space constraints. The interested reader is directed
to (Ghatpande, Nakazato, Beaumont & Watanabe, 2008) for details.

4.1 Optimal Schedule in Two-Slave System
A few lemmas and theorems to determine the optimal schedule for a two-slave system are
now stated without proof. Please refer to Ghatpande, Nakazato, Beaumont & Watanabe (2008)
for the proofs.

Lemma 4. It is always advantageous to distribute the load to both the processors, rather than execute
it on the individual processors (for the system model under consideration).

Lemma 5 (Idle Indicator Lemma). ρ1ρ2 ≤ δ is a necessary and sufficient condition to indicate the
presence of idle time in the FIFO schedule (i.e. Schedule g).

The simplicity of the condition to detect the presence of idle time in the FIFO schedule is both
pleasing and surprising, and has been derived for the first time ever. Further confirmation of
this condition is obtained in Sect. 4.2.

Theorem 3 (Optimal Schedule Theorem). The optimal schedule for a two-slave system can be found
as follows:

1. If δC2 > C1(1 + δ + ρ1), then Schedule l is optimal.
2. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 ≤ C1

(
1 + (1+ρ1)ρ2

δ(1+δ+ρ2)

)
, then Schedule g is

optimal.
3. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 ≤ δ and C2 > C1

(
1 + (1+ρ1)ρ2

δ(1+δ+ρ2)

)
, then Schedule l is

optimal.
4. Else If δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f ≤ C1C2

(C2−C1)
, then Schedule f is optimal.

5. Else if δC2 ≤ C1(1 + δ + ρ1), ρ1ρ2 > δ, and T f > C1C2
(C2−C1)

, then Schedule l is optimal.

The optimal solution to DLSRCHETS, (σ∗
a , σ∗

c , α∗), for a system with two slave processors is a
function of the system parameters and the application under consideration, because of which,
no particular sequence of allocation and collection can be defined a priori as the optimal se-
quence. The optimal solution can only be determined once all the parameters become known.
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Fig. 7. Equivalent processor in Schedule f . The total communication time remains the same as
the original two processors. The equivalent computation time is equal to the interval between
the end of allocation to p2 and the start of result collection from p1.

4.2 The Concept of Equivalent Processor
To extend the above result to the general case with m slave processors, the concept of an
equivalent processor is introduced. Consider the system in Fig. 6. The processors p1 and p2 are
replaced by a single equivalent processor p1:2 with computation parameter E1:2, connected to
the root by an equivalent link l1:2 with communication parameter C1:2. The resulting system
is called the equivalent system and the resulting schedule is known as the equivalent schedule.
The values of the parameters for the three equivalent schedules are defined below.
If the initial load distribution is α = {α1, α2}, and the processing time is T, then the equivalent
system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T.
• The time spent in load distribution and result collection is unchanged, i.e., for all three

schedules,

– α1:2C1:2 = α1C1 + α2C2, and
– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval between
the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2El
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2Eg
1:2 = 0.

4.3 The Equivalent Processor Theorem
This leads to the following theorem: (refer to (Ghatpande, Nakazato, Beaumont & Watanabe,
2008) for proof.)
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Fig. 8. Equivalent processor in Schedule l. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to the computation
time of p2.

Theorem 4 (Equivalent Processor Theorem). In a heterogeneous system H with m = 2, the two
slave processors p1 and p2 can be replaced without affecting the processing time T, by a single (virtual)
equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

The equivalent processor enables replacement of two processors by a single processor with
communication parameter with a value that lies between the values of communication pa-
rameters of the original two links. Because of this property, if the processors are arranged so
that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time sequentially starting
from the fastest two, then the resultant equivalent processor does not disturb the order of the
sequence.
The equivalent processor for Schedule f provides additional confirmation of the condition
for the presence of idle time in a FIFO schedule. It is known that idle time can exist in a
FIFO schedule only when the intervening time interval y = 0. According to the definition of
equivalent processor, this interval corresponds to the equivalent computation capacity E f

1:2.
This value becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist
in the FIFO schedule.

5. The SPORT Algorithm

Algorithm 1 (SPORT).
1: arrange p1, . . . , pm such that C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 to m do

4: C1 ←C1:k−1, E1 ←E1:k−1, C2 ←Ck, E2 ←Ek
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4.2 The Concept of Equivalent Processor
To extend the above result to the general case with m slave processors, the concept of an
equivalent processor is introduced. Consider the system in Fig. 6. The processors p1 and p2 are
replaced by a single equivalent processor p1:2 with computation parameter E1:2, connected to
the root by an equivalent link l1:2 with communication parameter C1:2. The resulting system
is called the equivalent system and the resulting schedule is known as the equivalent schedule.
The values of the parameters for the three equivalent schedules are defined below.
If the initial load distribution is α = {α1, α2}, and the processing time is T, then the equivalent
system satisfies the following properties:

• The load processed by p1:2 is α1:2 = α1 + α2 = 1.
• The processing time is unchanged and equal to T.
• The time spent in load distribution and result collection is unchanged, i.e., for all three

schedules,

– α1:2C1:2 = α1C1 + α2C2, and
– δα1:2C1:2 = δα1C1 + δα2C2.

• The time spent in load computation is equal to the intervening time interval between
the end of allocation phase and the start of result collection phase, i.e.,

– For Schedule f , α1:2E f
1:2 = α1E1 − α2C2 = α2E2 − δα1C1.

– For Schedule l, α1:2El
1:2 = α2E2 = α1E1 − α2C2 − δα2C2.

– For Schedule g, α1:2Eg
1:2 = 0.

4.3 The Equivalent Processor Theorem
This leads to the following theorem: (refer to (Ghatpande, Nakazato, Beaumont & Watanabe,
2008) for proof.)
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Fig. 8. Equivalent processor in Schedule l. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to the computation
time of p2.

Theorem 4 (Equivalent Processor Theorem). In a heterogeneous system H with m = 2, the two
slave processors p1 and p2 can be replaced without affecting the processing time T, by a single (virtual)
equivalent processor p1:2 with equivalent parameters C1:2 and E1:2, such that C1 ≤ C1:2 ≤ C2 and
E1:2 ≤ E1, E2.

The equivalent processor enables replacement of two processors by a single processor with
communication parameter with a value that lies between the values of communication pa-
rameters of the original two links. Because of this property, if the processors are arranged so
that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors are combined at a time sequentially starting
from the fastest two, then the resultant equivalent processor does not disturb the order of the
sequence.
The equivalent processor for Schedule f provides additional confirmation of the condition
for the presence of idle time in a FIFO schedule. It is known that idle time can exist in a
FIFO schedule only when the intervening time interval y = 0. According to the definition of
equivalent processor, this interval corresponds to the equivalent computation capacity E f

1:2.
This value becomes zero only when ρ1ρ2 − δ = 0. Thus, if ρ1ρ2 < δ, then idle time must exist
in the FIFO schedule.

5. The SPORT Algorithm

Algorithm 1 (SPORT).
1: arrange p1, . . . , pm such that C1 ≤ C2 ≤ . . . ≤ Cm

2: σa ← 1, σc ← 1, α1 ← 1

3: for k := 2 to m do

4: C1 ←C1:k−1, E1 ←E1:k−1, C2 ←Ck, E2 ←Ek
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Fig. 9. Equivalent processor in Schedule g. The total communication time remains the same
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5: if δC2 > C1(1 + δ + ρ1) then

6: /* Tl < T f , Tg, use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

13: /* Tg < Tl, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* Tl < Tg, use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2
C2 − C1

then

23: /* T f < Tl, use Schedule f */

24: call schedule_fifo

25: else

26: /* Tl < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n ← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

34: αk ←
{

αk · ∏n
j=2 α1:j if k = 1

αk · ∏n
j=k α1:j if k = 2, . . . , n

35: T ← C1:n + E1:n + δ C1:n

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ← C2
C1ρ1 + C2

2: αk ← C1ρ1
C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)
C1ρ1 + C2
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Fig. 9. Equivalent processor in Schedule g. The total communication time remains the same
as the original two processors. The equivalent computation time is equal to zero as the result
collection begins immediately after the allocation phase ends.

5: if δC2 > C1(1 + δ + ρ1) then

6: /* Tl < T f , Tg, use Schedule l */

7: call schedule_lifo

8: else

9: /* Need to check other conditions */

10: if ρ1ρ2 ≤ δ then

11: /* Possibility of idle time */

12: if C2 ≤ C1

(
1 +

(1 + ρ1)ρ2
δ(1 + δ + ρ2)

)
then

13: /* Tg < Tl, use Schedule g */

14: call schedule_idle

15: break for

16: else

17: /* Tl < Tg, use Schedule l */

18: call schedule_lifo

19: end if

20: else

21: /* No idle time present */

22: if T f ≤ C1C2
C2 − C1

then

23: /* T f < Tl, use Schedule f */

24: call schedule_fifo

25: else

26: /* Tl < T f , use Schedule l */

27: call schedule_lifo

28: end if

29: end if

30: end if

31: end for

32: n ← numberOfProcessorsUsed

33: /* Update load fractions from stored values */

34: αk ←
{

αk · ∏n
j=2 α1:j if k = 1

αk · ∏n
j=k α1:j if k = 2, . . . , n

35: T ← C1:n + E1:n + δ C1:n

The procedures in the algorithm are given below:

procedure schedule_idle

1: α1:k−1 ← C2
C1ρ1 + C2

2: αk ← C1ρ1
C1ρ1 + C2

3: /* Update sequences for FIFO */

4: σa ← {σa, k}

5: σc ← {σc, k}

6: /* Compute equivalent processor parameters */

7: C1:k ← C1C2(1 + ρ1)
C1ρ1 + C2



8: E1:k ← 0

9: numberOfProcessorsUsed ← k

10: return

procedure schedule_lifo

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2
C1rl

1 + C2rl
2

4: αk ←
C1rl

1
C1rl

1 + C2rl
2

5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k

12: return

procedure schedule_fifo

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 + C2r f

2
5: /* Update sequences for FIFO */

6: σa ← {σa, k}

p1:n

p1:n−1

p1:3

p1:2

p1 p2

p3

p4

pn−1

pn

Fig. 10. The building of SPORT solution. At each step only two processors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 3.

