






























































































































































































































































































×

×



×

×







































































 



 



















° ° °

° °
°



° ° °

° °
°



















 



 

























































































































0

Electron transport effect
on optical response of

quantum-cascade structures

Mykhailo Klymenko and Oleksiy Shulika
Kharkov National University of Radio Electronics

Ukraine

Igor Sukhoivanov
University of Guanajuato

Mexico

1. Introduction

The quantum-cascade laser is an unique source of the THz laser radiation operated in
continuous-wave and pulse regimes [Gmachl et al (2001)]. History of these lasers counts more
than ten years. However, many aspects of the carrier transport and interaction with light field
are still unclear. Very important question concerning physics of the quantum-cascade struc-
tures (QCS) is the following: which kind of transport, coherent or incoherent, is prevailed in
QCS? There were many discussions about the problem, and several attempts to estimate kind
of transport were successful especially [Iotti et al (2001)],[Weber et al (2009)]. The answer on
this question depends on conditions of QCS operation. For example, the coherent electron
transport is of interest in the non-equilibrium regime at femtosecond and picosecond time
intervals. The incoherent transport is prevalent at the high excitation level in the stationary
quasi-equilibrium regime. In both cases, the electron transport influence on optical properties
of the device. In this connection, the development of the theory for coherent and incoherent
electron transport regimes, included many-body effects and light-matter interactions in QCS,
is of actual interest.
In this chapter, we provide modeling of optical and transport properties of QCS uncover-
ing influence of the electron transport on optical characteristics. Lasing, light absorption and
spontaneous emission in QCS are accompanied and affected by many complicated transport
processes such as electron diffusion, drift, tunneling, recombination, generation, capture and
escape mediated by electron-electron, electron-phonon and electron-photon scattering events
[Piprek (2005)]. Most of these effects can be treated within the quasi-equilibrium approxi-
mation. However, the approximation is not valid at ultrashort time intervals which are of
interest nowadays due to rapid development of the femtosecond spectroscopy for semicon-
ductor nanostructures [Rulliere (2005)]. Other area demanding consideration of ultra-fast
non-equilibrium processes is THz emitting of QCS in the pulse regime; that is under rapid
development currently due to promising applications in fundamental and applied science
[Lee (2009)].
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Fig. 1. Coherent electron transport between two quantum wells with subband structure via
tunneling

To predict output optical characteristics of the quantum-cascade lasers, it is necessary to simu-
late dynamics of electrons, holes and photons in the non-equilibrium state. The peculiarity of
QCS is that the system is related to the open quantum systems. Moreover, the structure is char-
acterized by pronounced non-equilibrium regime of operation. There are several approaches
to modelling the transport in such a system. One of them is based on non-equilibrium Green’s
functions [Lee et al (2002)], another one is based on the density matrix theory [Iotti et al (2001)].
These two are not the only approaches to modeling transport in QCS. For example, rate equa-
tions are widely used in connection to this problem [Vukmirović (2005)]. However, these two
methods are most rigorous and controllable. They can be realized at various levels of approx-
imation and allow to estimate approximation error. In ideal case, they do not require any
fitting parameter and give results ab initio. Our consideration in this chapter is based on the
density matrix theory. As a result, we will derive kinetic equations describing dynamics of
carriers, polarization and inter-quantum-well tunneling currents for non-equilibrium regime
of the operation, and then, we discuss main features of transport and optical properties of
QCS.

2. Coherent and incoherent transport

2.1 Coherent transport
In this section, we will represent theoretical instruments proper for high accuracy modeling
of the electron transport in QCS. Up to date, many efforts have been made and much progress
has been achieved in modeling of the electron transport in QCS. Especially, it concerns station-
ary operating regime. Recently, advance in modeling of femtosecond optical response of QCS
has been reached [Iotti et al (2001)], [Weber et al (2009)]. Most successful approaches to elec-
tron transport modeling have been realized applying the density matrix theory [Meier (2007)].
This theory is especially suitable for the large open quantum systems with many-body inter-
actions. Therefore, we apply exactly the density matrix theory to realize systematic treatment
of the coherent and incoherent electron transport in semiconductor nanostructures.
Here, the simplest model heterostructure consisting of two interacting quantum wells is con-
sidered to make statements compact and clear. The sketch of energy levels for such a struc-
tures is shown in Fig. 1.

Electron states in each quantum well are characterized by single-band structure when quan-
tum wells are uncoupled. The band structure, shown in Fig. 1(b), can be analytically expressed
as:

ε1,k = E1 +
h̄2k2

2m1
, (1)

ε2,k = E2 +
h̄2k2

2m2
= E1 + ∆ +

h̄2k2

2m2
. (2)

The electron in each quantum well is characterized by continuous energy spectra and has
states |1, k〉 in one quantum well and |2, k〉 in another one. The number in the ket vector
corresponds to the subband kind and the letter is the in-plane electron wave vector limited
by the 1st Brillouin zone (axial approximation is applied [Haug (2004)]). States should satisfy
completeness conditions [Meier (2007)]:

1̂ = ∑
j

∑
k
|j, k〉〈k, j|. (3)

In practice, each quantum well and barrier layer can be made of different semiconductor ma-
terials. This means that each quantum well can be characterized by own width, depth and
effective masses. That is why, we consider subband dispersion curves which are shifted rela-
tive each other by some value ∆ and characterized by different curvature.
It is well known that, if one turns on the interaction between quantum wells, the quantum
states of whole system are changed and each state of the system is splitted into bound and
antibound state. That is the picture for the stationary regime. However, the case of interest
is the time evolution of the system that is prepared in some non-stationary state in the initial
time moment. Even though quantum system is prepared in some defined stationary state,
following artificial modification of the system (by measurement event for example) can change
the energy spectrum and the ininial state is not stationary anymore. This leads to nontrivial
dynamical evolution of observables. Considered here open quantum systems are interacted
with environment that leads to modifications of its parameters and dynamical evolution of
observables. Therefore, we focus on the case when the sysatem is prepared in the stationary
state of noninteracted quantum wells with following turning on of interactions.
The Hamiltonian for considered model system can be represented in the form:

Ĥ = Ĥ1 + Ĥ2 + Ĥint, (4)

here: Ĥ1 is Hamiltonian for the first quantum well, Ĥ2 is Hamiltonian for the second quantum
well and Ĥint describes the interaction between quantum wells.

Acting by the unity operator from left and right sides on the Hamiltonian, one gets:

Ĥ = 1̂ · Ĥ · 1̂ = ∑
k

(
ε1,k|1, k〉〈k, 1|+ ε2,k|2, k〉〈k, 2|

)
+ ∑

i #=j
∑
k

hij|i, k〉〈k, j|, (5)

where: hij is the coupling coefficient describing the intensity of interactions between quantum
wells.

As far as considered structure is the open quantum system, we use trusted instrument from
the quantum statistical physics that is the density operator:
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Fig. 2. Time-dependent electron distribution function for a) the left quantum well and b) right
quantum well having the same band structure

ρ̂ = |t〉〈t|. (6)

The density operator can be represented in the matrix form using defined system of basis
functions. As an example, we build matrix representation of the density operator using basis
|j, k〉 defined above:

ρk = 〈k, i|ρ̂|j, k〉 =
(

ρ11 ρ12
ρ21 ρ22

)
=

(
|〈k, 1|t〉|2 〈k, 1|t〉〈t|2, k〉

〈k, 2|t〉〈t|1, k〉 |〈k, 2|t〉|2
)

. (7)

Diagonal elements describe the probability of finding the electron at the time t in some de-
fined energy band. Nondiagonal elements corresponds to some kind of correlations which
give probability of the particle transition between states at the time t. The non-diagonal ma-
trix elements are related to microscopic polarization or currents. In turn, the polarization is
directly related to the electrical current according to classical electrodynamics as well as quan-
tum one.
Time evolution of the density operator is defined by the Liouville-von Neumann equation
[Meier (2007)]:

ih̄
∂ρ

∂t
= [H, ρ̂]+. (8)

In the Heisenberg representation, this equation is coincided with the Heisenberg equation
for time-dependent operators. Eq. 8 can be written related to each element of the density
matrix using quantum-mechanical averaging with the basis defined above . Resulting system
of equations reads:

ih̄
∂ρ11,k

∂t
= h12,k

(
ρ21,k − ρ12,k

)
, (9)

ih̄
∂ρ22,k

∂t
= −h12,k

(
ρ21,k − ρ12,k

)
, (10)

ih̄
∂ρ12,k

∂t
=

(
ε2,k − ε1,k

)
ρ21,k + h12,k.

(
ρ22,k − ρ11,k

)
(11)

(a) (b)

Fig. 3. Time-dependent electron distribution function for a) the left quantum well and b) right
quantum well having bands shifted on 30 meV relative to each other

These are ordinary differential equations also known as kinetic equations. The number of
equations is equal 3Nk, where Nk is the number of discretization points in k-space. Eqs. (9)-
(11) are written for some defined point k in the Brillouin zone. To analyze electron transport
in our simple model system, we should solve this system of equations analytically or numer-
ically. Here, we choose the second way to show general approach to such a mathematical
problem. The fourth order Runge-Kutta method is applied to solve the problem. This method
is stable and accurate enough to satisfy our requirements on CPU time and computational ac-
curacy. As far as we deal with first order ordinary differential equations, the initial condition
should be added. We assume that, at the initial time, all electrons are located in the 1st nonin-
teracting quantum well with some defined distribution function. Initial distribution is chosen
to be the Fermi-Dirac distribution with some defined temperature and Fermi level (T = 300
K and Ef = ε1,0). Solutions of kinetic equations are time dependencies of microcurrents or
polarizations and electron distribution functions for each band and each value of the in-plane
wave vector k. At the initial time, interaction between quantum wells is turning on that is
reflected in the coupling coefficient:

h12,k =

{
0, t < 0;
const, t ≥ 0.

(12)

Let us consider first the effect of band structure on electron transport. Solving of the equa-
tions for two identical subbands, one obtains the result shown in Fig.2. Electrons oscillate
between quantum wells through the barrier. The frequency of oscillations is determined only
by the coupling coefficient. At some instant times, all electrons totaly depopulate the band in
a quantum well transiting to another one.
In the case, when bands have the same shape and are shifted relative to each other, the electron
distribution function is characterized by the time dependence shown in Fig. 3. The mismatch
of energy levels leads to decreasing of electrons amount passing through the barrier. Most
of particles do not leave the state occupied at the initial time moment. In particular case
represented in Fig. 3, band mismatch is equal 30 meV and the maximal fraction of passed
particles amounts 10 %.
Also, changes of the oscillation frequency is observed. Thus, the frequency of oscillations is
dependent on the band mismatch as well as coupling coefficient. Explicit dependence could be
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Fig. 4. Time-dependent electron distribution function for a) the left quantum well and b) right
quantum well having bands with different effective masses

derived from equations (9)-(11). This can be realized by Fourier transformation of equations
with following algebraic manipulations. The result reads:

ω =
1

2h̄

√
∆2 + 4h12,k, (13)

here ∆ is the band mismatch shown in Fig.1.