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + r f

2 )

C1r f
1 + C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2
11: numberOfProcessorsUsed ← k

12: return

5.1 Algorithm Explanation
At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors
with the fastest communication links are selected. The optimal schedule and load distribution
for the two processors are found according to Theorem 3. If Schedule f or l is found optimal,
then the two processors are replaced by their equivalent processor. In either case, since C1 ≤
C1:2 ≤ C2, the ordering of the processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest communication link are selected
and the steps are repeated until either all processors are used up, or Schedule g is found to be
optimal. If Schedule g is found to be optimal in any iteration, then the algorithm exits after
finding the load distribution for that iteration.
The computation of the allocation and collection sequences is straightforward. The allocation
sequence σa is maintained in the order of decreasing communication link bandwidth of the
processors. Irrespective of the schedule found optimal in iteration k, k is always appended to
σa. The collection sequence σc is constructed as follows:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.



8: E1:k ← 0

9: numberOfProcessorsUsed ← k

10: return

procedure schedule_lifo

1: rl
1 ← ρ1

2: rl
2 ← 1 + δ + ρ2

3: α1:k−1 ←
C2rl

2
C1rl

1 + C2rl
2

4: αk ←
C1rl

1
C1rl

1 + C2rl
2

5: /* Update sequences for LIFO */

6: σa ← {σa, k}

7: σc ← {k, σc}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(rl

1 + rl
2)

C1rl
1 + C2rl

2

10: E1:k ← C1C2ρ1ρ2

C1rl
1 + C2rl

2
11: numberOfProcessorsUsed ← k

12: return

procedure schedule_fifo

1: r f
1 ← δ + ρ1

2: r f
2 ← 1 + ρ2

3: α1:k−1 ←
C2r f

2

C1r f
1 + C2r f

2

4: αk ←
C1r f

1

C1r f
1 + C2r f

2
5: /* Update sequences for FIFO */

6: σa ← {σa, k}

p1:n

p1:n−1

p1:3

p1:2

p1 p2

p3

p4

pn−1

pn

Fig. 10. The building of SPORT solution. At each step only two processors are involved
(the state space remains constant). The optimal schedule for two processors can be easily
computed in constant time using simple if-then-else statements in Theorem 3.

7: σc ← {σc, k}

8: /* Compute equivalent processor parameters */

9: C1:k ←
C1C2(r

f
1 + r f

2 )

C1r f
1 + C2r f

2

10: E1:k ← C1C2(ρ1ρ2 − δ)

C1r f
1 + C2r f

2
11: numberOfProcessorsUsed ← k

12: return

5.1 Algorithm Explanation
At the start, the processors are arranged so that C1 ≤ C2 ≤ . . . ≤ Cm, and two processors
with the fastest communication links are selected. The optimal schedule and load distribution
for the two processors are found according to Theorem 3. If Schedule f or l is found optimal,
then the two processors are replaced by their equivalent processor. In either case, since C1 ≤
C1:2 ≤ C2, the ordering of the processors does not change. In the subsequent iteration, the
equivalent processor and the processor with the next fastest communication link are selected
and the steps are repeated until either all processors are used up, or Schedule g is found to be
optimal. If Schedule g is found to be optimal in any iteration, then the algorithm exits after
finding the load distribution for that iteration.
The computation of the allocation and collection sequences is straightforward. The allocation
sequence σa is maintained in the order of decreasing communication link bandwidth of the
processors. Irrespective of the schedule found optimal in iteration k, k is always appended to
σa. The collection sequence σc is constructed as follows:

• If Schedule f or g is found optimal in iteration k, k is appended to σc.
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Fig. 11. Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is multiplied by
the product term in (20) to get the final value of α1 = α1:n · α1:n−1 · · · α1:2 · α′1. This is equivalent
to traversing the binary tree from the root to the leaf nodes and taking the product of all nodes
(values) encountered. This calculation can be implemented in O(m) time by starting with αm
and storing the intermediate values.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the search
for the optimal schedule. As shown in Fig. 11, the algorithm creates a one-sided binary tree of
load fractions. If the number of processors participating in the computation is n, 2 ≤ n ≤ m,
the root node of the binary tree is α1:n and the leaf nodes represent the final load fractions
allocated to the processors. The value of the root node need not be calculated as it is equal to
one. The individual load fractions, αk, are initially assigned value α′k (say), and then updated
at the end as:

αk =

{
α′k · ∏n

j=2 α1:j if k = 1
α′k · ∏n

j=k α1:j if k = 2, . . . , n
(20)

This is equivalent to traversing the binary tree from the root to each leaf node and taking the
product of the nodes encountered (see Fig. 11). This calculation can be easily implemented in
O(m) time by starting with the computation of αn, and storing the values of the product terms
(i.e. ∏ α1:j) for each processor and then using that value for the next processor.
Once the sequences (σa, σc) and load distribution α are found, calculating the processing time
is straightforward. The processing time is simply the sum of the (equivalent) parameters of
the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.
In SPORT, defining the allocation sequence by sorting the values of Ck requires O(m log m)
time, while finding the collection sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the overall complexity of the algorithm
is polynomial in m and is equal to O(m).

5.2 Simulations and Analysis
The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC, and
ITERLP. The globally optimal schedule OPT is obtained after evaluation of the linear pro-

Table 1. Minimum statistics for SPORT simulations. In sets 1 and 2, the minimum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Table 2. Maximum statistics for SPORT simulations. In sets 1 and 2, the maximum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

gram for all possible (m!)2 permutations of (σa, σc). In FIFOC, processors are allocated load
and result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link bandwidth
of the processors, while result collection is the reverse order of increasing communication link
bandwidth of the processors. ITERLP (Ghatpande, Beaumont, Nakazato & Watanabe, 2008) is
a near-optimal algorithm for DLSRCHETS. To explore the effects of system parameter values
on the performance of the algorithms, several sets of simulations were carried out:

Set 1 Homogeneous network and homogeneous processors
Set 2 Homogeneous network and heterogeneous processors
Set 3 Heterogeneous network and homogeneous processors
Set 4 Heterogeneous network and heterogeneous processors

The error values with respective to the optimal are calculated. Over 500,000 simulation runs
are carried out. Further details can be obtained in (Ghatpande, Beaumont, Nakazato & Watan-
abe, 2008; Ghatpande, Nakazato, Beaumont & Watanabe, 2008). The minimum and maximum
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Fig. 11. Calculating the load fractions in SPORT. α′1 is the initial value of α1. It is multiplied by
the product term in (20) to get the final value of α1 = α1:n · α1:n−1 · · · α1:2 · α′1. This is equivalent
to traversing the binary tree from the root to the leaf nodes and taking the product of all nodes
(values) encountered. This calculation can be implemented in O(m) time by starting with αm
and storing the intermediate values.

• If Schedule l is found optimal in iteration k, k is prepended to σc.

The calculation of load distribution to the processors occurs simultaneously with the search
for the optimal schedule. As shown in Fig. 11, the algorithm creates a one-sided binary tree of
load fractions. If the number of processors participating in the computation is n, 2 ≤ n ≤ m,
the root node of the binary tree is α1:n and the leaf nodes represent the final load fractions
allocated to the processors. The value of the root node need not be calculated as it is equal to
one. The individual load fractions, αk, are initially assigned value α′k (say), and then updated
at the end as:

αk =

{
α′k · ∏n

j=2 α1:j if k = 1
α′k · ∏n

j=k α1:j if k = 2, . . . , n
(20)

This is equivalent to traversing the binary tree from the root to each leaf node and taking the
product of the nodes encountered (see Fig. 11). This calculation can be easily implemented in
O(m) time by starting with the computation of αn, and storing the values of the product terms
(i.e. ∏ α1:j) for each processor and then using that value for the next processor.
Once the sequences (σa, σc) and load distribution α are found, calculating the processing time
is straightforward. The processing time is simply the sum of the (equivalent) parameters of
the equivalent processor p1:n, i.e., T = C1:n + E1:n + δ C1:n.
In SPORT, defining the allocation sequence by sorting the values of Ck requires O(m log m)
time, while finding the collection sequence and load distribution requires O(m) time in the
worst case. Thus, if sorted values of Ck are given, then the overall complexity of the algorithm
is polynomial in m and is equal to O(m).

5.2 Simulations and Analysis
The performance of SPORT was compared to four algorithms, viz. OPT, FIFOC, LIFOC, and
ITERLP. The globally optimal schedule OPT is obtained after evaluation of the linear pro-

Table 1. Minimum statistics for SPORT simulations. In sets 1 and 2, the minimum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.73e-03 4.32e-03 8.08e-01 5.76e-03 2.20e-02 1.06e-02 1.07e+00 2.21e-02
5 7.89e-04 6.90e-04 7.21e-01 7.89e-04 5.40e-03 4.21e-03 9.63e-01 5.30e-03

2 4 1.01e-02 5.78e-03 8.41e-01 1.01e-02 2.37e-02 1.43e-02 1.15e+00 2.40e-02
5 3.34e-03 2.10e-03 7.93e-01 3.34e-03 1.06e-02 8.92e-03 1.10e+00 1.07e-02

3 4 2.03e-01 1.80e-03 1.05e-01 1.61e+00 1.12e-01 5.13e-03 9.59e-02 4.43e+00
5 3.96e-01 1.90e-01 8.90e-02 1.75e+00 5.34e-02 9.32e-02 5.13e-02 4.74e+00

4 4 4.95e-06 1.97e-16 4.92e-06 1.05e+00 3.09e-02 2.77e-15 3.09e-02 3.23e+00
5 1.08e-02 5.81e-04 2.75e-06 1.15e+00 5.84e-02 2.18e-03 5.84e-02 3.74e+00

Table 2. Maximum statistics for SPORT simulations. In sets 1 and 2, the maximum errors in
LIFOC are 2 orders of magnitude higher than SPORT, ITERLP, and FIFOC. In sets 3 and 4,
FIFOC error is 2 to 3 orders of magnitude higher than the other three algorithms.