Another approach to obtaining this result is solving of the stationary Schrödinger equation for
coupled quantum wells. The oscillation frequency is proportional to splitting of energy levels
caused by resonant tunneling [Meier (2007)].
As far as each quantum well can be characterized by own width, depth and effective masses,
we will provide investigation of the coherent electron transport between bands with different
curvature of dispersion dependencies. As an example, let us consider two bands shown in
Fig. 1(b) having parameters E1 = 0.03, E2 = 0, m1 = 5m and m2 = m.
Band dispersion curves are crossed at the point k = 0.27nm−1. The most part of electrons are
propagated with this non-zero in-plane wave vector and oscillation frequency is dependent
on the electron in-plane wave vector (see Fig. 4(b)). The lowest frequency corresponds to
minimal gap between bands. That is in agreement with formula (13).

2.2 Incoherent transport
All cases of electron transport considered above are related to the coherent electron transport
due to any decoherence effect has not been included in the consideration yet. Decoherence
can be caused by scattering events leading to relaxation into the stationary equilibrium state.
Thus, one should include additional term in the Hamiltonian (4) describing scatterings.

Ĥ = Ĥ1 + Ĥ2 + Ĥint + Ĥscatt. (14)

It is necessary to note that the single-particle formalism used above is not applicable directly
to scattering processes, because such processes are essentially many-body effects. However,
some approximation can conserve the problem be single-particle. For example, one can apply
the mean-field approximation to the many-body problem. This approach is often used in

(a) (b)

(c) (d)

Fig. 5. Time evolution of the electron distribution function for a) γ = 10ps, b) γ = 1.5ps and
c) γ = 0.5ps and d) k = 0, band mismatch ∆ = 0.03eV and dephasing times taken from the
previous case.

connection with phenomenological relaxation and dephasing times describing influence of
many-body effects on single-particle equations.
Formally, effect of the scattering term in (14) can be represented in Eqs. (9)-(11) by additional
terms at the right side of kinetic equations.

ih̄
∂ρ11

∂t
= h12 (ρ21 − ρ12) +

∂ρ11
∂t

∣∣∣∣
scatt

, (15)

ih̄
∂ρ22
∂t

= −h12 (ρ21 − ρ12) +
∂ρ22

∂t

∣∣∣∣
scatt

, (16)

ih̄
∂ρ12
∂t

= (ε2 − ε1) ρ21 + h12 (ρ22 − ρ11) +
∂ρ12

∂t

∣∣∣∣
scatt

, (17)

These additional terms can be computed ab initio using many-body theory and a set of ap-
proximations which will be represented in the next section. Here, we use phenomenological
relaxation and dephasing times to investigate many-body effects. In this case, Eqs. (15)-(17)
are modified as follows:
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These additional terms can be computed ab initio using many-body theory and a set of ap-
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relaxation and dephasing times to investigate many-body effects. In this case, Eqs. (15)-(17)
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Fig. 6. Microscopic currents for a) γ = 10ps, b) γ = 1.5ps and c) γ = 0.5ps

ih̄
∂ρ11

∂t
= h12 (ρ21 − ρ12)−

i(ρ11 − f1)
τ

, (18)

ih̄
∂ρ22

∂t
= −h12 (ρ21 − ρ12)−

i(ρ22 − f2)
τ

, (19)

ih̄
∂ρ12

∂t
= (ε2 − ε1) ρ21 + h12 (ρ22 − ρ11)−

iρ12
γ

. (20)

here γ is the dephasing time, τ is the relaxation time, f1 and f2 are stacionary electron distri-
butions in each quantum well.

Relaxation and dephasing times can be determined from experimental data (optical pump-
probe experiments [Vu (2006)]). If the total number of electrons is time-independent, the re-
laxation times tend to infinity and the last terms in Eq.(18) and (19) can be neglected. This
is the case considered in this section. Thus, we will investigate the effect of dephasing only.
Time dependencies of electron distribution function are shown in Fig. 5 for different dephas-
ing times. Corresponding microscopic currents are shown in Fig. 6.
Microscopic currents reflects the probability of electron transition from one quantum well to
another. Dephasing leads to decay of oscillations and becoming of the stationary distribution
of electrons. If dephasing is absent (dephasing time is very high), the electron transport is
pure coherent (see Fig. 5(a)). In Fig. 5(c), another limit case is shown when the dephasing
time is very small. In this case, the transient process require few time and stationary regime
becomes very fast. The transient process occurs because the quantum system is prepared in
non-stationary state at the initial time, and it tends to the stationary state. Scattering events
allow energy quanta exchange between particles leading to the relaxation into the stationary
state. As follows from Fig. 6(c), particle exchange between quantum wells occurs at short time
interval when the dephasing time is great.
The evolution of the electron distribution function for zero in-plane wave vector (k=0) is
shown in Fig. 5(d) for the case when bands are shifted relative each other by 30 meV. In
this case, dephasing times are the same as in previous examples. Dephasing leads to leveling
of electron concentration in each quantum well and becoming of the stationary state. Oscilla-
tions of the electron distribution function are decayed with increasing of the dephasing time.
The result of dephasing absence is endless oscillations of the electron distribution function
and asymmetrical population of subbands.

3. Optical response

3.1 Model structure and its Hamiltonian
As we did in the previous section, we introduce here the new model structure that reflects
main effect in the QCS and is still simple enough for modeling and analysis. Effects of interest
are light-matter interactions together with transport processes in the structure.
In this section, we focus our attention on optical processes in the QCS with vertical transitions
[Faist (1995)]. Term "vertical transitions" means that photon assisted tunneling is excluded
from the consideration. The QCS have N optical-sensitive active regions which interact with
each other via exchanging of electrons through injectors. The Hamiltonian of the system reads:

H =
N

∑
j=1

Hj +
N−1

∑
j=1

Hj,j+1 + HL + HR + HL,1 + HN,R. (21)

The first sum in RS contains electron kinetic energy, electron scattering and light-matter in-
teraction terms for all active regions. The second sum describes electron transport through
injectors. The term HL and HR corresponds to the energy of regions terminated considered
planar structure at the both sides. Finally, terms HL,1 and HN,R describe exchanging of elec-
trons between the structure and terminal regions. Such expression of Hamiltonian is quite
natural if all optical transitions appear inside active regions. This is our case because the QCS
with vertical transitions is under consideration [Faist (1995)]. The terminal regions shown in
Fig. 7(c) as circles is implemented artificially. These regions include the whole rest space of the
system except some considered region been of interest. Necessity of such regions is caused
by influence of environment in the open quantum system. Modeling of all periods of QCSs
requires much computational resources. So, the second reason of terminal regions applica-
tion is the approximation allowing to consider dynamical behavior of electrons only in one or
several periods. In this case, whole rest structure is assumed to be in the quasi-equilibrium
state, and it is contained in the terminal regions. We use approximation that the terminal re-
gions are characterized by some kind of stationary distribution function. We call them bathes
in analogy to statistical mechanics. Alternative approach is application of periodic boundary
conditions [Lee et al (2002)].
In this section, we consider only one period of the QCS. Corresponding model structure is
shown in Fig. 7(c). It contains only one active region surrounded by two injectors and two
terminal regions. The Hamiltonian for the model structure consist of five terms in the simplest
case, when many-body effects are not considered:

H = HL + HR + Ha + HLa + HaR, (22)

where HL is the energy of the left reservoir, HR is the energy of the right reservoir, Ha is
the energy of the active region, HLa and HaR describe transitions between reservoirs and the
active region.

In the active regions, light-matter interactions proceed involving electron-phonon, electron-
electron and electron-impurity scatterings. Thus, we should include into consideration many-
body effects to simulate the optical response of the semiconductor media correctly. The ap-
proximations that all many-body effects appear in the active region is applied. In this case,
the Hamiltonian for the active region reads:

Ha = Hkin + HI + Hph−el + Hel−el + Hel−imp, (23)
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here γ is the dephasing time, τ is the relaxation time, f1 and f2 are stacionary electron distri-
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interval when the dephasing time is great.
The evolution of the electron distribution function for zero in-plane wave vector (k=0) is
shown in Fig. 5(d) for the case when bands are shifted relative each other by 30 meV. In
this case, dephasing times are the same as in previous examples. Dephasing leads to leveling
of electron concentration in each quantum well and becoming of the stationary state. Oscilla-
tions of the electron distribution function are decayed with increasing of the dephasing time.
The result of dephasing absence is endless oscillations of the electron distribution function
and asymmetrical population of subbands.
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As we did in the previous section, we introduce here the new model structure that reflects
main effect in the QCS and is still simple enough for modeling and analysis. Effects of interest
are light-matter interactions together with transport processes in the structure.
In this section, we focus our attention on optical processes in the QCS with vertical transitions
[Faist (1995)]. Term "vertical transitions" means that photon assisted tunneling is excluded
from the consideration. The QCS have N optical-sensitive active regions which interact with
each other via exchanging of electrons through injectors. The Hamiltonian of the system reads:
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teraction terms for all active regions. The second sum describes electron transport through
injectors. The term HL and HR corresponds to the energy of regions terminated considered
planar structure at the both sides. Finally, terms HL,1 and HN,R describe exchanging of elec-
trons between the structure and terminal regions. Such expression of Hamiltonian is quite
natural if all optical transitions appear inside active regions. This is our case because the QCS
with vertical transitions is under consideration [Faist (1995)]. The terminal regions shown in
Fig. 7(c) as circles is implemented artificially. These regions include the whole rest space of the
system except some considered region been of interest. Necessity of such regions is caused
by influence of environment in the open quantum system. Modeling of all periods of QCSs
requires much computational resources. So, the second reason of terminal regions applica-
tion is the approximation allowing to consider dynamical behavior of electrons only in one or
several periods. In this case, whole rest structure is assumed to be in the quasi-equilibrium
state, and it is contained in the terminal regions. We use approximation that the terminal re-
gions are characterized by some kind of stationary distribution function. We call them bathes
in analogy to statistical mechanics. Alternative approach is application of periodic boundary
conditions [Lee et al (2002)].
In this section, we consider only one period of the QCS. Corresponding model structure is
shown in Fig. 7(c). It contains only one active region surrounded by two injectors and two
terminal regions. The Hamiltonian for the model structure consist of five terms in the simplest
case, when many-body effects are not considered:

H = HL + HR + Ha + HLa + HaR, (22)

where HL is the energy of the left reservoir, HR is the energy of the right reservoir, Ha is
the energy of the active region, HLa and HaR describe transitions between reservoirs and the
active region.

In the active regions, light-matter interactions proceed involving electron-phonon, electron-
electron and electron-impurity scatterings. Thus, we should include into consideration many-
body effects to simulate the optical response of the semiconductor media correctly. The ap-
proximations that all many-body effects appear in the active region is applied. In this case,
the Hamiltonian for the active region reads:

Ha = Hkin + HI + Hph−el + Hel−el + Hel−imp, (23)
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Fig. 7. Electron transitions (a), density matrix (b) and configuration (c) for the model structure

where: Hkin is the kinetic energy term; HI is the light-matter interactions term; Hph−el is the
photonelectron scatterings term; Hel−el is the electron-electron interactions term; Hel−imp is
the electron impurities scatterings term.