Set m δ = 0.2 δ = 0.5

SPORT ITERLP LIFOC FIFOC SPORT ITERLP LIFOC FIFOC

1 4 5.34e-02 3.09e-02 3.11e+00 5.61e-02 1.84e-01 7.57e-02 4.20e+00 2.02e-01
5 8.24e-02 4.87e-02 3.00e+00 8.79e-02 2.26e-01 1.19e-01 3.91e+00 2.30e-01

2 4 3.03e-02 1.69e-02 1.83e+00 3.06e-02 9.35e-02 4.93e-02 3.10e+00 1.10e-01
5 3.66e-02 2.61e-02 2.24e+00 3.68e-02 1.15e-01 8.34e-02 2.75e+00 1.26e-01

3 4 4.01e-01 3.42e-01 4.66e-01 2.02e+00 4.03e-01 2.22e-01 4.03e-01 5.44e+00
5 5.31e-01 3.86e-01 4.84e-01 2.30e+00 5.45e-01 3.80e-01 4.16e-01 6.05e+00

4 4 1.32e+00 6.50e-01 8.84e-01 4.47e+00 8.02e-01 7.11e-01 4.00e-01 1.12e+01
5 1.56e+00 7.66e-01 4.34e-01 4.85e+00 9.35e-01 8.97e-01 4.24e-01 1.15e+01

gram for all possible (m!)2 permutations of (σa, σc). In FIFOC, processors are allocated load
and result are collected in the order of decreasing communication link bandwidth of the pro-
cessors. In LIFOC, load allocation is in the order of decreasing communication link bandwidth
of the processors, while result collection is the reverse order of increasing communication link
bandwidth of the processors. ITERLP (Ghatpande, Beaumont, Nakazato & Watanabe, 2008) is
a near-optimal algorithm for DLSRCHETS. To explore the effects of system parameter values
on the performance of the algorithms, several sets of simulations were carried out:

Set 1 Homogeneous network and homogeneous processors
Set 2 Homogeneous network and heterogeneous processors
Set 3 Heterogeneous network and homogeneous processors
Set 4 Heterogeneous network and heterogeneous processors

The error values with respective to the optimal are calculated. Over 500,000 simulation runs
are carried out. Further details can be obtained in (Ghatpande, Beaumont, Nakazato & Watan-
abe, 2008; Ghatpande, Nakazato, Beaumont & Watanabe, 2008). The minimum and maximum
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Fig. 12. Comparison of wall-clock time for SPORT, LIFOC, and FIFOC. SPORT is two orders
of magnitude faster than LIFOC and almost four orders of magnitude faster than FIFOC. This
figure appears in (Ghatpande, Nakazato, Beaumont & Watanabe, 2008).

mean error values of each algorithm are tabulated in Tables 1 and 2. It can be observed that in
sets 1 and 2, the minimum and maximum errors in LIFOC are 2 orders of magnitude higher
than SPORT, ITERLP, and FIFOC. On the other hand in sets 3 and 4, FIFOC error is 2 to 3
orders of magnitude higher than the other three algorithms.
There is a significant downside to LIFOC because of its property to use all available processors
— the time required to compute the optimal solution (wall-clock time) is almost two orders
of magnitude greater than that of SPORT as seen in Fig. 12. These values were obtained
by averaging the wall-clock time to compute a solution over 1000 runs. The results show
that though both SPORT and LIFOC are O(m) algorithms given a set of processors sorted
by decreasing communication bandwidth, clearly SPORT is the better performing algorithm,
with the best cost-performance ratio for large values of m. The values for FIFOC are almost
four orders of magnitude larger than SPORT. The extensive simulations show that:

• If network links are homogeneous, then LIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in network
links and computation speeds, but since SPORT does not use a single predefined se-
quence of allocation and collection, it is able to better adapt to the changing system
conditions.

• ITERLP performance is somewhat better than SPORT, but is computationally expen-
sive. SPORT generates similar schedules at a fraction of the cost.

6. Conclusion

In this chapter, the DLSRCHETS problem for the scheduling of divisible loads on heteroge-
neous master-slave systems and considering the result collection phase was formulated and

analysed. A new polynomial-time algorithm, SPORT was proposed and tested. Future work
can proceed in the following main directions:

Theoretical Analysis The complexity of DLSRCHETS is still an open issue. It makes for an
interesting research topic. Is it at all possible that DLSRCHETS can be solved in poly-
nomial time? Does imposition of some additional constraints make it tractable? What
are those conditions?

Extending the System Model This area has a large number of possibilities for future work.
Scheduling purists may consider the system model used in this thesis to be quite sim-
plistic. As future work, the conditions (constraints on values of Ek and Ck), that min-
imize the error need to be found. An interesting area would be the investigation of
the effect of affine cost models, processor deadlines and release times. Another impor-
tant area would be to extend the results to multi-installment delivery and multi-level
processor trees.

Modification of DLSRCHETS The ways in which DLSRCHETS may be modified are — dy-
namism and uncertainty in the system parameters, non-clairvoyance, non-omniscience
of the master, node (slave) turnover (failure), slave sharing, multiple jobs on one master,
multiple masters, multiple jobs on several masters, decentralization of scheduling de-
cision (P2P model), QoS requirements, buffer, bandwidth, and computation constraints
on slaves.

Application Development All the testing in this work has been carried out using simula-
tions. It will be interesting to see how the algorithms perform in practice. New and
different applications apart from the number of possible scientific applications men-
tioned in the introduction, need to be developed that use the results in this work. This
may require development of new libraries and middleware to support the computation
models considered.
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mean error values of each algorithm are tabulated in Tables 1 and 2. It can be observed that in
sets 1 and 2, the minimum and maximum errors in LIFOC are 2 orders of magnitude higher
than SPORT, ITERLP, and FIFOC. On the other hand in sets 3 and 4, FIFOC error is 2 to 3
orders of magnitude higher than the other three algorithms.
There is a significant downside to LIFOC because of its property to use all available processors
— the time required to compute the optimal solution (wall-clock time) is almost two orders
of magnitude greater than that of SPORT as seen in Fig. 12. These values were obtained
by averaging the wall-clock time to compute a solution over 1000 runs. The results show
that though both SPORT and LIFOC are O(m) algorithms given a set of processors sorted
by decreasing communication bandwidth, clearly SPORT is the better performing algorithm,
with the best cost-performance ratio for large values of m. The values for FIFOC are almost
four orders of magnitude larger than SPORT. The extensive simulations show that:

• If network links are homogeneous, then LIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• If network links are heterogeneous, then FIFOC performance is affected for both homo-
geneous and heterogeneous computation speeds.

• SPORT performance is also affected to a certain degree by the heterogeneity in network
links and computation speeds, but since SPORT does not use a single predefined se-
quence of allocation and collection, it is able to better adapt to the changing system
conditions.

• ITERLP performance is somewhat better than SPORT, but is computationally expen-
sive. SPORT generates similar schedules at a fraction of the cost.

6. Conclusion

In this chapter, the DLSRCHETS problem for the scheduling of divisible loads on heteroge-
neous master-slave systems and considering the result collection phase was formulated and

analysed. A new polynomial-time algorithm, SPORT was proposed and tested. Future work
can proceed in the following main directions:

Theoretical Analysis The complexity of DLSRCHETS is still an open issue. It makes for an
interesting research topic. Is it at all possible that DLSRCHETS can be solved in poly-
nomial time? Does imposition of some additional constraints make it tractable? What
are those conditions?

Extending the System Model This area has a large number of possibilities for future work.
Scheduling purists may consider the system model used in this thesis to be quite sim-
plistic. As future work, the conditions (constraints on values of Ek and Ck), that min-
imize the error need to be found. An interesting area would be the investigation of
the effect of affine cost models, processor deadlines and release times. Another impor-
tant area would be to extend the results to multi-installment delivery and multi-level
processor trees.

Modification of DLSRCHETS The ways in which DLSRCHETS may be modified are — dy-
namism and uncertainty in the system parameters, non-clairvoyance, non-omniscience
of the master, node (slave) turnover (failure), slave sharing, multiple jobs on one master,
multiple masters, multiple jobs on several masters, decentralization of scheduling de-
cision (P2P model), QoS requirements, buffer, bandwidth, and computation constraints
on slaves.