In this chapter, we consider electron-electron interactions at the Hartree-Fock level of approx-
imations. All other interactions are taken into account phenomenologically via the dephasing
time. In the frame of many body theory, each term in (22) and (23) is represented as a prod-
uct of field operators. They could be expanded in some set of single-particle basis functions.
Expansion coefficients are creation/annihilation operators. Thus, if the basis is known, the
problem can be formulated in terms of creation/anihilation operators:

Hkin = ∑
i,k

εi,ka†
i,kai,k , (24)

HL = ∑
κ1

εκ1 L†
κ1

Lκ1 , (25)

HR = ∑
κ2

εκ2 R†
κ2

Rκ2 , (26)

HLa = ∑
i,k,κ1

(
hi,k,κ1 L†

κ1
ai,k + hκ1,i,ka†

i,k Lκ1

)
, (27)

HaR = ∑
i,k,κ2

(
hi,k,κ2 R†

κ2
ai,k + hκ2,i,ka†

i,kRκ2

)
, (28)

HI = ∑
k

(
d12a†

1,ka2,k + d∗21a†
2,ka1,k

)
, (29)

Hel−el = ∑
i, j, i′ , j′ ,

k, k′ , q #= 0

Vi,j,i′ ,j′
q a†

j′ ,k′+qa†
i′ ,k−qai,kaj,k′ . (30)

here:
a†

i,k is the creation operator for the in-plane wave vector k and subband i in the active
region

ai,k is the annihilation operator for the in-plane wave vector k and subband i in the active
region

L†
κ1

is the creation operator for the in-plane wave vector κ1 in the left bath
Lκ1 is the annihilation operator for the in-plane wave vector κ1 in the left bath
R†

κ2
is the creation operator for the in-plane wave vector κ2 in the right bath

Rκ2 is the annihilation operator for the in-plane wave vector κ2 in the right bath
d12 is the dipole matrix element
hi,k,κ1 is the coupling coefficient between the active region and left bath
hi,k,κ2 is the coupling coefficient between the active region and right bath
Vi,j,i′ ,j′

q is the Coulomb potential
k is the in-plane wave vector for the active region
κ1 is the in-plane wave vector for the left bath
κ2 is the in-plane wave vector for the right bath
q is the wave vector q = |k − k′|
i, j, i′, j′ are subband indexes for the active region, i, j, i′, j′ = 1, 2

In the active region, we assume presence of only two subbands while bathes are characterized
by single bands. Therefore, states in the active region have the quantum number, additional
to wave vector, which is subband index i = 1, 2. Coupling coefficients defines properties of
the transition regions between the active region and bathes. Such a transition region can be
single injection barrier separating the active region and injector. Also, the whole injector can
be considered as an effective barrier. The width for such a barrier is dependent on the en-
ergy and momentum of propagated particles. This approximation can be applied if electrons
propagate through the injector in the ballistic transport regime (without inelastic scattering).
The transmission dependence on the electron energy and momentum have been computed in
[Klymenko et al (2008)] for layered structures in the ballistic limit.
The density matrix elements can be represented using creation and annihilation operators:

ρij,k = 〈a†
i,kaj,k〉. (31)

The structure of the density matrix is represented in Fig. 7(a) and 7(b). Matrix elements at the
main diagonal are probabilities of electron finding at some defined state. In other words, these
elements are electron distribution functions for subbands in the active region and bathes. El-
ements at upper and lower subdiagonals describe transitions between subbands. The density
matrix has tridiagonal structure due to the chain configuration of the transitions. It means
that electron can not transit from one bath to another one avoiding the active region. That
is undoubtedly an approximation and the probability of such an even exists. However, the
approximation is good enough that is proved by computations of probabilities for these tran-
sitions. Squares in Fig. 7(b) indicate density matrix elements corresponding to the transitions
between the active region and bathes. Circles correspond to transitions between subbands
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Fig. 7. Electron transitions (a), density matrix (b) and configuration (c) for the model structure

where: Hkin is the kinetic energy term; HI is the light-matter interactions term; Hph−el is the
photonelectron scatterings term; Hel−el is the electron-electron interactions term; Hel−imp is
the electron impurities scatterings term.

In this chapter, we consider electron-electron interactions at the Hartree-Fock level of approx-
imations. All other interactions are taken into account phenomenologically via the dephasing
time. In the frame of many body theory, each term in (22) and (23) is represented as a prod-
uct of field operators. They could be expanded in some set of single-particle basis functions.
Expansion coefficients are creation/annihilation operators. Thus, if the basis is known, the
problem can be formulated in terms of creation/anihilation operators:

Hkin = ∑
i,k

εi,ka†
i,kai,k , (24)

HL = ∑
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Lκ1 , (25)

HR = ∑
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κ2

Rκ2 , (26)

HLa = ∑
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)
, (27)
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)
, (28)

HI = ∑
k

(
d12a†

1,ka2,k + d∗21a†
2,ka1,k

)
, (29)

Hel−el = ∑
i, j, i′ , j′ ,

k, k′ , q #= 0

Vi,j,i′ ,j′
q a†

j′ ,k′+qa†
i′ ,k−qai,kaj,k′ . (30)

here:
a†

i,k is the creation operator for the in-plane wave vector k and subband i in the active
region

ai,k is the annihilation operator for the in-plane wave vector k and subband i in the active
region

L†
κ1

is the creation operator for the in-plane wave vector κ1 in the left bath
Lκ1 is the annihilation operator for the in-plane wave vector κ1 in the left bath
R†

κ2
is the creation operator for the in-plane wave vector κ2 in the right bath

Rκ2 is the annihilation operator for the in-plane wave vector κ2 in the right bath
d12 is the dipole matrix element
hi,k,κ1 is the coupling coefficient between the active region and left bath
hi,k,κ2 is the coupling coefficient between the active region and right bath
Vi,j,i′ ,j′

q is the Coulomb potential
k is the in-plane wave vector for the active region
κ1 is the in-plane wave vector for the left bath
κ2 is the in-plane wave vector for the right bath
q is the wave vector q = |k − k′|
i, j, i′, j′ are subband indexes for the active region, i, j, i′, j′ = 1, 2

In the active region, we assume presence of only two subbands while bathes are characterized
by single bands. Therefore, states in the active region have the quantum number, additional
to wave vector, which is subband index i = 1, 2. Coupling coefficients defines properties of
the transition regions between the active region and bathes. Such a transition region can be
single injection barrier separating the active region and injector. Also, the whole injector can
be considered as an effective barrier. The width for such a barrier is dependent on the en-
ergy and momentum of propagated particles. This approximation can be applied if electrons
propagate through the injector in the ballistic transport regime (without inelastic scattering).
The transmission dependence on the electron energy and momentum have been computed in
[Klymenko et al (2008)] for layered structures in the ballistic limit.
The density matrix elements can be represented using creation and annihilation operators:

ρij,k = 〈a†
i,kaj,k〉. (31)

The structure of the density matrix is represented in Fig. 7(a) and 7(b). Matrix elements at the
main diagonal are probabilities of electron finding at some defined state. In other words, these
elements are electron distribution functions for subbands in the active region and bathes. El-
ements at upper and lower subdiagonals describe transitions between subbands. The density
matrix has tridiagonal structure due to the chain configuration of the transitions. It means
that electron can not transit from one bath to another one avoiding the active region. That
is undoubtedly an approximation and the probability of such an even exists. However, the
approximation is good enough that is proved by computations of probabilities for these tran-
sitions. Squares in Fig. 7(b) indicate density matrix elements corresponding to the transitions
between the active region and bathes. Circles correspond to transitions between subbands



within the active region. Hereafter, non-zero density matrix elements are expressed in terms
of creation/anihilation operators:

Pk = 〈a†
2,ka1,k〉, (32)

ni,k = 〈a†
i,kai,k〉, (33)

nL
κ1 = 〈L†

κ1Lκ1〉, (34)

nR
κ2 = 〈R†

κ2Rκ2〉, (35)

Jκ1,i,k = 〈L†
κ1ai,k〉, (36)

Jκ2,i,k = 〈R†
κ2ai,k〉. (37)

In consecutive order, these are the microscopic polarization, electron distribution function in
the active region, electron distribution function in the left and right bath respectively, and
microscopic polarizations caused by currents from the left bath to the active region and from
the active region to the right bath.
To obtain information about the time evolution of any operator product or density matrix
element, one should write and then solve the system of Heisenberg equations.

− ih̄
Pk
dt

= 〈
[

H, a†
2,ka1,k

]
〉, (38)

− ih̄
dni,k

dt
= 〈

[
H, a†

i,kai,k

]
〉, (39)

− ih̄
nL

κ1
dt

= 〈
[

H, L†
κ1Lκ1

]
〉, (40)

− ih̄
nR

κ1
dt

= 〈
[

H, R†
κ1Rκ1

]
〉, (41)

− ih̄
Jκ1,i,k

dt
= 〈

[
H, L†

κ1ai,k

]
〉, (42)

− ih̄
Jκ2,i,k

dt
= 〈

[
H, R†

κ2ai,k

]
〉. (43)

3.2 Kinetic equations
After evolution of commutators in (38)-(43), one gets following equations:

∂Pk
∂t

= −i
(
e2,k − e1,k

)
Pk − i

(
n2,k − n1,k

)
ωR,k +

∂Pk
∂t

∣∣∣∣
scatt

, (44)

∂n2,k
∂t

= −2Im
(
ωR,kP∗

k
)
+ 2Im

(
hi,k,κ1 Jκ1,i,k

)
+

∂n2,k
∂t

∣∣∣∣
scatt

, (45)

∂n1,k
∂t

= −2Im
(
ωR,kPk

)
+ 2Im

(
hi,k,κ2 Jκ2,i,k

)
+

∂n1,k
∂t

∣∣∣∣
scatt

, (46)

Jκ1,i,k
dt

= −i
(
eL,k − e2,k

)
Jκ1,i,k −

ihi,k,κ1
h̄

(
nL

κ1 − n2,k

)
+

∂Jκ1,i,k
∂t

∣∣∣∣
scatt

, (47)

Jκ2,i,k
dt

= −i
(
e1,k − eR,k

)
Jκ2,i,k −

ihi,k,κ2
h̄

(
n1,k − nR

κ2

)
+

∂Jκ2,i,k
∂t

∣∣∣∣
scatt

, (48)

nL
κ1 = f L, (49)

nR
κ2 = f R. (50)

ei,k =
εi,k
h̄

− 1
h̄ ∑

k′ #=k
Viiii
|k′−k|ni,k′ (51)

ωR,k =
d12E(z, t)

h̄
+

1
h̄ ∑

k′ #=k
Viiii
|k′−k|Pk′ (52)

here ei,k is the renormalized transition frequency; ωR,k is the renormalized Rabi frequency;
eR,k = εR,k/h̄ and eL,k = εL,k/h̄

Equations (49) and (50) reflect approximation of the stationary carrier distribution in bathes.
Thus, the kinetic equation is not necessary, and Fermi-Dirac distribution functions can be
uses for the approximation. The expressions (51) reflects the renormalization of the transi-
tion frequency due to exchange interactions. Also, electron-electron interactions lead to the
renormalization of the Rabi frequency represented by Eq. (52). Equations (44)-(46) have the
form similar to the semiconductor Bloch equations [Haug (2004)]. Dissimilarities lie in addi-
tional terms describing electron transport between the active region and bathes. Additional
equations are appeared to provide self-consistent treatment of the electron transport.
As in the previous section, we use the fourth order Runge-Kutta method to solve the problem
numericaly [Chow (1999)].

3.3 Band structure, single-particle optical response in quasi-equilibrium
Inclusion of the strain effects in the consideration leads to strong modification of the electron
dispersion as well.
Band structures of both interband and intersubband heterostructures are schematically shown
in Fig.8. The heterostructures of both kinds have additional subband structure inside the al-
lowed bands. In the interband structures the optical radiation is a result of electron transitions
from the conduction subband to the valence subband. As a result, the minimal quantum of
the energy is limited by the band gap of the quantum-well material. Curvatures of the bands
involved in the transition have very different magnitudes and, what is more important, dif-
ferent senses of curvature. It results in the joint density of states which is stepped one in this
case.
Optical transitions in the quantum-cascade heterostructures occur between subbands within
an allowed band (see Fig. 8(b)). In contrast to the interband heterostructures, the subband
structure is governed by the conduction band offset and width of the qauntum well layer.
Minimal transition energy is not limited by the fundamental band gap and can be tailored
by a material composition of the quantum well and the thickness of the quantum-well layer.
Therefore, quantum-cascade structures are widely used to achieve lasing in THz range. The
charge carriers inside the band are characterized by the effective mass The curvature of dis-
persion curves is almost the same, and their senses of curvature are coincided. It results in
the narrow joint density of states, Fig.8(b). Although difference in the curvature of the disper-
sion curves can be small, it has great influence on the optical characteristics of the quantum-
cascade structures. We have examined three cases when subbands with different curvatures
are involved in the optical transition. They are shown schematically on Fig.9, where Ef 1 and
Ef 2 are quasi-Fermi levels for corresponding subband.
Different relations between effective masses for subbands leads to different absorption spec-
tra. When m1 > m2 we have h̄ω|k=0 > h̄ω|k #=0. On the contrary, we have h̄ω|k=0 < h̄ω|k #=0
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|k′−k|ni,k′ (51)

ωR,k =
d12E(z, t)

h̄
+

1
h̄ ∑

k′ #=k
Viiii
|k′−k|Pk′ (52)

here ei,k is the renormalized transition frequency; ωR,k is the renormalized Rabi frequency;
eR,k = εR,k/h̄ and eL,k = εL,k/h̄

Equations (49) and (50) reflect approximation of the stationary carrier distribution in bathes.
Thus, the kinetic equation is not necessary, and Fermi-Dirac distribution functions can be
uses for the approximation. The expressions (51) reflects the renormalization of the transi-
tion frequency due to exchange interactions. Also, electron-electron interactions lead to the
renormalization of the Rabi frequency represented by Eq. (52). Equations (44)-(46) have the
form similar to the semiconductor Bloch equations [Haug (2004)]. Dissimilarities lie in addi-
tional terms describing electron transport between the active region and bathes. Additional
equations are appeared to provide self-consistent treatment of the electron transport.
As in the previous section, we use the fourth order Runge-Kutta method to solve the problem
numericaly [Chow (1999)].

3.3 Band structure, single-particle optical response in quasi-equilibrium
Inclusion of the strain effects in the consideration leads to strong modification of the electron
dispersion as well.
Band structures of both interband and intersubband heterostructures are schematically shown
in Fig.8. The heterostructures of both kinds have additional subband structure inside the al-
lowed bands. In the interband structures the optical radiation is a result of electron transitions
from the conduction subband to the valence subband. As a result, the minimal quantum of
the energy is limited by the band gap of the quantum-well material. Curvatures of the bands
involved in the transition have very different magnitudes and, what is more important, dif-
ferent senses of curvature. It results in the joint density of states which is stepped one in this
case.
Optical transitions in the quantum-cascade heterostructures occur between subbands within
an allowed band (see Fig. 8(b)). In contrast to the interband heterostructures, the subband
structure is governed by the conduction band offset and width of the qauntum well layer.
Minimal transition energy is not limited by the fundamental band gap and can be tailored
by a material composition of the quantum well and the thickness of the quantum-well layer.
Therefore, quantum-cascade structures are widely used to achieve lasing in THz range. The
charge carriers inside the band are characterized by the effective mass The curvature of dis-
persion curves is almost the same, and their senses of curvature are coincided. It results in
the narrow joint density of states, Fig.8(b). Although difference in the curvature of the disper-
sion curves can be small, it has great influence on the optical characteristics of the quantum-
cascade structures. We have examined three cases when subbands with different curvatures
are involved in the optical transition. They are shown schematically on Fig.9, where Ef 1 and
Ef 2 are quasi-Fermi levels for corresponding subband.
Different relations between effective masses for subbands leads to different absorption spec-
tra. When m1 > m2 we have h̄ω|k=0 > h̄ω|k #=0. On the contrary, we have h̄ω|k=0 < h̄ω|k #=0
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Fig. 8. Sketches of the band diagrams, band structures and joint DOS for two cases of inter-
band and intersubband transitions.

when m1 < m2. And, in the case of equal effective masses, one gets h̄ω|k=0 = h̄ω|k !=0. Fig.
10 contains calculated single-particle absorption spectra. Vertical line indicates the energy of
intersubband transition E12 at the center of the Brillouin zone without renormalization , i.e.
E12 = E1|k=0 − E2|k=0. Two important features are observed. Depending on the relation
between the effective masses in the subbands, maximum of the absorption get red- or blue-
shifted relative to the case of the equal effective masses. The value of the shift is about 20 meV,
what is very important in the THz range. Difference of effective masses leads to additional
broadening of the absorption spectrum and decreasing of its maximum comparing with the
case when effective masses are equal. Thus, the band structure with energy-dependent effec-
tive mass affects strongly on optical response of QCS.

3.4 Many-body effects within the Hartree-Fock approximation
In this section, we take quick look at many-body effects in the QCS at the Hartree-Fock level
of approximations. At this level of approximations, electron-electron interaction effects are
described in the frame of the mean-field approximation when only exchange interactions and
Rabi frequency renormalization are taking into account. Fig. 11 contains computed absorption
spectra for the quasi-equilibrium regime. Three cases have been considered: single-particle
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Fig. 9. Sketches of the band structures for various combinations of the effective masses in two
subbands involved in radiation transitions: a) m1 > m2; b) m1 < m2; c) m1 = m2.

Fig. 10. Single-particle absorption spectra for various combinations of the effective mass in
two subbands involved into radiation transitions.

Fig. 11. Many-body effects in the optical absorption spectrum
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Fig. 12. Optical signals in pump-probe experiments. Adapted from [Weber et al (2009)].

optical response, effect of transition energy renormalization due to the exchange contribu-
tion and all many-body effects at the Hartree-Fock level of approximation including Rabi
frequency renormalization. All these cases are attended by dephasing treated phenomeno-
logically. Presented results are evidence of high importance of many-body effects which lead
to dramatical changes in absorption spectra. In Fig. 11, the dashed line marks energy gap
between subbands at the center of Brillouin zone (k = 0).
The exchange energy term causes shifting of the absorption spectra into high energies. Con-
tribution of the exchange energy term leads to decreasing of energy for electrons populat-
ing subbands. Energy reduction for each subband is proportional to its electron population.
Therefore, transition energy is increased if a lower subband contains more carriers comparing
with higher one. In the opposite case, when higher subband is more populated, the transition
energy is decreased. Both cases have been reported in papers [Mi (2005)] for the first case
and [Pereira (2004)] for the second one). That is the distinguished feature of intersubband
transitions. Energy of interband transitions is always decreased if the exchange contribution
is taking into account. Energy of intersubband transitions can be shifted in any directions
depending on subbands populations.
Hartree-Fock approximation includes the Rabi frequency renormalization represented in the
polarization equation (44). Joint action of the exchange contribution and Rabi frequency renor-
malization on the spectrum are marked by the blue line in Fig. 11. As follows from results,
Rabi frequency renormalization (also known as depolarization) leads to the occurrence of a
narrow peak in the absorption spectrum. The frequency corresponding to this peak is the
frequency of optically excited coherent collective oscillations in the electron plasma. Such
plasma colective oscillations are called the intersubband plasmons [Mi (2005)]. Theory of cou-
pled photon and intersubband plasmon was developed in [Pereira (2007)], and this theory
gives rise of new quasiparticle titled antipolariton.

3.5 Electron transport effect
The effects of the coherent transport can be observed in pump-probe experiments at the fem-
tosecond and picosecond time intervals. The pump-probe experiment consists in propagation
through the investigated media of two optical pulses shifted in time relative each other. First
pump pulse is characterized by high intensity, and it excites optically-active media. The sec-
ond pulse reads changes in the media undergoing optical absorption or gain. More details
about pump-probe techniques can be found in [Weber et al (2009)]. Fig. 12 contains results of
pump-probe optical experiments reported in [Weber et al (2009)]. The pump pulse have the
shape of the Gaussian function.

Each subfigure corresponds to defined parameters which are the temperature and width of the
injection barrier in the QCS. Oscillations of the optical response signal at low temperature and
barrier’s width is caused by coherent electron transport between active region and injector
through the injection barrier. The decay of oscillations with increasing of temperature is effect
of many-body interactions. Scatterings leads to destroying of the coherence via dephasing.
Represented data also reflects the effect of injection barrier width on electron transport. As
have been mentioned above, the coherent electron transport is strongly dependent on the
interaction between quantum wells defined by parameters of the potential barrier. As far as
the width of barrier is increased, the interaction between quantum wells is decreased and,
therefore, the frequency of oscillations is decreased.