Application Development All the testing in this work has been carried out using simula-
tions. It will be interesting to see how the algorithms perform in practice. New and
different applications apart from the number of possible scientific applications men-
tioned in the introduction, need to be developed that use the results in this work. This
may require development of new libraries and middleware to support the computation
models considered.
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A parallel simulated annealing algorithm
as a tool for fitness landscapes exploration

Zbigniew J. Czech
Silesia University of Technology and University of Silesia

Poland

1. Introduction

Solving a discrete optimization problem consists in finding a solution which maximizes (or
minimizes) an objective function. The function is often called the fitness and the correspond-
ing landscape the fitness landscape. We are concerned with statistical measures of a fitness
landscape in the context of the vehicle routing problem with time windows (VRPTW). The
measures are determined by using a parallel simulated annealing algorithm as a tool for ex-
ploring a solution space. This chapter summarizes our experience in designing parallel simu-
lated annealing algorithms and investigating fitness landscapes of a sample NP-hard bicrite-
rion optimization problem.
Since 2002 we have developed several versions of the parallel simulated annealing (SA) al-
gorithm (11)-(19). Each of these versions comprises a number of parallel SA processes which
co-operate periodically by passing and exploiting the best solutions found during the search.
For this purpose a specific scheme of co-operation of processes has been devised. The meth-
ods of parallelization of simulated annealing are discussed in Aarts and van Laarhoven (2),
Aarts and Korst (1), Greening (20), Abramson (3), Boissin and Lutton (8), and Verhoeven and
Aarts (35). Parallel simulated annealing to solve the VRPTW is applied by Arbelaitz et al. (4).
Onbaşoğlu and Özdamar (26) present the applications of parallel simulated annealing algo-
rithms in various global optimization problems. The comprehensive study of parallelization
of simulated annealing is given by Azencott et al. (5)
The parallel SA algorithm allowed us to discover the landscape properties of the VRPTW
benchmarking tests (33). This knowledge not only increased our understanding of processes
which happen during optimization, but also helped to improve the performance of the parallel
algorithm. The usage of the landscape notion is traced back to the paper by Wright (37). The
more formal treatments of the landscape properties are given by Stadler (32), Hordijk and
Stadler (22), Reidys and Stadler (31). Statistical measures of a landscape are proposed by
Weinberger (36). The reviews of the landscape issues are given by Reeves (30) and Reeves and
Rowe (29).
Section 2 of this chapter formulates the optimization problem which is solved. Section 3 de-
scribes a sequential SA algorithm. In section 4 two versions of the parallel SA algorithm, called
independent and co-operating searches, are presented. Section 5 is devoted to the statistical
measures of the fitness landscapes in the context of the VRPTW. In subsections 5.1-5.2 some
basic notions are introduced, and in subsection 5.3 the results of the experimental study are
discussed. Section 6 concludes the chapter.



2. Problem formulation

The VRPTW is an extension to the capacitated vehicle routing problem (CVRP) which is for-
mulated as follows (34). There is a central depot of goods and n customers (nodes) geograph-
ically scattered around the depot. The locations of the depot (i = 0) and the customers (i = 1,
2, . . . , n), as well as the shortest distances dij and the corresponding travel times tij between
any two customers i and j are given. Each customer asks for a quantity qi of goods which has
to be delivered (or picked up from) by a vehicle of capacity Q. Because of this capacity limit,
the vehicle after serving a subset of customers has to return to the depot for reloading. The
vehicle effects the whole service on a number of routes. Each route starts and terminates at the
depot. A solution to the CVRP is a set of routes of minimum travel distance (or travel time)
which visits each customer i, i = 1, 2, . . . , n, exactly once. The total demand for each route
cannot exceed Q.
The CVRP is extended into the VRPTW by introducing for each customer and the depot a
service time window [ei, fi] and a service time si (s0 = 0). The values ei and fi determine, re-
spectively, the earliest and the latest time for start servicing. The customer i has to be served
within the time window [ei, fi] and the service of all customers should be accomplished within
the time window of the depot [e0, f0]. The vehicle can arrive to the customer before the time
window but then it has to wait until time ei, when the service can begin. The latest time for ar-
rival of the vehicle to customer i is fi. It is assumed that the routes are traveled simultaneously
by a fleet of K homogeneous vehicles (i.e. of equal capacity), each vehicle assigned to a single
route. A solution to the VRPTW is the set of routes which guarantees the delivery of goods
to all customers and satisfies the time window and vehicle capacity constraints. Furthermore,
the size of the set equal to the number of vehicles needed (primary objective) and the total
travel distance (secondary objective) should be minimized.
More formally, there are three types of decision variables in this two-objective optimization
problem. The first decision variable, xi,j,k, i, j ∈ {0,1, . . . ,n}, k ∈ {1,2, . . . ,K}, i "= j, is 1 if vehicle
k travels from customer i to j, and 0 otherwise. The second decision variable, ti, denotes the
time when a vehicle arrives at customer i, and the third decision variable, bi, denotes the
waiting time at that customer. The aim is to:

minimize K, and then (1)
minimize ∑n

i=0 ∑n
j=0,j "=i ∑K

k=1 di,jxi,j,k, (2)

subject to the following constraints:
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xi,j,k ≤ Q, for k ∈ {1,2. . . . ,K} (6)

K

∑
k=1

n

∑
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xi,j,k(ti + bi + hi + ti,j) ≤ tj, for j ∈ {1,2, . . . ,n} (7)

and t0 = b0 = h0 = 0,

ei ≤ (ti + bi) ≤ fi, for i ∈ {1,2, . . . ,n}. (8)

Formulas (1) and (2) define the minimized functions. Eq. (3) specifies that there are K routes
beginning at the depot. Eq. (4) expresses that every route starts and ends at the depot. Eq. (5)
assures that every customer is visited only once by a single vehicle. Eq. (6) defines the capacity
constraints. Eqs. (7)–(8) concern the time windows. Altogether, eqs. (3)–(8) define the feasible
solutions to the VRPTW.
Lenstra and Rinnooy Kan (24) proved that the VRP and the VRPTW are NP-hard discrete
optimization problems.

3. Sequential simulated annealing

The algorithm of simulated annealing which can be regarded as a variant of local search was
first introduced by Metropolis et al. (25), and then used to optimization problems by Kirk-
patrick, Gellat and Vecchi (23), and Cěrny (10). A comprehensive introduction to the subject
can be found in Reeves (27) and Azencott (5).
Let C : S $→ R be a cost function which is to be minimized, defined on some finite solution
set (search space) S. Let N(X), N(X) ⊂ S, be a set of neighbors of solution X for each X ∈ S.
Usually the sets N(X) are small subsets of S. For the VRPTW the members of N(X) are
constructed by moving one or more customers among the routes of solution X. The way
in which these sets are created influences substantially the accuracy of results obtained by a
simulated annealing algorithm. While constructing the sets N(X) we make sure that their
members are built through deep modifications of X. Let R be a transition probability matrix,
such that R(X,Y) > 0 if and only if Y ∈ N(X). Let (Ti), i = 0, 1, . . . be a sequence of positive
numbers, called the temperatures of annealing, such that Ti ≥ Ti+1 and limi→∞ Ti = 0. The
sequence (Ti) is called the cooling schedule, and a sequence of annealing steps within which
the temperature of annealing stays constant is called the cooling stage. Consider the sequential
annealing algorithm for constructing a sequence (or chain) of solutions (Xi), Xi ∈ S, defined
as follows. An initial solution X0 is computed using e.g. some heuristics. Given the current
solution Xi, a potential next solution Yi is chosen from set N(Xi) with probability R(Xi,Yi).
Then in a single annealing step solution Xi+1 is set as follows (cf. Fig. 2):

Xi+1 =






Yi if C(Yi) ≤ C(Xi),
Yi with probability pi, if C(Yi) > C(Xi),
Xi otherwise,

where
pi = exp(−(C(Yi)− C(Xi))/Ti). (9)
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If Xi+1 is set to Yi and C(Yi) > C(Xi), then we say that an uphill move is carried out. Eq. (9)
implies that uphill moves are performed more often when temperature Ti is high. When Ti is
close to zero uphill moves occur sporadically. Simulated annealing can be described formally
by non-homogeneous Markov chains. In these chains the probability of moving from one state
to another depends not only on these states but also on the temperature of annealing.
A solution X ∈ S is said to be a local minimum of the cost function C, if C(X)≤ C(Y) for all Y ∈
N(X), and to be a global minimum of C, if C(X) = infY∈S C(Y). Let Smin be the set of global
minima of C. We say that the process of simulated annealing converges, if limi→∞ P(Xi ∈
Smin) = 1. It was proved (21) that the convergence is guaranteed by the logarithmic cooling
schedules of the form: Ti ≥ R

log(i+1) for some constant R which depends on the cost function
landscape. It was also shown (5; 9) that for the logarithmic cooling schedules the speed of
convergence is given by:

P(Xi /∈ Smin) ∼
(

K
i

)α

(10)

for i large enough, where K > 0 and α > 0 are suitable constants. Both constants are connected
to the cost function landscape, and for large solution spaces constant K is very large and con-
stant α is very small (5; 9). This implies that the process of simulated annealing converges very
slowly. According to Eq. (10) a global minimum is attained only if the process of annealing is
infinite. For this reason the question of how to accelerate simulated annealing by making use
of parallelism is crucial.
In the sequential simulated annealing algorithm to solve the VRPTW, the chain (Xi) is con-
structed in two phases. The goal of phase 1 is to minimize the number of routes of the VRPTW
solution, whereas phase 2 minimizes the total length of the routes. However in phases 1 and 2
it may happen that both the number of routes and the total length of routes are reduced. The
cost of solution Xi in phase 1 is computed as: C1(Xi) = c1N + c2D + c3(r1 − r̄), and in phase 2
as: C2(Xi) = c1N + c2D, where N is the number of routes (vehicles) of solution Xi, D – the total
travel distance of the routes, r1 – the number of customers of a randomly chosen route which
is to be shorten and perhaps eliminated from the current solution, r̄ – the average number
of customers in all routes, c1, c2, c3 – some constants. For simplicity, instead of the logarith-
mic an exponential cooling schedule is used, i.e. the temperature of annealing is decreased as
Tk+1 = β f Tk, for k = 0, 1, . . . , a f , and some constants β f (β f < 1) and a f ( f = 1 and 2 denote
phase 1 and 2).

4. Parallel simulated annealing algorithm

4.1 Independent searches
In the parallel algorithm of independent searches (IS), p independent simulated annealing
processes P0, P1, . . . , Pp−1 are executed. Every process performs its computations like in
the sequential algorithm. On completion, the processes pass their best solutions found to the
master process, which selects the best solution among solutions it received. This solution
constitutes the final result of the IS algorithm.
More formally, suppose that i steps of sequential simulated annealing is taken. Then in parallel
IS, p annealing chains of z = i/p steps each are executed. As the result p terminal solutions
{Xz,0, Xz,1, . . . , Xz,p−1} are computed, from which the final solution Yi is selected by: Yi =
Xz,0 ⊗ Xz,1 ⊗ . . . ⊗ Xz,p−1, where ⊗ is the operator of choosing the better solution with respect

to the total length of routes1. In terms of convergence we have (5):

P(Yi /∈ Smin) = ∏
0≤j≤p−1

P(Xz,j /∈ Smin). (11)

Assuming that each simulated annealing chain j of z steps converges at speed determined by

Eq. 10: P(Xz,j /∈ Smin) ∼
(

K
z

)α
, we get (5):

P(Yi /∈ Smin) ∼
(

Kp
i

)αp
. (12)

Consider a chain of i = 107 steps of sequential simulated annealing, and let K = 100 and α =

0.01. Then according to Eq. 10 the speed of convergence is equal
(

K
i

)α
≈ 0.89. If one uses p =

5, 10, 15 and 20 processes, then by Eq. (12) the speeds of convergence of IS are:
(

Kp
i

)αp
≈ 0.61,

0.40, 0.27 and 0.18, respectively. Thus the parallel independent searches converge much faster
than the sequential algorithm.

4.2 Co-operating searches
The parallel algorithm of co-operating searches (CS) executes in the form of p processes P0,
P1, . . . , Pp−1 (Figs. 1-3). A process generates its own annealing chain divided into two phases
(lines 6–19 in Fig. 1). A phase consists of a number of cooling stages, and a cooling stage
consists of a number of annealing steps. The processes co-operate with each other every ω
annealing step passing their best solutions found to date (lines 12–16 in Fig. 1, and Fig. 3). The
chain of annealing steps of process P0 is entirely independent (Fig. 4). The chain of process
P1 is updated at steps uω, u = 1, 2, . . . , um, to the better solution between the best solutions
found by processes P0 and P1 to date. Similarly, process P2 chooses as the next point in its
chain the better solution between its own best and the one obtained from process P1. Thus
the best solution found by process Pl is piped down for further enhancement to processes
Pl+1 . . . Pp−1. Clearly, after step umω process Pp−1 holds the best solution Xb found by all
the processes. To our best knowledge the speed of convergence of co-operating searches given
e.g. by equations similar to Eq. (10) and (12) are not known.
As mentioned before, the temperature of annealing decreases according to the equation
Tk+1 = β f Tk for k = 0, 1, 2, . . . , a f , where a f is the number of cooling stages. In this work we
investigate two cases in establishing the points of process co-operation with respect to tem-
perature drops. In the first case, of regular co-operation, processes interact at the end of each
cooling stage (ω = L) (lines 12–13 in Fig. 1). The number of annealing steps executed within
a cooling stage is set to L = (5E)/p, where E = 105 is a constant established experimentally,
and p = 5, 10, 15 and 20, is the number of processes (line 3 in Fig. 1). Such an arrangement
keeps the parallel cost of the algorithms constant when different numbers of processes are
used, provided the co-operation costs are neglected. Therefore in this case as the number of
processes becomes larger, the length of cooling stages goes down, what means that the fre-
quency of co-operation increases. In the second case, of rare co-operation, the frequency is
constant and the processes exchange their solutions every ω = E annealing step (lines 14–15
in Fig. 1). For the number of processes p = 10, 15 and 20, the co-operation takes place after 2,
3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.
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3 and 4 temperature drops, respectively.

1 In this analysis it is assumed that each chain achieves a solution with the minimum (best known) num-
ber of routes.



1 parfor Pj, j = 0, 1, . . . , p − 1 do
2 Set co-operation mode to regular or rare depending on a test set;
3 L := (5E)/p; {establish the length of a cooling stage; E = 105}
4 Create the initial solution using some heuristics;
5 current solutionj := initial solution; best solutionj := initial solution;
6 for f := 1 to 2 do {execute phase 1 and 2}

{beginning of phase f}
7 T := T0, f ; {initial temperature of annealing}
8 repeat {a cooling stage}
9 for i := 1 to L do
10 annealing step f (current solutionj, best solutionj);
11 end for;
12 if ( f = 1) or (co-operation mode is regular) then {ω = L}
13 co operation;
14 else {rare co-operation: ω = E}
15 Call co operation procedure every E annealing step

counting from the beginning of the phase;
16 end if;
17 T := β f T; {temperature reduction}
18 until a f cooling stages are executed;

{end of phase f}
19 end for;
20 end parfor;
21 Produce best solutionp−1 as the solution to the VRPTW;

Fig. 1. Parallel simulated annealing algorithm of co-operating searches

1 procedure annealing step f (current solution, best solution);
2 Create new solution as a neighbor to current solution

(the way this step is executed depends on f );
3 δ := Cf (new solution)−Cf (current solution);
4 Generate random x uniformly in the range (0, 1);
5 if (δ < 0) or (x < e−δ/T) then
6 current solution := new solution;
7 if Cf (new solution) < Cf (best solution) then
8 best solution := new solution;
9 end if;
10 end if;
11 end annealing step f ;

Fig. 2. Annealing step procedure

The exchange of solutions between processes can be considered as exploitation of the search
results, whereas exploration takes place when a process penetrates the search space freely. Let
us call a sequence of ω annealing steps executed by a process between points of co-operation
as a chain of free exploration. Taking into account Eq. (10) the longer these chains the better.

1 procedure co operation;
2 if j = 0 then Send best solution0 to process P1;
3 else {j > 0}
4 receive best solutionj−1 from process Pj−1;
5 if Cf (best solutionj−1) < Cf (best solutionj) then
6 best solutionj := best solutionj−1;
7 current solutionj := best solutionj−1;
8 end if;
9 if j < p − 1 then Send best solutionj to process Pj+1; end if;
10 end if;
11 end co operation;

Fig. 3. Procedure of co-operation of processes

X0 →






X(0)
0 → X(ω)

0 → X(2ω)
0 → • • → X(umω)

0
↓ ↓ ↓

X(0)
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1 → • • → X(umω)

1
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p−2 → X(ω)
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p−2 → • • → X(umω)

p−2
↓ ↓ ↓

X(0)
p−1 → X(ω)

p−1 → X(2ω)
p−1 → • • → X(umω)

p−1 → Xb

Fig. 4. Scheme of co-operation of processes (X0 – initial solution; Xb – best solution among the
processes)

Note that due to co-operation, a process after having completed a chain with solution X, may
be forced to explore the search space from a—probably more promising—solution different
from X. In order to obtain good results during parallel search the proper balance between
exploitation and exploration has to be maintained.
A series of experiments was carried out in order to establish how the number of processes,
the length of chains of free exploration, and the frequency of processes co-operation influence
the accuracy of solutions to the VRPTW (16). For the experiments, 39 out of 56 benchmarking
tests2 elaborated by Solomon (33) were used. The tests are grouped into three major problem
sets named R, C and RC. The geographical coordinates for customers in sets R, C and RC are
generated randomly, in a clustered manner, and as a mix of random and clustered structures,
respectively. Each of these sets is divided into two subsets, R1, R2, C1, C2, RC1, RC2. The
subsets R1, C1 and RC1 have short time windows and permit relatively large numbers of
routes (between 9 and 19) in the solutions. The time windows for subsets R2, C2 and RC2
are wider allowing less routes (between 2 and 4) in the solutions. Every test involves 100
customers and the distances are measured using Euclidean metric. It is assumed that travel
times are equal to the corresponding distances.

2 The tests in set C are easy to solve, so they were omitted in the experiments.
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times are equal to the corresponding distances.
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In the series of the experiments, the IS and CS algorithms3 were executed at least 1000 times
for each test, a given number of processes p, a number of annealing steps L2 fixed for it,
and a period of communication ω. Based on each sample of results4 the average of total
travel distances of routes ȳ and the standard deviation s were calculated. The experiments
showed that depending on the test instance, the minimum of the mean value ȳ appeared for
different values of parameters p, L2 and ω. E.g. the minimum of ȳ for test R101 was obtained
for p = 20 and L2 = ω = E/4 (Table ??). Whether these specific values of parameters give

p L2 ω R101 R102 R103 R104 R105 R106
5 E E 13.9 17.6 11.4 0.8 1.1 10.6

10 E/2 E/2 6.5 11.6 3.9 0.5 0.1 5.3
15 E/3 E/3 1.4 3.3 min 0.7 2.3 2.1
20 E/4 E/4 min∗ min∗ 0.6∗ min 0.3 min
10 E/2 E 10.3 13.6 5.5 0.7 1.4 6.7
15 E/3 E 15.3 19.9 9.7 1.1 1.0 3.0
20 E/4 E 13.8 20.1 8.8 0.6∗ min∗ 0.9∗

p L2 ω R107 R108 R109 R110 R111 R112
5 E E 0.8 1.0 min∗ min∗ 0.3 1.2

10 E/2 E/2 min 0.1 6.5 3.2 min 1.1
15 E/3 E/3 1.1 min 6.7 3.7 1.4 min
20 E/4 E/4 0.7∗ 1.2∗ 10.4 5.3 1.9∗ 0.8
10 E/2 E 1.9 1.5 4.1 2.7 1.5 1.6
15 E/3 E 3.1 2.7 8.8 3.6 3.0 0.7
20 E/4 E 4.6 4.2 10.3 5.5 3.6 1.3∗

Table 1. Values of test statistic Z for CS algorithm and set R1;’*’ marks the best choice of
parameters p, L2 and ω

statistically superior results can be proved by testing the hypotheses H0 : µi ≤ µm versus an
alternative hypothesis Ha : µi > µm, where µ denotes the mean value of a population of total
travel distances of routes; i – populations whose samples have worse mean values (e.g. cases
p = 5 and L2 = ω = E; p = 10 and L2 = ω = E/2; etc. for test R101); m – a population for
which the minimum mean value of a sample was observed (i.e. case p = 20 and L2 = ω = E/4
for test R101). In the cases where H0 are rejected one can claim that their values of parameters
p, L2 and ω give inferior solutions with respect to the values for which ȳ = ȳmin occur, or
equivalently, the population with ȳ = ȳmin comprises superior solutions as compared to other

3 It was observed (15) that for some Solomon’s tests the probability of finding a solution with the min-
imum number of routes was very low. Therefore phase 1 of the algorithms was executed in the CS
fashion with a1 = 50 cooling stages and L1 = 105 annealing steps in each stage. In phase 2 the IS and CS
modes were used with a2 = 100 and L2 depending on the number of processes. The following values
of parameters were fixed: c1 = 40000, c2 = 1, c3 = 50, β1 = 0.95, β2 = 0.98.