4. Conclusions

In this chapter, we have considered influence of the electron transport on the optical prop-
erties of quantum-cascade structures. The electron transport can be treated as evolution of
the electron distribution function in time and space. On the one hand, optical processes are
strongly dependent on this function, and, on the other hand, they cause changes of the dis-
tribution function due to radiative transitions of charge carriers. Therefore, transport and
optical processes are strongly coupled via the electron distribution function. This situation is
common for all semiconductor structures. However, the case of QCS has many particulari-
ties connected with intersubband transitions and tunneling coupling of the active regions in
neighboring cascades. At very short time intervals, electrons coherently pass from one active
region to another through injector. Depending on injectors width and structure, carriers can
propagate through whole injector without inelastic scatterings. In the oposite case, electron
from the active region makes coherent transitions to some energy level in the injector. Thus, it
has been shown that the coherent transport influence optical chacteristics at the time interval
been of order up to one picosecond. This result is confirmed by experimental data.
Our consideration is based on the density matrix theory. This approach is appropriate for
equilibrium case as well as for non-equilibrium one and open quantum systems. We have de-
rived kinetic equations describing dynamics of the electron distribution function, polarization
and tunneling microcurrents.
The single-particle band structure influences strongly the shape of optical absorption spec-
tra. Consideration of the position- and energy-dependent effective mass increases acuracy of
obtained results.
Many-body effects are relevant for all operational regimes of QCS. They determine the inho-
mogeneous broadening of spectral characteristics and their peaks position at the energy scale.
The temperature dependence of optical characteristics is caused by many-body effects.
It is necessary to provide future investigations of the interference between electron transport
and optical processes including in the consideration many-body interactions in injectors and
correlations of electrons through several periods.
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New Approach to Ultra-Fast All-Optical Signal
Processing Based on Quantum Dot Devices

Y. Ben Ezra, B.I. Lembrikov
Holon Institute of Technology (HIT),P.O.Box 305, 58102, 52 Golomb Str., Holon

Israel

1. Introduction

Fiber-optic technology is characterized by enormous potential capabilities: huge bandwidth
up to nearly 50Tb/s due to a high frequency of an optical carrier, low signal attenuation of
about 0.2dB/km, low signal distortion, low power requirement, low material usage, small
space requirement, and low cost Agrawal (2002), Mukherjee (2001).
However, the realization of these capabilities requires very high-bandwidth transport network
facilities which cannot be provided by existing networks consisting of electronic components
of the transmitters and receivers, electronic switches and routers Agrawal (2002). Most current
networks employ electronic signal processing and use optical fiber as a transmission medium.
Switching and signal processing are realized by an optical signal down-conversion to an elec-
tronic signal, and the speed of electronics cannot match the optical fiber bandwidth Rama-
murthy (2001). For instance, a single-mode fiber (SMF) bandwidth is nearly 50Tb/s, which
is nearly four orders of magnitude higher than electronic data rates of a few Gb/s Mukherjee
(2001). Typically, the maximum rate at which a gateway that interfaces with lower-speed sub-
networks can access the network is limited by an electronic component speed up to a few tens
of Gb/s. These limitations may be overcome by the replacement of electronic components
with ultra-fast all-optical signal processing components such as fiber gratings, fiber couplers,
fiber interferometers Agrawal (2001), semiconductor optical amplifiers (SOAs) Dong (2008),
Hamié (2002), SOA and quantum dot SOA (QD-SOA) based monolithic Mach-Zehnder inter-
ferometers (MZIs) Joergensen (1996), Wang (2004), Sun (2005), Kanellos (2007), Wada (2007),
Ben-Ezra (2008), Ben-Ezra (2009), all-optical switches based on multilayer system with en-
hanced nonlinearity and carbon nanotubes Wada (2007).
SOAs are among the most promising candidates for all-optical processing devices due to their
high-speed capability up to 160Gb/s , low switching energy, compactness, and optical integra-
tion compatibility Dong (2008). Their performance may be substantially improved by using
QD-SOAs characterized by a low threshold current density, high saturation power, broad gain
bandwidth, and a weak temperature dependence as compared to bulk and multi-quantum
well (MQW) devices Bimberg (1999), Sugawara (2004), Ustinov (2003).
High-speed wavelength conversion, logic gate operations, and signal regeneration are im-
portant operations of the all-optical signal processing where SOAs are widely used Agrawal
(2002), Ramamurthy (2001), Dong (2008).
A wavelength converter (WC) changes the input wavelength to a new wavelength without
modifying the data content of a signal Agrawal (2002). Wavelength conversion is essential
for optical wavelength division multiplexing (WDM) network operation Ramamurthy (2001).



There exist several all-optical techniques for wavelength conversion based on SOAs using the
cross gain modulation (XGM) and cross phase modulation (XPM) effects between the pulsed
signal and the continuous wave (CW) beam at the wavelength at which the converted signal
is desired Agrawal (2002). In particular, MZI with a SOA inserted in each arm is characterized
by a high on-off contrast and the output converted signal consisting of the exact replica of the
incident signal Agrawal (2002).
All-optical logic operations are important for all-optical signal processing Sun (2005). All-
optical logic gates operation is based on nonlinearities of optical fibers and SOAs. However,
the disadvantages of optical fibers are weak nonlinearity, long interaction length, and/or high
control energy required in order to achieve a reasonable switching efficiency Sun (2005). On
the contrary, SOAs, and especially QD-SOAs, possess high nonlinearity, small dimensions,
low energy consumption, high operation speed, and can be easily integrated into photonic
and electronic systems Sun (2005), Hamié (2002), Kanellos (2007), Dong (2008).
The major problems of the improving transmission optical systems emerge from the signal-to-
noise ratio (SNR) degradation, chromatic dispersion, and other impairment mechanisms Zhu
(2007). For this reason, the optical signal reamplification, reshaping, and retiming (3R), or the
so-called 3R regeneration, is necessary in order to avoid the accumulation of noise, crosstalk
and nonlinear distortions and to provide a good signal quality for transmission over any path
in all-optical networks Sartorius (2001), Zhu (2007), Leem (2006), Kanellos (2007). Optical re-
generation technology can work with lower power, much more compact size, and can provide
transparency in the needed region of spectrum Zhu (2007). All-optical 3R regeneration should
be also less complex, and use fewer optoelectronics/electronics components than electrical re-
generation providing better performance Leem (2006). All-optical 3R regenerator for different
length packets at 40Gb/s based on SOA-MZI has been recently demonstrated Kanellos (2007).
We developed for the first time a theoretical model of an ultra-fast all-optical signal proces-
sor based on the QD SOA-MZI where XOR operation, WC, and 3R signal regeneration can
be simultaneously carried out by AO-XOR logic gates for bit rate up to (100 − 200) Gb/s de-
pending on the value of the bias current I ∼ (30 − 50)mA Ben-Ezra (2009). We investigated
theoretically different regimes of RZ optical signal operation for such a processor and carried
out numerical simulations. We developed a realistic model of QD-SOA taking into account
two energy levels in the conduction band of each QD and a Gaussian distribution for the de-
scription of the different QD size Ben-Ezra (2007), Ben-Ezra (2009), unlike the one-level model
of the identical QDs recently used Berg (2004a), Sun (2005). We have shown that the accu-
rate description of the QD-SOA dynamics predicts the high quality output signals of the QD
SOA-MZI based logic gate without significant amplitude distortions up to a bit rate of about
100Gb/s for the bias current I = 30mA and 200Gb/s for the bias current I = 50mA being
limited by the relaxation time of the electron transitions between the wetting layer (WL), the
excited state (ES) and the ground state (GS) in a QD conduction band Ben-Ezra (2009).
The chapter is constructed as follows. The QD structure, electronic and optical properties are
discussed in Section 2. The dynamics of QD SOA, XGM and XPM phenomena in QD SOA are
described in Section 3. The theory of ultra-fast all-optical processor based on MZI with QD
SOA is developed in Section 4. The simulation results are discussed in Section 5. Conclusions
are presented in Section 6.

2. Structure, Electronic and Optical Properties of Quantum Dots (QDs)

Quantization of electron states in all three dimensions results in a creation of a novel physical
object - a macroatom, or quantum dot (QD) containing a zero dimensional electron gas. Size

quantization is effective when the quantum dot three dimensions are of the order of magni-
tude of the electron de Broglie wavelength which is about several nanometers Ustinov (2003).
An electron-hole pair created by light in a QD has discrete energy eigenvalues caused by the
electron-hole confinement in the material. As a result, QD has unique electronic and optical
properties that do not exist in bulk semiconductor material Ohtsu (2008).
QDs based on different technologies and operating in different parts of spectrum are known
such as In(Ga)As QDs grown on GaAs substrates, InAs QDs grown on InP substrates, and col-
loidal free-standing InAs QDs. QD structures are commonly realized by a self-organized epi-
taxial growth where QDs are statistically distributed in size and area. A widely used QDs fab-
rication method is a direct synthesis of semiconductor nanostructures based on the island for-
mation during strained-layer heteroepitaxy called the Stranski-Krastanow (SK) growth mode
Ustinov (2003). The spontaneously growing QDs are said to be self-assembling. The energy
shift of the emitted light is determined by size of QDs that can be adjusted within a certain
range by changing the amount of deposited QD material. Smaller QDs emit photons of shorter
wavelengths Ustinov (2003). The main advantages of the SK growth are following Ustinov
(2003).

1. SK growth permits the preparation of extremely small QDs in a maskless process with-
out lithography and etching which makes it a promising technique to realize QD lasers.

2. A great number of QDs is formed in one simple deposition step.
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where δ
(
E − Ee,nlm

)
is the δ-function, and nQD is the surface density of QDs.

The optical spectrum of QDs consists of a series of transitions between the zero-dimensional
electron gas energy states where the selections rules are determined by the form and sym-
metry of QDs Ustinov (2003). The finite carrier lifetime results in Lorentzian broadening of a
finite width Ustinov (2003).
Detailed theoretical and experimental investigations of InAs/GaAs and InAs QDs electronic
structure taking into account their more realistic lens or pyramidal shape, size, composition
profile, and production technique have been carried out Bimberg (1999), Bányai (2005), Usti-
nov (2003). A system of QDs can be approximated with a three energy level model in the
conduction band containing a spin degenerate ground state GS, fourfold degenerate excited
state (ES) with comparatively large energy separations of about 50 − 70meV, and a narrow
continuum wetting layer (WL). The electron WL is situated 150meV above the lowest electron
energy level in the conduction band, i.e. GS and has a width of approximately 120meV. In
real cases, the QDs vary in size, shape, and local strain which leads to the fluctuations in the
quantized energy levels and the inhomogeneous broadening in the optical transition energy.
A Gaussian distribution may be used for the description of the QD sizes, and it shows that
the discrete resonances merge into a continuous structure with widths around 10% Bányai
(2005). The QDs and WL are surrounded by a barrier material which prevents direct coupling
between QD layers. The absolute number of states in the WL is much larger than in the QDs.
GS and ES in QDs are characterized by homogeneous and inhomogeneous broadening Bányai
(2005). The homogeneous broadening caused by the scattering of the optically generated elec-
trons and holes with imperfections, impurities, phonons, or through the radiative electron-
hole pair recombination Bányai (2005) is about 15meV at room temperature Sugawara (2002).
The inhomogeneous broadening in the optical transition energy is due to the QDs variations
in size, shape, and local strain Bányai (2005), Sugawara (2004), Ustinov (2003).
In(Ga)As/GaAs QDs are characterized by emission at wavelengths no longer than λ =
1.35µm, while the InAs/InP QDs have been proposed for emission at the usual telecommuni-
cation wavelength λ = 1.55µm Ustinov (2003).

3. Structure and Operation Mode of QD SOA

In this section, we will discuss the theory of QD SOA operation based on the electron rate
equations and photon propagation equation Qasaimeh (2003), Qasaimeh (2004), Ben-Ezra
(2005a), Ben-Ezra (2005b), Ben-Ezra (2007).

3.1 Basic Equations of QD SOA Dynamics
The active region of a QD SOA is a layer including self-assembled InGaAs QDs on a GaAs sub-
strate Sugawara (2004). Typically, the QD density per unit area is about

(
1010 − 1011) cm−2.

The bias current is injected into the active layer including QDs, and the input optical sig-
nals are amplified via the stimulated emission or processed via the optical nonlinearity by
QDs Sugawara (2004). The stimulated radiative transitions occur between GS and the valence
band of QDs. A detailed theory of QD SOAs based on the density matrix approach has been
developed in the pioneering work Sugawara (2004) where the linear and nonlinear optical
responses of QD SOAs with arbitrary spectral and spatial distribution of quantum dots in ac-
tive region under the multimode light propagation have been considered. It has been shown
theoretically that XGM takes place due to the coherent terms under the condition that the
mode separation is comparable to or less than the polarization relaxation rate |ωm − ωn| ≤ Γg
where ωm,n are the mode frequencies and the relaxation time τ = Γ−1

g = 130 f s Sugawara

(2004). XGM is also possible in the case of the incoherent nonlinear polarization, or the so-
called incoherent spectral hole burning Sugawara (2004). XGM occurs only for signals with
a detuning limited by the comparatively small homogeneous broadening, and for this reason
the ensemble of QDs should be divided into groups by their resonant frequency of the GS
transition between the conduction and valence bands Sugawara (2004).
The phenomenological approach to the QD SOA dynamics is based on the rate equations for
the electron densities of GS, ES and for combined WL and barrier serving as a reservoir. It is
determined by electrons, because of the much larger effective mass of holes and their smaller
state spacing Berg (2004a). Recently, an attempt has been carried out to take into account the
hole dynamics for small-signal XGM case Kim (2009).
In the QD SOA-MZI, optical signals propagate in an active medium with the gain determined
by the rate equations for the electron transitions in QD-SOA between WL, GS and ES Qa-
saimeh (2003), Qasaimeh (2004), Ben-Ezra (2005a), Ben-Ezra (2008). Unlike the model with
the one energy level in the conduction band Berg (2004a), Sun (2005), we have taken into ac-
count the two energy levels in the conduction band: GS and ES Ben-Ezra (2007), Ben-Ezra
(2009). The diagram of the energy levels and electron transitions in the QD conduction band
is shown in Fig. 1.

Fig. 1. Energy levels and electron transitions in a QD conduction band

The stimulated and spontaneous radiative transitions occur from GS to the QD valence band
level. The system of the rate equations accounts for the following transitions:

1. the fast electron transitions from WL to ES with the relaxation time τw2 ∼ 3ps ;
2. the fast electron transitions between ES and GS with the relaxation time from ES to GS

τ21 = 0.16ps and the relaxation time from GS to ES τ12 ∼ 1.2ps;
3. the slow electron escape transitions from ES back to WL with the electron escape time

τ2w ∼ 1ns.

The balance between the WL and ES is determined by the shorter time τw2 of QDs filling.
Carriers relax quickly from the ES level to the GS level, while the former serves as a carrier
reservoir for the latter Berg (2001). In general case, the radiative relaxation times depend
on the bias current. However, it can be shown that for moderate values of the WL carrier
density Nw ∼

(
1014 − 1015) cm−3 this dependence can be neglected Berg (2001), Berg (2004b).

The spontaneous radiative time in QDs τ1R ! (0.4 − 0.5) ns remains large enough Sakamoto
(2000), Qasaimeh (2003), Qasaimeh (2004), Sugawara (2004), Matthews (2005).
The carrier dynamics is characterized by slow relaxation processes between WL and ES. The
rapidly varying coherent nonlinear population terms vanish after the averaging over the com-
paratively large relaxation time τw2 ∼several ps from the two-dimensional WL to the ES. We
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have taken into account only incoherent population terms because for XGM between modes
with the maximum detuning ∆λmax = 30nm within the especially important in optical com-
munications conventional band of λ = (1530 ÷ 1565) nm the condition ω1 −ω2 > Γ−1

g is valid
even for the lowest relaxation time from the ES to GS τ21 = 0.16ps, and the rapidly varying
coherent beating terms are insignificant Sugawara (2004). The direct carrier capture into the
GS is neglected due to the fast intradot carrier relaxation and the large energy separation be-
tween the GS and the WL and it is assumed that the charge neutrality condition in the GS is
valid. The rate equations have the form Qasaimeh (2003), Qasaimeh (2004), Ben-Ezra (2007).
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Here, Sp, Ss are the CW pump and on-off-keying (OOK) modulated signal wave photon den-
sities, respectively, L is the length of SOA, gp, gs are the pump and signal wave modal gains,
respectively, f is the electron occupation probability of GS, h is the electron occupation prob-
ability of ES, e is the electron charge, t is the time, τwR is the spontaneous radiative lifetime
in WL, NQ is the surface density of QDs, Lw is the effective thickness of the active layer, εr is
the SOA material permittivity, c is the velocity of light in free space.The modal gain gp,s (ω) is
given by Uskov (2004)

gp,s (ω) =
2ΓNQ

a

∫
dωF (ω) σ (ω0) (2 f − 1) (9)

where the number l of QD layers is assumed to be l = 1, the confinement factor Γ is assumed
to be the same for both the signal and the pump waves, a is the mean size of QDs, σ (ω0)
is the cross section of interaction of photons of frequency ω0 with carriers in QD at the tran-
sition frequency ω including the homogeneous broadening factor, F (ω) is the distribution
of the transition frequency in the QD ensemble which is assumed to be Gaussian Qasaimeh
(2004), Uskov (2004). It is related to the inhomogeneous broadening and it is described by the
expression Uskov (2004)

F (ω) =
1

∆ω
√

π
exp

[
− (ω − ω)2

(∆ω)2

]
(10)

where the parameter ∆ω is related to the inhomogeneous linewidth γin hom = 2
√

ln 2∆ω, and
ω is the average transition frequency.

3.2 XGM and XPM in QD SOA
XGM and XPM in QD SOA are determined by the interaction of QDs with optical sig-
nals. The optical signal propagation in a QD SOA is described by the following trun-
cated equations for the slowly varying CW and pulse signals photon densities SCW,P =

PCW,P/
(

h̄ωCW,P
(
vg

)
CW,P Ae f f

)
and phases θCW,P Agrawal (1989).
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= (gCW,P − αint) SCW,P (z, τ) (11)
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∂z

= − α

2
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Here PCW,P are the CW and pulse signal optical powers, respectively, Ae f f is the QD SOA ef-
fective cross-section, ωCW,P,

(
vg

)
CW,P are the CW and pulse signal group angular frequencies

and velocities, respectively, gCW,P are the active medium (SOA) gains at the corresponding
optical frequencies, αint is the absorption coefficient of the SOA material, α is a linewidth
enhancement factor (LEF) which describes the coupling between gain and refractive index
changes in the material and determines the frequency chirping Agrawal (2002). For the
pulse propagation analysis, we replace the variables (z, t) with the retarded frame variables(
z, τ = t ∓ z/vg

)
. For optical pulses with a duration T ! 10ps the optical radiation of the

pulse is filling the entire active region of a QD SOA of the length L " 1mm and the propaga-
tion effects can be neglected Gehrig (2002). Hence, in our case the photon densities

SCW,P (z, τ) = (SCW,P (τ))in exp
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can be averaged over the QD SOA length L which yields
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Solution of equation (12) yields for the phases

θCW,P (τ) = − (α/2)
L∫

0

dzgCW,P. (15)

The time-dependent variations of the carrier distributions in the QDs and WL result in the
strong phase changes (12) during the light propagation in the QD SOA Gehrig (2002). System
of equations (6)-(8) with the average pump and signal photon densities (14) and phases (15)
constitutes a complete set of equations describing XGM and XPM in QD SOA related by the
LEF α as it is seen from equations (11), (12) and (15).
In order to investigate the possibility of XGM in QD SOAs due to the connections between
different QDs through WL at detunings between a signal and a pumping larger than the ho-
mogeneous broadening we modified equations (6)-(8) dividing QDs into groups similarly to
Sugawara (2002), Sugawara (2004), Sakamoto (2000). We consider a limiting case of the groups
1 and 2 with a detuning substantially larger than the homogeneous broadening, in order to
investigate the possibility that they are related only due to the carrier relaxation from WL to
ES Ben-Ezra (2007). The rate equations for such QDs take the form
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sities, respectively, L is the length of SOA, gp, gs are the pump and signal wave modal gains,
respectively, f is the electron occupation probability of GS, h is the electron occupation prob-
ability of ES, e is the electron charge, t is the time, τwR is the spontaneous radiative lifetime
in WL, NQ is the surface density of QDs, Lw is the effective thickness of the active layer, εr is
the SOA material permittivity, c is the velocity of light in free space.The modal gain gp,s (ω) is
given by Uskov (2004)

gp,s (ω) =
2ΓNQ

a

∫
dωF (ω) σ (ω0) (2 f − 1) (9)

where the number l of QD layers is assumed to be l = 1, the confinement factor Γ is assumed
to be the same for both the signal and the pump waves, a is the mean size of QDs, σ (ω0)
is the cross section of interaction of photons of frequency ω0 with carriers in QD at the tran-
sition frequency ω including the homogeneous broadening factor, F (ω) is the distribution
of the transition frequency in the QD ensemble which is assumed to be Gaussian Qasaimeh
(2004), Uskov (2004). It is related to the inhomogeneous broadening and it is described by the
expression Uskov (2004)

F (ω) =
1

∆ω
√

π
exp

[
− (ω − ω)2

(∆ω)2

]
(10)

where the parameter ∆ω is related to the inhomogeneous linewidth γin hom = 2
√

ln 2∆ω, and
ω is the average transition frequency.

3.2 XGM and XPM in QD SOA
XGM and XPM in QD SOA are determined by the interaction of QDs with optical sig-
nals. The optical signal propagation in a QD SOA is described by the following trun-
cated equations for the slowly varying CW and pulse signals photon densities SCW,P =

PCW,P/
(

h̄ωCW,P
(
vg

)
CW,P Ae f f

)
and phases θCW,P Agrawal (1989).