4 For some tests the size of the sample was smaller than 1000, since only solutions with the minimum
number of routes were considered.

A. p L2 ω R109 R110 R202 RC102 RC104 RC108 RC202
5 E – 2.1∗ 2.7 5.6 2.4 3.0 min∗ 3.3

IS 10 E/2 – 2.9 4.8 9.4 4.0 6.5 8.5 4.4
15 E/3 – 6.8 6.5 12.0 5.2 11.1 13.6 3.6
20 E/4 – 8.8 9.5 13.1 6.3 11.7 20.3 4.5

5 E E min min∗ min∗ min min∗ 2.4 min∗

CS 10 E/2 E/2 6.5 3.2 7.2 0.8∗ 2.7 7.1 4.0
15 E/3 E/3 6.7 3.7 10.4 3.4 5.2 12.1 6.7
20 E/4 E/4 10.4 5.3 12.8 4.1 8.2 15.2 8.2
10 E/2 E 4.1 2.7 4.7 5.3 3.3 5.1 2.5

CS 15 E/3 E 8.8 3.6 7.8 3.5 6.2 10.4 3.4
20 E/4 E 10.3 5.5 9.7 4.3 6.8 13.6 3.9

Table 2. Values of test statistic Z for IS and CS algorithms

populations. For the test statistic:

Z =
ȳi − ȳm√

s2
i

ni
+ s2

m
nm

the hypotheses H0 are rejected at the α = 0.01 significance level, if Z > Z0.01 = 2.33 (ni and
nm are numbers of experiments over which si and sm values are calculated). Table ?? shows
the values of Z for set R1 (results for sets R2, RC1 and RC2 are reported in (16)), where min
indicates values of p, L2 and ω which give the minimum of ȳ. The framed values denote
rejections of hypotheses H0, what means that for the corresponding values of parameters p,
L2 and ω, the results of statistically worse total travel distances of routes are achieved. It can
be seen that the values of Z for test R101 and parameters p = 15, L2 = ω = E/3, and p = 20,
L2 = ω = E/4, are less than 2.33. So it is justified to claim that these values of parameters give
statistically the best solutions to the VRPTW. In other words, using p = 20 or 15 processes co-
operating after every cooling stage enable us to obtain quickly solutions of the best accuracy.
It follows from the experiments (16) that for most Solomon’s tests the results of high accuracy
can be achieved by making use of p = 20 processes. The exceptions are tests R109, R110, R202,
RC102, RC104, RC108 and RC202. For these tests the minimum of ȳ occurs when p = 5 and
most of other numbers of processes yield statistically worse results. As already indicated,
to keep the cost of parallel computations constant, the number of annealing steps taken by
processes between points of co-operation was decreased along with an increase of the number
of processes. The results of the experiments prove that for the tests listed above the execution
of shorter annealing chains of free exploration of length from L2 = E/4 to L2 = E/2 are not
compensated—in terms of accuracy—by the co-operation between processes.
The annealing chains of free exploration are substantially longer in the algorithm of inde-
pendent searches (IS), in which the processes do not co-operate and execute chains as long
as L2 = Ea2, where a2 is the fixed number of cooling stages5. Table 2 compares the results
obtained by the IS and CS algorithms for the specific tests mentioned above. It can be seen
that an increase of the length of chains and lack of co-operation in the IS algorithm, make

5 Note that altogether each process of the IS and CS algorithms executes a1 + a2 cooling stages.
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the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
Considering the results of the experiments and the objective of computing good quality solu-
tions to the VRPTW in a short time, Solomon’s tests can be divided into 3 groups:

I – tests which can be solved quickly (e.g. using p = 20 processes) to good accuracy with
rare co-operation (ω = E). To this group belong 24 tests, out of 39, not listed in groups
II and III specified below.

II – tests which can be solved quickly (e.g. with p = 20) but the co-operation should take
place after every cooling stage (we call this co-operation regular) (e.g. ω = E/4 for p =
20) to achieve good accuracy of solutions. This group comprises 8 tests: R101, R102,
R103, R107, R108, R111, R207 and RC105.

III – tests whose solving cannot be accelerated as much as for the tests in groups I and
II. The solutions of best accuracy are obtained for less than p = 20 processes6. To this
group belong 7 tests: R109, R110, R202, RC102, RC104, RC108 and RC202.

5. Fitness landscape

5.1 Basic definitions
Let C, S and N(X) be a cost function, a search space and a set of neighbors of solution X,
respectively, as defined in section 3. A solution Xo ∈ S is said to be a local minimum of
function C, if C(Xo) ≤ C(Y) for all Y ∈ N(Xo), and to be a global minimum X∗ of C, if
C(X∗) = infY∈S C(Y). In evolutionary optimization function C is often called the fitness and
the associated landscape a fitness landscape. More formally (29), a landscape L for the func-
tion C is a triple L = (S,C,d) where d denotes a distance measure d : S × S %→ R+ ∪ {∞}
which for any solutions P, Q, R ∈ S satisfies the conditions: d(P, Q) ≥ 0, d(P, Q) = 0 ⇔ P = Q
and d(P, R)≤ d(P, Q) + d(Q, R). If d is symmetric, i.e. d(P, Q) = d(Q, P) for all P, Q ∈ S then d
is a metric on space S.
Discrete optimization can be performed by neighborhood search where the process of search-
ing starts at some initial solution and converges to a local optimum, or an attractor. The
searching process is described by a function µ : S %→ So, where X ∈ S is an initial solution
and µ(X) is the optimum that it reaches (29). A basin of attraction of solution Xo is the set
B(Xo) = {X : µ(X) = Xo}. The set contains the initial solutions from which the search leads to
a specified attractor. The basins of attraction for a given function are not unique. They depend
on a method adopted for landscape exploration and can be established only if the method is
deterministic. Therefore the notion of the basin is of limited use for methods with a good deal
of randomization, like simulated annealing.

5.2 Statistical measures of fitness landscape
The nature of a fitness landscape can be unveiled either by mathematical analysis or by gath-
ering some statistical data during the process of searching it. In this work we follow the latter
approach. Several statistical measures have been proposed in the literature. Weinberger (36)
observed that some characteristics could be obtained from a random walk. Let Ct be the fit-
ness of the solution visited at time t. Then the autocorrelation function of the landscape during

6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.

a random walk of length T is:

aj =
∑T−j

t=1 (Ct − C̄)(Ct+j − C̄)

∑T
t=1(Ct − C̄)2

where C̄ is the mean fitness of the T solutions visited, and j is the lag. For smooth landscapes,
with neighbor solutions of similar fitness, and small lags, the values of aj are close to 1. As the
lag increases the values of autocorrelation are likely to diminish. The values of aj are close to
zero at all lags for rugged landscapes, where close solutions have unrelated fitness.
A useful indicator of the difficulty of an optimization problem is the number of optima ap-
pearing in a corresponding landscape. Indeed, the more optima in the landscape, the harder
is to find the global optimum. Suppose that for a given optimization problem the search is
restarted r times with random initial solutions. Most likely these solutions lay in different
basins of attraction, so as the result of the search a number of different local solutions k, k ≤ r,
will be found. Based on the values of r and k one may estimate the number of optima ν present
in a given landscape. Assuming that the probability of encountering each solution is the same,
it is easy to show that the random variable K which takes the number of distinct solutions in
a series of r independent searches has the Arfwedson distribution (28):

P[K = k] =
ν!

(ν − k)! νr rk (13)

where 1 ≤ k ≤ min(r,ν), with the mean:

EK = ν[1 − (1 − 1/ν)r]. (14)

After having measured EK one can solve numerically Eq. (14) and find an estimate for ν̂.
Reeves (28) gives an approximation of it as: ν̂ ≈ (K̄2 − r)/(2(r − K̄)), where K̄ is a measured
estimation of EK. When the value of ν is small one may ask how many searches W should be
done to be sure with some certainty that all optima have been found. The waiting time Wk
for the (k + 1)th solution provided that k of them have been already found has a geometric
distribution, and the mean of the waiting time for ν solutions is (28):

EW ≈ ν(lnν + γ) (15)

where γ ≈ 0.577 is Euler’s constant. The formulas (13)–(15) are derived under the assumption
that the probability of encountering each solution is the same, or in other words that solutions
are isotropically distributed in the landscape. Unfortunately in many optimization problems,
also in the VRPTW, this assumption is not valid.

5.3 Experimental study
The objective of the study was to gather statistical data concerning the fitness landscapes for
39 (out of 56) VRPTW tests by Solomon.