∂SCW,P (z, τ)

∂z
= (gCW,P − αint) SCW,P (z, τ) (11)

∂θCW,P
∂z

= − α

2
gCW,P (12)

Here PCW,P are the CW and pulse signal optical powers, respectively, Ae f f is the QD SOA ef-
fective cross-section, ωCW,P,

(
vg

)
CW,P are the CW and pulse signal group angular frequencies

and velocities, respectively, gCW,P are the active medium (SOA) gains at the corresponding
optical frequencies, αint is the absorption coefficient of the SOA material, α is a linewidth
enhancement factor (LEF) which describes the coupling between gain and refractive index
changes in the material and determines the frequency chirping Agrawal (2002). For the
pulse propagation analysis, we replace the variables (z, t) with the retarded frame variables(
z, τ = t ∓ z/vg

)
. For optical pulses with a duration T ! 10ps the optical radiation of the

pulse is filling the entire active region of a QD SOA of the length L " 1mm and the propaga-
tion effects can be neglected Gehrig (2002). Hence, in our case the photon densities

SCW,P (z, τ) = (SCW,P (τ))in exp
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 (13)

can be averaged over the QD SOA length L which yields

SCW,P (τ) =
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L
(SCW,P (τ))in
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Solution of equation (12) yields for the phases

θCW,P (τ) = − (α/2)
L∫

0

dzgCW,P. (15)

The time-dependent variations of the carrier distributions in the QDs and WL result in the
strong phase changes (12) during the light propagation in the QD SOA Gehrig (2002). System
of equations (6)-(8) with the average pump and signal photon densities (14) and phases (15)
constitutes a complete set of equations describing XGM and XPM in QD SOA related by the
LEF α as it is seen from equations (11), (12) and (15).
In order to investigate the possibility of XGM in QD SOAs due to the connections between
different QDs through WL at detunings between a signal and a pumping larger than the ho-
mogeneous broadening we modified equations (6)-(8) dividing QDs into groups similarly to
Sugawara (2002), Sugawara (2004), Sakamoto (2000). We consider a limiting case of the groups
1 and 2 with a detuning substantially larger than the homogeneous broadening, in order to
investigate the possibility that they are related only due to the carrier relaxation from WL to
ES Ben-Ezra (2007). The rate equations for such QDs take the form
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where the indices 1,2 correspond to the groups 1 and 2 of QDs. Equations (17)-(18) contain
the electron occupation probabilities belonging to the same group and the photon density
corresponding to the optical beam resonant with respect to this group, while the WL rate
equation (16) includes the contributions of the both groups.

4. Theory of an Ultra-Fast All-Optical Processor

4.1 Theoretical Approach
The theoretical analysis of the proposed ultra-fast QD SOA-MZI processor is based on the
combination of the MZI model with the nonlinear characteristics and the QD-SOA dynamics.
The block diagram of the processor is shown in Fig. 2.

Fig. 2. A block diagram of the ultra-fast MZI processor containing in each arm a QD SOA,
50-50 3dB optical couplers, and optical circulators (OC)

At the output of MZI, the CW optical signals from the two QD SOAs interfere giving the
output intensity Sun (2005), Wang (2004).

PXOR =
Pin
4

{G1 (t) + G2 (t)

− 2
√

G1 (t) G2 (t) cos [φ1 (t)− φ2 (t)]} (19)

where Pin is the CW or the clock stream optical signal divided and introduced via the sym-
metric coupler into the two QD-SOAs, G1,2 (t) = exp (g1,2L1,2), g1,2, L1,2, and φ1,2 (t) are the
time-dependent gain, the SOA gain, the active medium length, and phase shift, respectively,
in the two arms of QD SOA-MZI. The phases φ1,2 (t) should be inserted into equation (19)
from equation (15). When the control signals A and/or B are fed into the two SOAs they
modulate the gain of the SOAs and give rise to the phase modulation of the co-propagating
CW signal due to LEF α Agrawal (2001), Agrawal (2002), Newell (1999). LEF values may vary
in a large interval from the experimentally measured value of LEF α = 0.1 in InAs QD lasers
near the gain saturation regime Newell (1999) up to the giant values of LEF α = 60 recently
measured in InAs/InGaAs QD lasers Dagens (2005). However, such limiting cases can be
achieved for specific electronic band structure Newell (1999), Dagens (2005), Sun (2004). The
typical values of LEF in QD lasers are α ≈ (2 − 7) Sun (2005). Detailed measurements of the
LEF dependence on injection current, photon energy, and temperature in QD SOAs have also
been carried out Schneider (2004). For low-injection currents, the LEF of the dot GS transition
is between 0.4 and 1 increasing up to about 10 with the increase of the carrier density at room
temperature Schneider (2004). The phase shift at the QD SOA-MZI output is given by Wang
(2004)

φ1 (t)− φ2 (t) = − α

2
ln

(
G1 (t)
G2 (t)

)
(20)

It is seen from equation (20) that the phase shift φ1 (t)− φ2 (t) is determined by both LEF and
the gain. For the typical values of LEF α ≈ (2 − 7), gain g1,2 = 11.5cm−1, L1,2 = 1500µm the
phase shift of about π is feasible.

4.2 Logic Gate Operation
Consider an AO-XOR gate based on integrated QD SOA-MZI which consists of a symmetrical
MZI where one QD SOA is located in each arm of the interferometer as shown in Fig. 2.
Two optical control beams A and B at the same wavelength λ are inserted into ports A and
B of MZI separately. A third signal, which represents a clock stream of continuous series
of unit pulses is split into two equal parts and injected into the two SOAs. The detuning ∆ω
between the signals A, B and the third signal should be less than the homogeneous broadening
of QDs spectrum. In such a case the ultrafast operation occurs. In the opposite case of a
sufficiently large detuning comparable with the inhomogeneous broadening, XGM in a QD
SOA is also possible due to the interaction of QDs groups with essentially different resonance
frequencies through WL for optical pulse bit rates up to 10Gb/s Ben-Ezra (2007). When A =
B = 0, the signal at the MZI input port traveling through the two arms of the SOA acquires a
phase difference of π when it recombines at the output port, and the output is ”0” due to the
destructive interference. When A = 1, B = 0, the signal traveling through the arm with signal
A acquires a phase change due to XPM between the pulse train A and the signal. The signal
traveling through the lower arm does not have this additional phase change which results in
an output ”1” Sun (2005). The same result occurs when A = 0, B = 1 Sun (2005). When A = 1
and B = 1 the phase changes for the signal traveling through both arms are equal, and the
output is ”0”.

4.3 Wavelength Conversion
An ideal wavelength convertor (WC) should have the following properties: transparency to
bit rates and signal formats, fast setup time of output wavelength, conversion to both shorter
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where the indices 1,2 correspond to the groups 1 and 2 of QDs. Equations (17)-(18) contain
the electron occupation probabilities belonging to the same group and the photon density
corresponding to the optical beam resonant with respect to this group, while the WL rate
equation (16) includes the contributions of the both groups.
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The theoretical analysis of the proposed ultra-fast QD SOA-MZI processor is based on the
combination of the MZI model with the nonlinear characteristics and the QD-SOA dynamics.
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where Pin is the CW or the clock stream optical signal divided and introduced via the sym-
metric coupler into the two QD-SOAs, G1,2 (t) = exp (g1,2L1,2), g1,2, L1,2, and φ1,2 (t) are the
time-dependent gain, the SOA gain, the active medium length, and phase shift, respectively,
in the two arms of QD SOA-MZI. The phases φ1,2 (t) should be inserted into equation (19)
from equation (15). When the control signals A and/or B are fed into the two SOAs they
modulate the gain of the SOAs and give rise to the phase modulation of the co-propagating
CW signal due to LEF α Agrawal (2001), Agrawal (2002), Newell (1999). LEF values may vary
in a large interval from the experimentally measured value of LEF α = 0.1 in InAs QD lasers
near the gain saturation regime Newell (1999) up to the giant values of LEF α = 60 recently
measured in InAs/InGaAs QD lasers Dagens (2005). However, such limiting cases can be
achieved for specific electronic band structure Newell (1999), Dagens (2005), Sun (2004). The
typical values of LEF in QD lasers are α ≈ (2 − 7) Sun (2005). Detailed measurements of the
LEF dependence on injection current, photon energy, and temperature in QD SOAs have also
been carried out Schneider (2004). For low-injection currents, the LEF of the dot GS transition
is between 0.4 and 1 increasing up to about 10 with the increase of the carrier density at room
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It is seen from equation (20) that the phase shift φ1 (t)− φ2 (t) is determined by both LEF and
the gain. For the typical values of LEF α ≈ (2 − 7), gain g1,2 = 11.5cm−1, L1,2 = 1500µm the
phase shift of about π is feasible.

4.2 Logic Gate Operation
Consider an AO-XOR gate based on integrated QD SOA-MZI which consists of a symmetrical
MZI where one QD SOA is located in each arm of the interferometer as shown in Fig. 2.
Two optical control beams A and B at the same wavelength λ are inserted into ports A and
B of MZI separately. A third signal, which represents a clock stream of continuous series
of unit pulses is split into two equal parts and injected into the two SOAs. The detuning ∆ω
between the signals A, B and the third signal should be less than the homogeneous broadening
of QDs spectrum. In such a case the ultrafast operation occurs. In the opposite case of a
sufficiently large detuning comparable with the inhomogeneous broadening, XGM in a QD
SOA is also possible due to the interaction of QDs groups with essentially different resonance
frequencies through WL for optical pulse bit rates up to 10Gb/s Ben-Ezra (2007). When A =
B = 0, the signal at the MZI input port traveling through the two arms of the SOA acquires a
phase difference of π when it recombines at the output port, and the output is ”0” due to the
destructive interference. When A = 1, B = 0, the signal traveling through the arm with signal
A acquires a phase change due to XPM between the pulse train A and the signal. The signal
traveling through the lower arm does not have this additional phase change which results in
an output ”1” Sun (2005). The same result occurs when A = 0, B = 1 Sun (2005). When A = 1
and B = 1 the phase changes for the signal traveling through both arms are equal, and the
output is ”0”.

4.3 Wavelength Conversion
An ideal wavelength convertor (WC) should have the following properties: transparency to
bit rates and signal formats, fast setup time of output wavelength, conversion to both shorter



and longer wavelengths, moderate input power levels, possibility for no conversion regime,
insensitivity to input signal polarization, low-chirp output signal with high extinction ratio
and large SNR, and simple implementation Ramamurthy (2001). Most of these requirements
can met by using SOA in the process of wavelength conversion. XGM method using SOAs
is especially attractive due to its simple realization scheme for WC Agrawal (2001). How-
ever, the main disadvantages of this method are substantial phase distortions due to the
frequency chirping, degradation due to spontaneous emission, and a relatively low extinc-
tion ratio Agrawal (2001). These parameters may be improved by using QD-SOAs instead
of bulk SOAs due to pattern-effect-free high-speed wavelength conversion of optical signals
by XGM, a low threshold current density, a high material gain, high saturation power, broad
gain bandwidth, and a weak temperature dependence as compared to bulk and MQW de-
vices Ustinov (2003). We combine the advantages of QD-SOAs as a nonlinear component and
MZI as a system whose output signal can be easily controlled. In the situation where one
of the propagating signals A or B is absent, CW signal with the desired output wavelength
is split asymmetrically to each arm of MZI and interferes at the output either constructively
or destructively with the intensity modulated input signal at another wavelength. The state
of interference depends on the relative phase difference between the two MZI arms which is
determined by the SOAs. In such a case the QD SOA-MZI operates as an amplifier of the
remaining propagating signal. Then, the operation with the output ”1” may be characterized
as a kind of WC due to XGM between the input signal A or B and the clock stream signal. The
possibility of the pattern-effect-free wavelength conversion by XGM in QD SOAs has been
demonstrated experimentally at the wavelength of 1.3µm Sugawara (2004).