Fitness landscape characteristics
In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
objective optimization problem in which both, the number of routes and the total travel dis-
tance, should be minimized. For the landscape studies only solutions with the minimum



the results worse for tests R110, R202, RC104 and RC202. Applying the IS algorithm—of low
communication cost—can be justified only for tests R109 and RC108.
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6 There are two open questions here: whether less than p = 5 processes could give solutions of better
accuracy for some tests in group III, and whether finding solutions for tests in groups I-II can be speeded
up even further by making use of more than p = 20 processes with no loss of solutions accuracy.

a random walk of length T is:

aj =
∑T−j

t=1 (Ct − C̄)(Ct+j − C̄)

∑T
t=1(Ct − C̄)2
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also in the VRPTW, this assumption is not valid.
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In the course of experiments the parallel simulated annealing algorithm was executed at least
4200 times (see column Exp. in Table 4) for each test in sets R and RC. The VRPTW is a two-
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number of routes were taken into account. Most of Solomon’s tests are relatively easy to solve
with respect to the first objective function (the exceptions are tests R104, R112, RC101, RC105,
and RC106, see paragraph “Difficulty of test instances”). The minimum number of routes for
each test is generally known. Since the VRPTW problem is NP-hard, there is some probability
that these numbers are not global minima. However for simplicity, we shall name them as
‘minima’ instead of ‘known minima’.
Table 3 contains the histograms of numbers of solutions7 produced by the algorithm with
the total travel distance y worse by 0-1%, 1-2% etc. than the distance ymin of the best-known
solution. The columns denoted by τ̄ and τmax show the values of (ȳ − ymin)/ymin and (ymax −
ymin)/ymin, where ȳ and ymax are the average and maximum total travel distances obtained
for a given test, respectively. All values in Table 3 are expressed in per cents, and the tests are
ordered according to 0-1% column. It can be seen e.g. for test R112 that there is 30% chance
of getting a solution with distance y worse by 2-3% than ymin. This is because the number of
distinct solutions in terms of y for this test, discovered in ranges from 0-1% to >4% were 102,
149, 179, 89 and 81, respectively. Clearly, the distribution of solutions in the fitness landscape
is not isotropic, i.e. they are not uniformly scattered across every direction in the search space.
There exists a relatively large number of solutions with y ∈ [1.02ymin,1.03ymin), what increases
the probability that the algorithm will finish its computations at a local optimum with y in
this range. Fig. 5 plots the distances d of a sample of solutions from the best solution found
Xmin, against the total travel distances of solution routes8. As a metric for measuring the
distance d between solutions we use the minimum number of customer movements among
the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
of simulated annealing where random uphill moves may take place. The characteristics of the
fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
results to that of test R112 were obtained for other Solomon’s tests characterized by “long
histograms” (see columns 0-1% . . .>4% of Table 3). For instance, the numbers of distinct
solutions discovered for tests R211 and RC202 in ranges from 0-1% to >4% were 335, 1047,
926, 723, 1351 and 7349, 3105, 14281, 19246, 9027, respectively. The attractors (marked by
white circles) were observed in ranges 0-3% (test R211) and 0-5% (test RC202) (Figs. 6–7).

7 Note that each of these solutions is a local minimum to the VRPTW problem with respect to the total
travel distance.

8 Note that two separate series of experiments were conducted. In the first series the data contained
in Tables 3-4 were gathered. The goal of the second series of experiments was to find, up to 700 best
solutions to the selected VRPTW tests. The results of these experiments are depicted in Figs. 5-12.

9 Overall 9200 executions of the algorithm were carried out for this test, 600 executions produced solu-
tions with the number of routes equal 9, which is likely to be minimum, and 399 of these solutions were
distinct.

Test 0-1 1-2 2-3 3-4 >4 τ̄ τmax
% % % % %

R112 17 25 30 15 13 2.4 6.5
R110 45 21 18 7 9 1.6 11.4
R108 47 37 13 2 1 1.2 5.9
R107 61 37 2 0 0 0.8 7.7
R109 70 16 7 3 4 0.8 10.6
R111 72 6 13 5 4 0.9 10.3
R104 82 17 1 0 0 0.5 2.4
R106 91 9 0 0 0 0.6 1.8
R103 96 4 0 0 0 0.6 3.8
R102 100 0 0 0 0 0.4 1.0
R105 100 0 0 0 0 0.2 1.6
R101 100 0 0 0 0 0.1 0.5
R211 8 24 21 16 31 3.4 12.4
R207 25 26 11 20 18 2.4 11.4
R210 41 44 15 0 0 1.2 3.2
R203 56 43 1 0 0 0.9 3.4
R204 75 3 14 8 0 0.9 4.9
R208 77 23 0 0 0 0.6 2.9
R202 88 1 5 5 1 0.5 6.3
R209 97 3 0 0 0 0.2 2.5
R206 99 1 0 0 0 0.4 2.6
R201 100 0 0 0 0 0.1 1.3
R205 100 0 0 0 0 0.0 3.4

RC108 63 25 9 2 1 0.9 11.6
RC104 69 7 24 0 0 0.8 3.1
RC106 72 10 14 4 0 0.7 4.9
RC101 89 11 0 0 0 0.2 2.1
RC102 96 0 1 3 0 0.3 7.6
RC105 99 1 0 0 0 0.3 1.4
RC103 100 0 0 0 0 0.1 3.4
RC107 100 0 0 0 0 0.0 0.4
RC202 14 6 27 36 17 3.2 13.5
RC203 64 23 11 2 0 0.8 4.0
RC206 89 8 3 0 0 0.5 3.3
RC205 91 9 0 0 0 0.5 2.5
RC207 94 4 1 1 0 0.3 4.9
RC201 96 4 0 0 0 0.3 2.8
RC208 97 3 0 0 0 0.2 2.3
RC204 100 0 0 0 0 0.1 3.7

Table 3. Histograms of numbers of solutions in specified ranges 0-1%, 1-2%, . . . , >4%, τ̄ =
(ȳ− ymin)/ymin, τmax = (ymax − ymin)/ymin (all values in per cent; tests are ordered according
to 0-1% column)
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that these numbers are not global minima. However for simplicity, we shall name them as
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the routes necessary to convert one solution into another (see subsection 5.1). It was observed
that the solutions of all VRPTW tests were not sampled with equal probability. For instance,
the majority of solutions of test R1129 were hit only a few times, but 5 solutions were reached
at least 10 times (marked by white circles in Fig. 5). Most likely the sizes of basins of attraction
of more popular solutions are larger, although the notion of such a basin is vague in the context
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fitness landscape depend also on the search algorithm. Note that the solutions of test R112
reached most often (at least 10 times) are located in range 0-2%, i.e. range of good accuracy
(Fig. 5), partly due to good convergence, as we believe, of the parallel algorithm which favors
solutions of higher quality. In general, the shape of the landscape which is discovered is as
good as thorough is an exploration of the landscape conducted by the algorithm. On the
other hand, an excellent search algorithm can give a biased picture of the landscape, since
the worse local optima are then found less frequently—if at all—than the better ones. Similar
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Fig. 5. Distance d from the best solution marked by a shaded circle vs. total travel distance y
for test R112 (700 solutions, Xmin = (Nmin,ymin) = (9, 982.14), Nmin is the minimum number
of routes)
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Fig. 6. Distance d from the best solution vs. total travel distance y for test R211 (700 solutions,
Xmin = (2, 885.71))
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Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))

“Big valley” structure
Several experimental studies in discrete optimization revealed correlations among locations
of local optima which suggest existence of a globally convex or “big valley” structures in the
fitness landscapes (7). The experiments indicated that local optima are closer (in terms of
distance d) to the global optimum than are random points in a search space. The local optima
are also closer to each other and form a “big valley” structure with the best local (or global)
optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions
Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.
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Fig. 7. Distance d from the best solution vs. total travel distance y for test RC202 (700 solutions,
Xmin = (3, 1365.64))
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distance d) to the global optimum than are random points in a search space. The local optima
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optimum appearing in a center of the valley. The phenomenon can be illustrated by plotting a
graph of fitness against average distance from all other optima. The graph in Fig. 8 shows that
the best solution (marked by a shaded circle) has almost minimum distance d̄ what implies it
is located near the center of the valley. However this is not the case for the graphs in Figs. 9
and 10 where many local optima are much closer to the center than the best solution.

Approximate and exact solutions
Suppose that a hard optimization problem is to be solved. Then getting an approximate
solution worse no more than by 0-1% with respect to the optimum can be considered as
adequate. In such circumstances a good indicator of the problem difficulty is the value of
τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average cost ȳ of solutions from ymin at-
tained by solving the problem repeatedly. The value of τmax = (ymax − ymin)/ymin provides
some insight into the depth of local optima. If τ̄ ≤ 1% is observed then a problem can be
thought of as easy to solve. Assuming that 1% accuracy of solution approximation is accept-
able, all VRPTW tests, except R112, R110, R108, R211, R207, R210 and RC202, can be classified
as easy10 (Table 3). Fig. 11 drawn for test R102 shows that all its 700 best solutions found,
have their y values within 0.28% margin from ymin, what indicates that the fitness landscape

10 Remembering of course that they are instances of the NP-hard problem being solved by the advanced
parallel algorithm.



980 990 1000 1010 1020
30

35

40

45

50

1% 2% 3% 4%

y

d̄

Fig. 8. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R112 (700 solutions)
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Fig. 9. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance y
for test R211 (700 solutions)
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Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).

Difficulty of test instances
Since the VRPTW is a two-objective optimization problem, the difficulty of its instances can be
estimated by probabilities P1, P2 and P3 that after execution of a searching algorithm i) a solu-
tion with the minimum number of routes is found, ii) a solution with the minimum number of
routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1
and the value of the 1st column of Table 3 scaled to range [0,1]. The probability P3 is counted
as a ratio of the number of times the best-known solution is found to ν. If the best-known solu-
tion is not found, then probability P3 is determined by considering the best solution obtained
for a given test by the parallel algorithm, see http://sun.aei.polsl.pl/˜zjc/best-solutions.html.
The hardest test to solve with 1% accuracy is R104 (P2 = 0.002) and there are many easy tests
in this respect, R101, R102, etc. As mentioned before, it is very difficult to solve test R102 to
its optimality (P3 = 2 · 10−5). The easy tests in this regard are R205 (P3 = 0.997) and R105
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for test R211 (700 solutions)

1365 1385 1405
20

28

36

44

52

1% 2% 3%

y

d̄

Fig. 10. Average solution distance d̄ from the remaining 699 solutions vs. total travel distance
y for test RC202 (700 solutions)

ot this test is quite smooth. Thus test R102 can be ranked as easy to solve if an approximate
solution is sought. However it turns out to be the hardest one in Solomon’s set if the optimum
is searched for. The smoothness of the landscape is an advantage if one wants to solve a prob-
lem with some limited accuracy. In the case when the absolute optimum is desired, the key
role plays the number of local optima ν appearing in the landscape. For test R102 the number
of these optima was as large as 44773. Table 4 contains the numbers of local optima unveiled
for Solomon’s tests in the first series of our experiments. Fig. 15 shows the plot of average K̄
as a function of the number of unveiled optima ν (see subsection 5.1).
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routes and minimum distance allowing 1% accuracy is found, and iii) the best-known solution
is found, respectively (see Table 4, where K̄ – average number of distinct solutions observed in
a sample of series of r = 100 experiments, ν – number of local optima unveiled; Exp. – number
of experiments conducted; K̄ and ν are calculated over solutions with minimum number of
routes; tests are ordered according to P2 column). Note that probability P2 is a product of P1
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(P3 = 0.559). As can be seen in Fig. 12 there are many solutions of test R105 located at small
distances d from the minimum. Clearly, such a dense distribution of good quality solutions
surrounding the optimum one, facilitates the gradual improvements of the configuration of a
current solution during the process of simulated annealing. In contrast, there are not many
neighbor solutions close to the minima for tests R112, R211, RC202 and R102 (see Figs. 5-7 and
Fig. 11). Each of these minima belongs to a “small valley” of solutions which occurs away
from the “big valley” structure. As the result, reaching those minima from an arbitrary initial
solution by a process of small enhancements is not easy, and sometimes not possible at all.
The plots in Fig. 13 and 14 show the difficulty of 39 tests by Solomon. For the tests: R104,
R112, RC101, RC105, RC106, both probabilities (P1, P2 in Fig. 13, and P1, P3 in Fig. 14) are less
than 0.5. Thus these tests can be classified as the most difficult to solve in Solomon’s set.

Taking advantage of landscape properties
In this paragraph we ponder how the features of the fitness landscape can be exploited to
improve the performance of the parallel simulated annealing algorithm solving the VRPTW
problem. Boese et al. (7) proposed an adaptive multi-start algorithm for the traveling salesman
problem. It consists of two phases. In the first, initial phase, a set of R random local minima
is computed. In the second phase, which is executed a specified number of times, based on
the k (k ≤ R) best local minima found so far, an adaptive starting solution is constructed. This
solution is then improved A times using the greedy descent algorithm, what results in a set
of k + A local minima. From this set, the k best minima are selected, a new adaptive starting
solution is formed, and the second phase is repeated. An adaptive starting solution is created
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Fig. 15. Average number of distinct solutions K̄ observed in a sample of series of r = 100
experiments vs. number of unveiled local optima ν for 39 Solomon’s tests (for reference, solid
line plots Eq. 14)

Test P1 P2 P3 K̄ ν Exp.
R104 0.003 0.002 0.001 12.00 15 41600
R112 0.065 0.011 7 · 10−4 87.00 399 9200
R110 0.579 0.259 0.102 60.91 5486 60600
R108 0.940 0.442 0.008 95.20 2971 4900
R111 0.654 0.472 0.078 65.73 4106 38700
R109 0.703 0.492 0.195 30.61 2435 61400
R107 0.926 0.566 0.017 80.67 4705 19400
R103 0.909 0.873 2 · 10−4 98.83 3384 4500
R106 1.000 0.908 0.008 90.57 17523 72200
R105 1.000 0.999 0.559 14.40 185 9100
R101 1.000 1.000 0.006 95.41 12488 56000
R102 1.000 1.000 2 · 10−5 99.98 44773 48600
R211 0.939 0.071 0.013 71.07 1028 4700
R207 0.989 0.249 0.084 78.44 5420 23300
R210 1.000 0.416 0.058 70.71 8031 68400
R203 1.000 0.559 0.006 96.91 3734 5300
R204 1.000 0.745 0.216 48.60 1789 10400
R208 1.000 0.769 0.008 75.41 9850 71100
R202 1.000 0.878 0.402 39.11 3070 37200
R209 1.000 0.970 0.433 21.31 279 4200
R206 1.000 0.987 0.049 62.34 854 4400
R205 1.000 0.998 0.997 1.28 36 36500
R201 1.000 1.000 0.317 10.69 72 4500

RC106 0.195 0.141 0.124 11.68 45 22700
RC101 0.336 0.300 0.291 4.91 70 33300
RC105 0.357 0.355 0.178 9.00 69 8900
RC108 1.000 0.634 0.285 42.60 3192 46800
RC104 1.000 0.692 0.031 89.85 15842 40100
RC102 0.777 0.743 0.404 11.51 664 76800
RC103 1.000 1.000 0.022 46.73 823 17700
RC107 1.000 1.000 0.036 4.72 46 15600
RC202 0.948 0.131 0.013 34.55 2387 56000
RC203 1.000 0.645 0.043 50.23 2121 25600
RC206 1.000 0.890 0.273 10.79 351 27800
RC205 1.000 0.911 0.115 22.92 904 42100
RC207 1.000 0.937 0.212 8.89 270 22000
RC201 1.000 0.958 0.362 12.77 472 50100
RC208 1.000 0.971 0.014 13.06 401 18700
RC204 1.000 0.999 0.022 28.86 538 68300

Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)
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Table 4. Selected statistical measures of fitness landscapes P1 – probability that solution has
minimum number of routes, P2 – probability that solution has minimum number of routes
and minimum distance allowing 1% accuracy, P3 – probability that solution is the best-known
or best-achieved, K̄ – average number of distinct solutions observed in a sample of series
of r = 100 experiments, ν – number of local optima unveiled (K̄ and ν are calculated over
solutions with minimum number of routes; tests are ordered according to P2 column)



out of as many frequently occurring edges within the best local minima (salesman’s tours) as
possible, because it is believed that if the “big valley” structure holds, then very good solutions
are located near other good solutions.
Boese et al.’s approach cannot be directly used for the VRPTW problem, since its instances
may not have the “big valley” structure (see Fig. 9 and 10). Moreover, an initial solution is
not enhanced in simulated annealing into a better local minimum, like in greedy descent.
It is rather a starting point for a random walk which ends up at some local optimum. The
correlation between the quality of this optimum and the quality of the initial solution where
the search began is quite weak.
However a shape of the fitness landscape provides some insight into the procedure which
finds the set of neighbors N(X) of a current solution X (see section 3). Figs. 6 and 7 indicate
that the optimum solution can be a member of a “small valley” of solutions whose distances
from all other solutions—measured by d—are large. Therefore in order to reach any solution
in such an isolated “valley”, the procedure finding the neighbors should create them through
deep modifications of a current solution. This gives some guarantee that both close and distant
neighbors will be constructed with equal probability.
The information concerning the ruggedness of the fitness landscape is used to establish the
initial temperature of annealing in our parallel algorithm, what is a standard practice. Since
the algorithm consists of two phases, the temperature T0, f is computed at the beginning of
each phase ( f = 1,2). The procedure finding a neighbor solution is executed a specified num-
ber of times and the average increase of solution cost ∆ is computed. The initial temperature
T0, f is fixed in such a way that the probability of worsening the solution cost by ∆ in the first
annealing step: e−∆/T0, f , is not larger than a predefined constant—in our case 0.01 (15). If this
probability is too large then the convergence of simulated annealing is slow.

6. Concluding remarks

The fitness landscape is a useful notion in discrete optimization. It increases the understand-
ing of processes which happen during optimization and helps to improve the performance
of optimization algorithms. The experiments conducted for the VRPTW benchmarking tests
by Solomon showed that the optimum solution can be located inside a “small valley” placed
far away from the “big valley” containing the predominant number of solutions. In order to
be able to find such an optimum one should assure that among the neighbors of a current
solution built during an optimization process, there are not only the close neighbor solutions
but also the distant ones. At the beginning of the process of simulated annealing the initial
value of the temperature has to be fixed. It is usually done by taking into account the degree
of ruggedness of the fitness landscape of a problem instance being solved. Statistical mea-
sures of the fitness landscape can be helpful in establishing the difficulty of instances of the
problem. The analysis of this difficulty has several facets. One may ask how hard is to find
the exact solution to the problem. In this case the key role plays the number of local optima
occurring in the landscape. This number can be estimated by detecting distinct solutions in
a series of experiments. The larger is the numer of these solutions, the more local optima
are present in the landscape, and the problem instance is harder to solve. If one wants to
solve the problem with some accuracy, then the smoothness of the landscape is crucial. An
indicator here can be the value of τ̄ = (ȳ − ymin)/ymin which exhibits the shift of the average
cost ȳ of solutions from ymin attained by solving the problem repeatedly. For two-objective
minimization problems, like the VRPTW, one can ask what are the probabilities that in a final
solution produced by an optimization algorithm both objective functions are minimized, or

stay within some accuracy limits. For example, we found that among the VRPTW tests these
probabilities are the smallest for test R104, and the largest for test R205. Last but not least,
the amenability of the problem and its instances for parallelization can be investigated. If the
simulated annealing paradigm is used, then shortening the parallel execution time in order to
get speedup, decreases the chains of steps of free exploration of the solution space carried out
by processes. However short chains cause deterioration of quality of search results, because
the convergence of simulated annealing is relatively slow. This difficulty can be alleviated
by making processes co-operate. For this goal a suitable scheme of co-operation and its fre-
quency are to be devised. It follows from our experiments that solving most of the VRPTW
tests can be accelerated by using up to 20 processes. However for some tests (group III, see
subsection 4.2) solutions of best accuracy are obtained for less than 20 processes. We believe
that this issue requires further investigation.
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(IEEE Conference Publishing Services).

[14] Czech, Z.J., and Wieczorek, B., Frequency of co-operation of parallel simulated annealing
processes, Proc. of the 6th Intern. Conf. on Parallel Processing and Applied Mathematics
(PPAM 2005), (September 11–14, 2005), Poznań, Poland, Springer LNCS 3911/2006, 43–
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