4.4 3R Regeneration
Short optical pulses propagating in optical fibers are distorted due to the fiber losses caused
by material absorption, Rayleigh scattering, fiber bending, and due to the broadening caused
by the material, waveguide, polarization-mode, and intermodal dispersion Agrawal (2001),
Agrawal (2002). 3R regeneration is essential for the successful logic operations because of
the ultra-fast data signal distortions. 3R regeneration requires an optical clock and a suitable
architecture of the regenerator in order to perform a clocked decision function Sartorius (2001).
In such a case, the shape of the regenerated pulses is defined by the shape of the clock pulses
Sartorius (2001).
The proposed QD SOA-MZI ultra-fast all-optical processor can successfully solve three prob-
lems of 3R regeneration. Indeed, the efficient pattern–effect free optical signal re-amplification
may be carried out in each arm by QD-SOAs. WC based on the all-optical logic gate provides
the re-shaping since noise cannot close the gate, and only the data signals have enough power
to close the gate Sartorius (2001). The re-timing in QD-SOA-MZI based processor is provided
by the optical clock which is also essential for the re-shaping Sartorius (2001). Hence, if the
CW signal is replaced with the clock stream, the 3R regeneration can be carried out simulta-
neously with logic operations. The analysis shows that for the strongly distorted data signals
a separate processor is needed providing 3R regeneration before the data signal input to the
logic gate.

5. Simulation Results and Discussion

The study of the ultrafast all-optical signal processor in different regimes such as XOR, WC,
3R signal regeneration requires the simultaneous analysis of the QD-SOA dynamics and MZI
behavior. The MZI performance efficiency is determined by the combination of XGM and

XPM processes, and for this reason it strongly depends on the value of LEF which varies in
an interval of α ∼ (0.1 − 7) Newell (1999), Sun (2005). For small α < 1 the XPM process is too
weak, and the MZI efficiency is very low. However, the analysis shows that for α ≥ 1 and for
the bias current values of I = 30mA the system efficiency is large enough. The efficiency may
be significantly increased by using larger values of the bias current for the same value of LEF
α.
System of equations (6)-(8) with the average pump and signal photon densities (14) consti-
tuting a complete set of equations describing XGM and XPM in QD SOA are essentially non-
linear and extremely complicated. Their analytical solution in a closed form is hardly pos-
sible, and for this reason, the system of equations (6)-(8) has been solved numerically for
the following typical values of the QD-SOA based AO-XOR Berg (2001), Uskov (2004), Qa-
saimeh (2003), Qasaimeh (2004): L = 1500µm, Lw = 0.1µm, the bias current I = 30mA,
LEF α = 1, the width of QD-SOA W = 10µm, Γ ∼ 3 × 10−2, τw2 = 3ps; τ21 = 0.16ps;
τ12 = 1.2ps; τ1R = 0.4ns; τ2w = τwR = 1ns, NQ = 5 × 1010cm−2, αint = 3cm−1, σE = 30meV,
τ12 = τ21ρ exp (∆E21/kBT). Here ρ = 1, ∆E21 = 50meV is the separation between the ES and
GS energy levels, kB is the Boltzmann constant, T = 300K is the temperature. The situation
when only one data signal interacts with the clock stream signal is shown in Fig. 3.

Fig. 3. Wavelength conversion realization by XGM between the data signal B with λB =
1560nm and the clock stream signal with λp = 1530nm for the signal bit rate 2.5Gb/s

In such a case, wavelength conversion occurs between the optical signal B at the wavelength
λB = 1560nm propagating through the lower arm of QD SOA-MZI and the clock stream signal
with λp = 1530nm. Pattern-effect free wavelength conversion can be realized for the bit rate
up to 100Gb/s in the case of a detuning less than the homogeneous broadening, and up to
10Gb/s for a large detuning comparable to the inhomogeneous broadening Ben-Ezra (2007).
Input optical signal distortions result in the output signal pattern-effect, significant pulse
broadening and overlapping accompanied by information losses. In such a case the form
of pulses can be essentially improved by using the 3R regeneration process shown in Fig. 4
where the RZ clock stream is fed into the input port instead of a CW signal.
It is seen in Fig. 4 that a distorted pulse duration is almost doubled while the regenerated
signals shown with a solid line have a regular structure with the equal amplitudes and a
shape defined by the clock.



and longer wavelengths, moderate input power levels, possibility for no conversion regime,
insensitivity to input signal polarization, low-chirp output signal with high extinction ratio
and large SNR, and simple implementation Ramamurthy (2001). Most of these requirements
can met by using SOA in the process of wavelength conversion. XGM method using SOAs
is especially attractive due to its simple realization scheme for WC Agrawal (2001). How-
ever, the main disadvantages of this method are substantial phase distortions due to the
frequency chirping, degradation due to spontaneous emission, and a relatively low extinc-
tion ratio Agrawal (2001). These parameters may be improved by using QD-SOAs instead
of bulk SOAs due to pattern-effect-free high-speed wavelength conversion of optical signals
by XGM, a low threshold current density, a high material gain, high saturation power, broad
gain bandwidth, and a weak temperature dependence as compared to bulk and MQW de-
vices Ustinov (2003). We combine the advantages of QD-SOAs as a nonlinear component and
MZI as a system whose output signal can be easily controlled. In the situation where one
of the propagating signals A or B is absent, CW signal with the desired output wavelength
is split asymmetrically to each arm of MZI and interferes at the output either constructively
or destructively with the intensity modulated input signal at another wavelength. The state
of interference depends on the relative phase difference between the two MZI arms which is
determined by the SOAs. In such a case the QD SOA-MZI operates as an amplifier of the
remaining propagating signal. Then, the operation with the output ”1” may be characterized
as a kind of WC due to XGM between the input signal A or B and the clock stream signal. The
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In such a case, wavelength conversion occurs between the optical signal B at the wavelength
λB = 1560nm propagating through the lower arm of QD SOA-MZI and the clock stream signal
with λp = 1530nm. Pattern-effect free wavelength conversion can be realized for the bit rate
up to 100Gb/s in the case of a detuning less than the homogeneous broadening, and up to
10Gb/s for a large detuning comparable to the inhomogeneous broadening Ben-Ezra (2007).
Input optical signal distortions result in the output signal pattern-effect, significant pulse
broadening and overlapping accompanied by information losses. In such a case the form
of pulses can be essentially improved by using the 3R regeneration process shown in Fig. 4
where the RZ clock stream is fed into the input port instead of a CW signal.
It is seen in Fig. 4 that a distorted pulse duration is almost doubled while the regenerated
signals shown with a solid line have a regular structure with the equal amplitudes and a
shape defined by the clock.



Fig. 4. Optical signal 3R regeneration process

The simultaneous XOR logic operation, wavelength conversion and 3R regeneration for the
distorted at the input RZ signals A and B with the wavelengths λA = 1550nm and λB =
1560nm for the bit rate of 100Gb/s are shown in Fig. 5. Here the RZ clock stream is fed into
the input port instead of a CW signal in order to carry out 3R regeneration.

Fig. 5. Simultaneous logic XOR operation, wavelength conversion and 3R regeneration of the
distorted RZ signals A, B with λA = 1550nm, λB = 1560nm, and the clock stream (dashed
line) at the input port. The bit rate is 100Gb/s.

The ultrafast all-optical signal processor operation performance is mainly determined by the
electron dynamics in QD-SOA. In order to investigate the QD-SOA behavior in both arms of
QD SOA-MZI we have solved numerically system of equations (6)-(8). The temporal depen-
dence of the electron concentration in WL Nw (t) and the electron occupation probability of
GS and ES, f (t) and h (t), respectively, in the QD-SOA situated in the upper arm of the MZI
for the signal repetition rates of 50Gb/s, 100Gb/s, and 250Gb/s are presented in Figs. 6, 7, 8,
respectively.

Fig. 6. emporal dependence of the electron concentration in WL Nw (t), the electron occupa-
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The analysis of QD SOA dynamics for the signal detuning smaller than the homogeneous
broadening clearly shows that the operation rate of QD-SOAs is limited by the relaxation time
τw2 ∼ (3 − 5) ps for the electron transitions between WL and ES in the resonant QDs. At the
bit rate of several dozens of Gb/s the oscillations of both WL and ES strictly follow the input
optical signal variation.
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Fig. 8. emporal dependence of the electron concentration in WL Nw (t), the electron occupa-
tion probability of GS f (t), and the electron occupation probability of ES h (t) for the QD SOA
in the upper arm of the QD SOA-MZI with a clock stream at a data signal repetition rate of
250Gb/s

The electron population of GS is supported at a comparatively high level f ! 0.6 due to the
electron fast transitions between ES and GS. The ES population is low because ES level is emp-
tied rapidly by the fast stimulated transitions to GS at the comparatively high input optical
power Pin ! 5mW. The operation rate of QD-SOA can be increased due to the acceleration
of the gain recovery at the high optical signal power and the large bias currents I ∼ 30mA
Ben-Ezra (2008), Ben-Ezra (2005b). The filling of ES is determined by slower transitions from
WL with the relaxation time τw2 ∼ (3 − 5) ps. It is seen from the temporal dependences of
Nw (t), h (t) and f (t) in the lower arm QD-SOA for the pulse bit rate of 50Gb/s, 100Gb/s, and
250Gb/s shown in Figs. 6, 7, 8, respectively, that the WL electron population gradually fails
to follow the rapid changes of the input optical signals. At 250Gb/s the oscillation form of the
GS and ES occupation probabilities also deteriorates.
Consequently, the gain in the both arms of QD SOA-MZI as well as the input power PXOR (19)
and phase difference (20) cannot be controlled anymore. Indeed, as it is seen from Figs. 9, 10
for the operation rate of about 250Gb/s << τ−1

w2 the performance of AO-XOR gate sharply
deteriorates due to retardation of the QD-SOA dynamics. The increase of the bias current
improves the system performance. However, typically the bias current values for QD-SOAs
are of an order of magnitude of 50mA, which corresponds to the current density of several
hundred A/cm2 Ustinov (2003).

6. Conclusions

We for the first time developed a theoretical model of a QD SOA-MZI based ultra-fast all-
optical signal processor which under certain conditions can simultaneously carry out logic
gates XOR operation, wavelength conversion, and 3R regeneration of the moderately dis-
torted optical signals. The QD SOA-MZI operation has been analyzed theoretically by solving
the rate equations of the QD-SOA dynamics, optical wave propagation equations in an active

Fig. 9. XOR operation with a clock stream at a signal bit rate 100Gb/s

Fig. 10. XOR operation with a clock stream at a signal bit rate 250Gb/s

medium, and the MZI equations. We have taken into account the two energy levels, namely,
ES and GS in the QD conduction band and the inhomogeneity of the QDs size and the result-
ing inhomogeneous spectral broadening. For a high performance of the proposed processor,
LEF should be α ! 1. The QD SOA-MZI based all-optical processor operation rate is limited
by the WL-ES electron transition relaxation time and sharply deteriorates with the increase
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of repetition rates. The limiting bit rate also depends on the bias current value. Analysis
shows that for I = 30mA and I = 50mA the highest bit rates corresponding to the processor
successful performance are 100Gb/s and 200Gb/s, respectively.
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